Mathematics for Computer Science, CM0167, Example class, Week 10, Dr David Marshall

1. Pythagoras theorem in \mathbb{R}^n : Let **v** and **w** be two orthogonal vectors in \mathbb{R}^n . Show that

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2.$$

NOTE: Be careful! This equality holds only for orthogonal vectors!!!)

2. For which $k \in \mathbb{R}$ are **v** and **w** orthogonal if,

a)

$$\mathbf{v} = \begin{pmatrix} 2\\1\\3 \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} 1\\7\\k \end{pmatrix}$$
b)

$$\mathbf{v} = \begin{pmatrix} k\\k\\1 \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} k\\5\\6 \end{pmatrix}?$$
3. Let $\mathbf{a} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2\\0\\5 \end{pmatrix}$.
a) Check wether $\mathbf{c} = \begin{pmatrix} -2\\-5\\7 \end{pmatrix}$ is orthogonal to \mathbf{a} or not.

- b) Calculate a non-zero vector that is perpendicular to **a** and **b**.
- 4. Let *P* be the parallelogram spanned the vectors $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} -5 \\ 6 \end{pmatrix}$. Calculate the area of *P*.

5. Let Q be the parallelepid spanned by the vectors $\mathbf{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$

and
$$\mathbf{c} = \begin{pmatrix} 0\\ 3\\ 6 \end{pmatrix}$$
. Calculate the Volume of Q .

- 6. Prove the following identities for $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$.
 - a) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ (Grassmann-expansion).
 - b) $(\mathbf{u} \times \mathbf{v}).(\mathbf{w} \times \mathbf{x}) = (\mathbf{u}.\mathbf{w})(\mathbf{v}.\mathbf{x}) (\mathbf{v}.\mathbf{w})(\mathbf{u}.\mathbf{x}).$ (Lagrange identity).