Mathematics for Computer Science, CM0167,
Example class, Week 10,
Dr David Marshall

1. Pythagoras theorem in \mathbb{R}^{n} : Let \mathbf{v} and \mathbf{w} be two orthogonal vectors in \mathbb{R}^{n}. Show that

$$
\|\mathbf{v}+\mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}
$$

NOTE: Be careful! This equality holds only for orthogonal vectors!!!)
2. For which $k \in \mathbb{R}$ are \mathbf{v} and \mathbf{w} orthogonal if,
a)

$$
\mathbf{v}=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) \quad \mathbf{w}=\left(\begin{array}{l}
1 \\
7 \\
k
\end{array}\right)
$$

b)

$$
\mathbf{v}=\left(\begin{array}{c}
k \\
k \\
1
\end{array}\right) \quad \mathbf{w}=\left(\begin{array}{l}
k \\
5 \\
6
\end{array}\right) ?
$$

3. Let $\mathbf{a}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}2 \\ 0 \\ 5\end{array}\right)$.
a) Check wether $\mathbf{c}=\left(\begin{array}{c}-2 \\ -5 \\ 7\end{array}\right)$ is orthogonal to a or not.
b) Calculate a non-zero vector that is perpendicular to \mathbf{a} and \mathbf{b}.
4. Let P be the parallelogram spanned the vectors $\mathbf{a}=\binom{1}{2}$ and $\mathbf{b}=\binom{-5}{6}$. Calculate the area of P.
5. Let Q be the parallelepid spanned by the vectors $\mathbf{a}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{b}=\left(\begin{array}{l}2 \\ 2 \\ 4\end{array}\right)$ and $\mathbf{c}=\left(\begin{array}{l}0 \\ 3 \\ 6\end{array}\right)$. Calculate the Volume of Q.
6. Prove the following identities for $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$.
a) $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$ (Grassmann-expansion).
b) $(\mathbf{u} \times \mathbf{v}) .(\mathbf{w} \times \mathbf{x})=(\mathbf{u} \cdot \mathbf{w})(\mathbf{v} \cdot \mathbf{x})-(\mathbf{v} \cdot \mathbf{w})(\mathbf{u} \cdot \mathbf{x})$. (Lagrange identity).
