Mathematics for Computer Science, CM0167,

Example class, Week 4,
Dr David Marshall

1. Using the handshaking lemma, show that in any graph, the number of vertices of odd degree is even.
2. Consider the following pairs of graphs:

(a) Are the above graphs isomorphic? If yes give a one-to-one correspondence between them. If not show why they can't be isomorphic.
3. Find a trail and a path in the following graphs:

4. Fleury's algorithm finds an Eulerian trail in an Eulerian graph:

Algorithm 1 (Fleury's algorithm).

START with an Eulerian graph G.
Step 1 Choose a starting vertex for your trail.
Step 2 Starting from the current vertex, traverse any available edge, choosing a bridge only if there is no alternative. Then erase that edge and any isolated vertex. Whenever you erase an edge add it to the trail.

REPEAT Step 2 until there are no more edges, then STOP.
Use Fleury's algorithm to construct an Eulerian trail in the graph below.

5. The Königsberg bridge problem could have been solved if two bridges are removed
Which bridges would you remove? Justify your answer.

