Mathematics for Computer Science, CM0167, Example class, Week 6,
SOLUTIONS
Dr David Marshall

1. Find a minimum spanning tree for the weighted graph below using Prim's algorithm.

Apply Prim's algorithm as follows:
(a) Start: Choose S, Draw S

Lowest weight is $S C$ choose this path and draw it. Draw Vertex C.

(b) Vertices S and C now drawn. Lowest weighed edge between drawn vertices and non-drawn is $C D$ choose this path and draw it, Draw vertex D :

(c) Vertices S, C and D now drawn. Lowest weighed edge between drawn vertices and non-drawn is $S A$ choose this path and draw it, Draw vertex A :

(d) Vertices S, C, D and A now drawn. Lowest weighed edge between drawn vertices and non-drawn is $C E$ choose this path and draw it, Draw vertex E :

(e) Vertices S, C, D, A and E now drawn. Lowest weighed edge between drawn vertices and non-drawn is $E G$ choose this path and draw it, Draw vertex G :

(f) Vertices S, C, D, A, E and G now drawn. Lowest weighed edge between drawn vertices and non-drawn is $F G$ choose this path and draw it. Draw Vertex F :

(g) Vertices S, C, D, A, E, G and F now drawn (Only T left). Lowest weighed edge between drawn vertices and non-drawn is $F T$ choose this path and draw it. Draw Vertex T :

So the minimum spanning tree is:

2. Find an upper and lower bound for the Travelling Salesperson Problem for the cities A, B, C, D, E and F.

	A	B	C	D	E	F
A	-	64	38	28	42	29
B	64	-	27	46	18	9
C	38	27	-	55	25	9
D	28	46	55	-	12	25
E	42	18	25	12	-	31
F	29	9	9	25	31	-

Graph for above data is:

(a) Upper Bound Solution

Recap: listing of algorithm not required for solution To get an upper bound we use the following algorithm (The heuristic/nearest neighbour algorithm)
The idea for the heuristic algorithm is similar to the idea of Prim's algorithm, except that we build up a cycle rather than a tree.

- START with all the vertices of a complete weighted graph.
- Step 1: Choose any vertex and find a vertex joined to it by an edge of minimum weight. Draw these two vertices and join them with two edges to form a cycle. Give the cycle a clockwise rotation.
- Step 2: Find a vertex not currently drawn, joined by an edge of least weight to a vertex already drawn. Insert this new vertex into the cycle in front of the 'nearest' already connected vertex.
- REPEAT Step 2 until all the vertices are joined by a cycle, then STOP.

The total weight of the resulting Hamiltonian cycle is then an upper bound for the solution to the travelling salesperson problem.

Step 1: Choose Vertex A (if other vertices chosen a valid but different answer possible). Draw A. Lowest weight is $A D$. So Draw D and draw $A D$ as a clockwise cycle.

Step 2: Vertices Drawn: A, D. Lowest Weight from undrawn vertex to drawn vertex is $D E$. So Draw E and draw $D E$ as a clockwise cycle.

Step 3: Vertices Drawn: A, D, E. Lowest Weight from undrawn vertex to drawn vertex is $E B$. So Draw B and draw $E B$ as a clockwise cycle.

Step 4: Vertices Drawn: A, D, E, B. Lowest Weight from undrawn vertex to drawn vertex is $B F$. So Draw F and draw $B F$ as a clockwise cycle.

Step 5: Vertices Drawn: A, D, E, B, F. Lowest Weight from undrawn vertex to drawn vertex is $F C$. So Draw C and draw $F C$ as a clockwise cycle.

So Hamiltonian Cycle create is:

The Upper BOUND for the TSP of this problem is the weight of this cycle which is:

$$
2 \times(28+12+18+9+9)=152
$$

(b) Lower Bound Solution

Recap: listing of algorithm not required for solution Lower bound for the travelling salesperson problem algorithm:

- Step 1: Choose a vertex V and remove it from the graph.
- Step 2: Find a minimum spanning tree connecting the remaining vertices, and calculate its total weight w.
- Step 3: Find the two smallest weights, w_{1} and w_{2}, of edges incident with V.
- Step 4: Calculate the lower bound $w+w_{1}+w_{2}$.

Step 1: Choose Vertex A. Remove A from the graph:

Step 2: Use Prim's Algorithm to find minimum spanning tree:

- START with all the vertices of a weighted graph.
- Step 1: Choose and draw any vertex.
- Step 2: Find the edge of least weight joining a drawn vertex to a vertex not currently drawn. Draw this weighted edge and the corresponding new vertex .
- REPEAT Step 2 until all the vertices are connected, then STOP.

Step 2.1: Choose and draw F. Edge of least weight to F is either B or C.
Choose B. Draw B and edge $F B$:

Step 2.2: Vertices drawn: F, B. Edge of least weight from a non-drawn vertex to a drawn vertex is $F C$ Choose C. Draw C and edge $F C$:

Step 2.3: Vertices drawn: F, B, C. Edge of least weight from a non-drawn vertex to a drawn vertex is $B E$ Choose E. Draw E and edge $B E$:

Step 2.3: Vertices drawn: F, B, C, E. Edge of least weight from a non-drawn vertex to a drawn vertex is $E D$ Choose D. Draw D and edge $E D$:

Step 2.4: So minimum spanning tree is:

The weight of this tree is:

$$
w=9+9+18+12=48
$$

Step 3 : Now add the two least weighted edges to A which are $A D$ with weight $w_{1}=28$ and $A F$ with weight $w_{2}=29$

So the lower bound of this TSP problem is:

$$
w+w_{1}+w_{2}=48+28+29=105
$$

3. Find the shortest path from S to T in the digraph below using Dijkstra's algorithm. Show your working with tables.

Applying Dijkstra's algorithm we get the following table for the route from S to T :

Step	Vertex marked	Current potential	Distance to Vertex													Unchosen vertices
			S	A	B	C	D	E	F	G	H	I	J	K	T	
1	S	0	0	3	-	2	8	-	-	-	-	-	-	-	-	A,B,C,D,E,F,G,H,I,J,K,T
2	C	2	0	3	-	2	8	-	9	-	-	-	-	-	-	A,B,D,E,F,G,H,I,J,K,T
3	A	3	0	3	10	2	7	7	9	-	-	-	-	-	-	B,D,E,F,G,H,I,J,K,T
4	D	7	0	3	10	2	7	7	9	11	-	-	-	-	-	B,E,F,G,H,I,J,K,T
5	E	7	0	3	10	2	7	7	9	8	14	-	-	-	-	B,F,G,H,I,J,K,T
6	G	8	0	3	10	2	7	7	9	8	14	-	15	14	18	B,F,H,I,J,K,T
7	F	9	0	3	10	2	7	7	9	8	14	10	15	14	18	B,H,I,J,K,T
8	B	10	0	3	10	2	7	7	9	8	13	10	15	14	18	H,I,J,K,T
9	I	10	0	3	10	2	7	7	9	8	13	10	14	14	18	H,J,K, T
10	H	13	0	3	10	2	7	7	9	8	13	10	14	14	18	J,K, T
11	J	14	0	3	10	2	7	7	9	8	13	10	14	14	17	K, T
12	K	14	0	3	10	2	7	7	9	8	13	10	14	14	16	T

This is explained as follows ($=$ choose,$=$ chosen, $=$ dont overwrite):
Step 1 - Only Valid Paths from S are to vertices A, B and D. Add weights in table choose lowest with is colorblue C
Step 2 - Update Current Potential (2). C can link to D, potential 8 so can update as its equal to current potential. and F which is new. A is lowest choose this.
Step 3 - Update Current Potential (3). A can link to D, potential 7 so can update as its less than current potential (8). and F which is new. A is lowest choose this. A links to B and also E which are new. D and E joint lowest. Let's choose D.
Step 4 - Update Current Potential (7). D can link to G, which is new. E is lowest. Choose E.

Step 5 - Update Current Potential (7). E can link to H, which is new, and G, which is a lower potential than current so replace. G is lowest. Choose G.
Step 6 - Update Current Potential (8). G can link to K, T and J, which are new. F is lowest. Choose F.
Step 7 - Update Current Potential (9). Can Link to G but its a higher potential. G connects to I which is new and the lowest potential. Choose B.
Step 8 - Update Current Potential (10). Can Link to H and its has a lower potential so update. Choose I.
Step 9 - Update Current Potential (10). Can Link to G but its a higher potential. I connect to J which is lower than current potential. Choose H.

Step 10 - Update Current Potential (13). Can Link to K but its a higher potential. Choose J as it has lowest potential.
Step 11 - Update Current Potential (14). Can Link to T so update as this is a lower potential so update. Choose K as it has lowest potential.

Step 12 - Update Current Potential (14). Can Link to T but this is higher than current.

So lowest weight/shortest path from S to T is $S A E G K T$ with a weight of 16.

