Mathematics for Computer Science, CM0167, Example class, Week 7, Dr David Marshall

1. Consider the following table of average capacities of communication links in a computer network:

Vertices	1	2	3	4	5	6	γ
1	_	5	_	2			_
2	4	_	2	3	_	_	_
3	-	3	—	—	_	3	-
4	2	5	-	-	1	—	-
5	-	-	-	3	—	4	5
6	—	—	3	-	4		2
7	_	_	_	_	4	2	_

- (a) Represent the above table as *digraph* of the computer network?
- (b) Using *Djikstra's algorithm*, Find the shortest path from vertex 1 to all other vertices. Express your solution as a shortest path tree.
- (c) Write down the *routing table* for vertex 1.
- (d) Do the same as (a), (b) and (c) for vertex 2 etc.
- (e) Suppose the delay weight for vertex 2 to vertex 4 decreases from 3 to 1. How does this change the shortest path tree for vertex 2?
- (f) If the links between vertex 5 and 6 go down what happens to the shortest path trees and routing tables for vertices 1 and 2?
- 2. We are given a sample of size 15 about the load of stock funds. The sample is

(0%, 3%, 4%, 2%, 2%, 1%, 0%, 1%, 4%, 1%, 2%, 0%, 1%, 2%, 2%)

- a) Draw a vertical bar graph, a horizontal bar graph and a circle diagram of the sample.
- b) Calculate the absolute and relative frequency of each load.