CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year:	2006/2007
Examination Period:	Spring
Examination Paper Number:	CM0167
Examination Paper Title:	Mathematics for Computer Science
Duration:	2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:

There are 4 pages. There are 9 questions in total. There are no appendices. The mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:

The following items of stationery are to be provided: ONE answer book.

Instructions to Students:

Answer all questions.

The use calculators **without** programmable memory is permitted. The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

CM0167

Q1. Apply the binary tree sort algorithm to sort the following data

8 2 9 12 6 4 5 1 9

and represent it with a binary tree.

How would you use the tree to sort the data in ascending and descending order?

[6]

Q2. Consider the following table of distances between the cities A, B, C, D, E and F:

	А	В	C	D	E	F
A	_	64	38	28	42	29
В	64	_	27	46	18	9
C	38	27	_	55	25	9
D	28	46	55	-	12	25
E	42	18	25	12	_	31
F	29	9	9	25	31	_

- (a) Find an upper bound for the solution to the travelling salesman problem for the six cities above using the heuristic *nearest neighbour* algorithm. [8]
- (b) Find a lower bound for the solution to the travelling salesman problem by removing city *A*. [9]

Vertices	1	2	3	4	5	6	7
1	-	6	_	2	_	_	_
2	4	-	6	3	2	_	_
3	-	3	_	_	_	1	_
4	2	5	-	_	4	_	_
5	-	3	_	3	_	4	4
6	-	_	3	_	5	—	2
7	_	-	_	_	4	2	—

Q3. Consider the following table of average capacities of communication links in a computer network:

(a) Represent the above table as <i>digraph</i> of the computer network?	[4]
--	-----

- (b) Using *Djikstra's algorithm*, Find the shortest path from vertex 1 to all other vertices. Express your solution as a shortest path tree. [9]
- (c) Write down the *routing table* for vertex 1. [2]
- Q4. Three bags contain red and white balls. Bag 1 contains 8 red and 2 white balls, bag 2 contains 3 red and 4 white balls and bag 3 contains 1 red and 6 white balls.

A person wishes the draw a single ball:

- (a) What is the *probability* that a red ball is drawn at random *if all the bags'* balls are mixed together? [3]
- (b) What is the *probability* that a red ball is picked *when any one of the bags is first selected at random*? [5]
- (c) Given that a red ball as been picked as described in (b) find the *probability that the ball came from bag 2*? [4]

CM0167

Q5. Consider a sample of size 12 about the load of stock funds.

0%, 3%, 1%, 3%, 2%, 1%, 0%, 4%, 0%, 2%, 2%, 1%

Calculate the absolute and relative frequency of each load and draw a vertical bar graph for the sample. [9]

Q6. Consider the following sample.

0, 9, 3, 2, 4, 7, 3, 4, 5, 4, 3, 5, 5, 5, 1

- (a) Calculate the *arithmetic mean* \bar{x} and the *sample variance* s^2 . [5]
- (b) Calculate the *inter-quartile range IQR* and the *median x_{med}* of the sample. [4]
- (c) Draw a *box-plot* for the sample. Are there any *outliers*? [6]

Q7. Consider the following sample of returns on stock funds.

4.5%, 2.8%, 7.8%, 6.5%, 1.3%, 0.6%, 7.3%, 2.5%, 4.7%, 3.2%, 4.9%, 6.9%, 7.2%, 4.6%, 8.7%

Divide the sample into *classes of width* 2 and draw the corresponding *histogram*. Make a statement about the *modality* and the *skewness* of the histogram. [8]

Q8. Given the following vectors:

$$\vec{v} = (2,4), \vec{w} = (1,6)$$

- (a) What are the *norms* of \vec{v} and \vec{w} ? [2]
- (b) What is the scalar product $\vec{v}.\vec{w}$? [2]
- (c) What is the angle θ between \vec{v} and \vec{w} ? [3]
- (d) What is the vector cross product $\vec{v} \times \vec{w}$? [4]
- Q9. Calculate the determinant of the matrix

$$B = \begin{pmatrix} -1 & 4 & 2\\ -2 & 5 & 3\\ -3 & 0 & -7 \end{pmatrix}$$

[7]

END OF EXAMINATION