CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year:	$2006 / 2007$
Examination Period:	Spring
Examination Paper Number:	CM0167
Examination Paper Title:	Mathematics for Computer Science
Duration:	2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:

There are 4 pages.
There are 9 questions in total.
There are no appendices.
The mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:

The following items of stationery are to be provided:
ONE answer book.

Instructions to Students:

Answer all questions.
The use calculators without programmable memory is permitted.
The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

Q1. Apply the binary tree sort algorithm to sort the following data

$$
\begin{array}{lllllllll}
8 & 2 & 9 & 12 & 6 & 4 & 5 & 1 & 9
\end{array}
$$

and represent it with a binary tree.
How would you use the tree to sort the data in ascending and descending order?

Q2. Consider the following table of distances between the cities A, B, C, D, E and F

	A	B	C	D	E	F
A	-	64	38	28	42	29
B	64	-	27	46	18	9
C	38	27	-	55	25	9
D	28	46	55	-	12	25
E	42	18	25	12	-	31
F	29	9	9	25	31	-

(a) Find an upper bound for the solution to the travelling salesman problem for the six cities above using the heuristic nearest neighbour algorithm.
(b) Find a lower bound for the solution to the travelling salesman problem by removing city A.

Q3. Consider the following table of average capacities of communication links in a computer network:

Vertices	1	2	3	4	5	6	7
1	-	6	-	2	-	-	-
2	4	-	6	3	2	-	-
3	-	3	-	-	-	1	-
4	2	5	-	-	4	-	-
5	-	3	-	3	-	4	4
6	-	-	3	-	5	-	2
7	-	-	-	-	4	2	-

(a) Represent the above table as digraph of the computer network?
(b) Using Djikstra's algorithm, Find the shortest path from vertex 1 to all other vertices. Express your solution as a shortest path tree.
(c) Write down the routing table for vertex 1 .

Q4. Three bags contain red and white balls. Bag 1 contains 8 red and 2 white balls, bag 2 contains 3 red and 4 white balls and bag 3 contains 1 red and 6 white balls.
A person wishes the draw a single ball:
(a) What is the probability that a red ball is drawn at random if all the bags' balls are mixed together?
(b) What is the probability that a red ball is picked when any one of the bags is first selected at random?
(c) Given that a red ball as been picked as described in (b) find the probability that the ball came from bag 2?

Q5. Consider a sample of size 12 about the load of stock funds.

$$
0 \%, 3 \%, 1 \%, 3 \%, 2 \%, 1 \%, 0 \%, 4 \%, 0 \%, 2 \%, 2 \%, 1 \%
$$

Calculate the absolute and relative frequency of each load and draw a vertical bar graph for the sample.

Q6. Consider the following sample.

$$
0,9,3,2,4,7,3,4,5,4,3,5,5,5,1
$$

(a) Calculate the arithmetic mean \bar{x} and the sample variance s^{2}.
(b) Calculate the inter-quartile range $I Q R$ and the median $x_{m e d}$ of the sample.
(c) Draw a box-plot for the sample. Are there any outliers?

Q7. Consider the following sample of returns on stock funds.

$$
\begin{aligned}
& 4.5 \%, 2.8 \%, 7.8 \%, 6.5 \%, 1.3 \%, 0.6 \%, 7.3 \%, 2.5 \% \\
& 4.7 \%, 3.2 \%, 4.9 \%, 6.9 \%, 7.2 \%, 4.6 \%, 8.7 \%
\end{aligned}
$$

Divide the sample into classes of width 2 and draw the corresponding histogram. Make a statement about the modality and the skewness of the histogram.

Q8. Given the following vectors:

$$
\vec{v}=(2,4), \vec{w}=(1,6)
$$

(a) What are the norms of \vec{v} and \vec{w} ?
(b) What is the scalar product $\vec{v} \cdot \vec{w}$?
(c) What is the angle θ between \vec{v} and \vec{w} ?
(d) What is the vector cross product $\vec{v} \times \vec{w}$?

Q9. Calculate the determinant of the matrix

$$
B=\left(\begin{array}{ccc}
-1 & 4 & 2 \\
-2 & 5 & 3 \\
-3 & 0 & -7
\end{array}\right)
$$

