CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year:	$2007 / 2008$
Examination Period:	Spring
Examination Paper Number:	CM0167
Examination Paper Title:	Mathematics for Computer Science
Duration:	2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:

There are 5 pages.
There are 9 questions in total.
There are no appendices.
The mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:

The following items of stationery are to be provided:
ONE answer book.

Instructions to Students:

Answer all questions.
The use calculators without programmable memory is permitted.
The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

Q1. Given the following vertex set, $V=\{A, B, C, D, E\}$, and edge set, $E=\{A B, A E, B C, B D, C E, D E\}$ for a simple graph, $G=(V, E)$:
(a) Draw the graph, G.
(b) What is the order and size of the graph, G
(c) What is the adjacency matrix for the graph, G.

Q2. Using the HuffmanCoding Algorithm code the following sequence of characters: ABBAACCAADDA

Q3. : Consider the following table of distances between the cities A, B, C, D and E:

	A	B	C	D	E
A	-	22	20	21	34
B	22	-	47	51	38
C	20	47	-	18	33
D	21	51	18	-	71
E	34	38	33	71	-

(a) Draw a graph to represent the information in the table above.
(b) Find an upper bound for the solution to the travelling salesman problem for the six cities above using the heuristic nearest neighbour algorithm. [7]
(c) Find a lower bound for the solution to the travelling salesman problem by removing city A.

Q4. Find the shortest path from S to T in the digraph below using Dijkstra's algorithm. Show your working with tables.

Q5. A scout group contains 2 adult scoutmasters and 10 boy scouts. They are invited to send four members to a scout convention
(a) Evaluate the number of ways that the group may be selected so that it includes both scoutmasters?
(b) Evaluate the number of ways that the group may be selected so that it includes only one scoutmaster?
(c) Evaluate the number of ways that the group may be selected so that it includes neither scoutmaster?
(d) On a different occasion, the boy scouts decide to play five-a-side football. Each team is chosen by a random selection of all the 10 boy scouts. Given that there are two brothers in the group what is probability that the two brothers will be picked in the same team?

Q6. Consider a sample of size 12 about the monthly change in house prices.

$$
0 \%, 1 \%, 3 \%, 3 \%, 2 \%, 1 \%, 0 \%, 1 \%, 3 \%, 4 \%, 2 \%, 1 \%
$$

Calculate the absolute and relative frequency of each monthly change and draw a vertical bar graph for the sample.

Q7. Consider the following sample.

$$
0,3,5,2,9,7,3,5,6,4,3,2,4,5,2
$$

(a) Calculate the arithmetic mean \bar{x} and the sample variance s^{2}.
(b) Calculate the inter-quartile range $I Q R$ and the median $x_{\text {med }}$ of the sample.
(c) Draw a box-plot for the sample. Are there any outliers?

Q8. Given the following vectors:

$$
\mathbf{v}=(3,5), \mathbf{w}=(1,-4)
$$

(a) What are the norms of \mathbf{v} and \mathbf{w} ?
(b) What is the scalar product $\mathbf{v} . \mathbf{w}$?
(c) What is the angle θ between \mathbf{v} and \mathbf{w} ?
(d) What is the vector cross product $\mathbf{v} \times \mathbf{w}$?
(e) What is the area of the parallelogram spanned by \mathbf{v} and \mathbf{w} ?

Q9. Calculate the determinant of the matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & 4 \\
-1 & 1 & 3 \\
2 & 0 & 1
\end{array}\right)
$$

