CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year:	2008/2009
Examination Period:	Spring
Examination Paper Number:	CM0167
Examination Paper Title:	Mathematics for Computer Science
Duration:	2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:

There are 5 pages. There are 9 questions in total. There are no appendices. The mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:

The following items of stationery are to be provided: ONE answer book.

Instructions to Students:

Answer all questions.

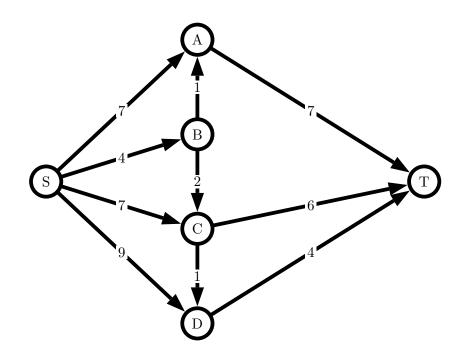
The use calculators **without** programmable memory is permitted. The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

CM0167

Q1. Given the following vertex set, $V = \{A, B, C, D, E, F\}$, and edge set, $E = \{AB, AF, BC, BD, CE, CF, DE\}$ for a simple graph, G = (V, E):

(a) <i>Draw</i> the graph, <i>G</i> .	[3]
(b) What is the <i>order</i> and <i>size</i> of the graph, G	[2]

- (c) What is the *adjacency matrix* for the graph, G. [3]
- Q2. Using the *HuffmanCoding Algorithm* code the following sequence of characters: ABBBBCCAADDA


[8]

Q3. Consider the following table of distances between the cities A, B, C, D and E:

	А	В	C	D	E
Α	-	24	16	29	23
В	24	_	37	41	58
С	16	37	-	14	23
D	29	41	14	_	31
Е	23	58	23	31	_

- (a) Draw a graph to represent the information in the table above. [4]
- (b) Find an *upper bound* for the solution to the travelling salesman problem for the six cities above using the heuristic *nearest neighbour* algorithm. [7]
- (c) Find a *lower bound* for the solution to the travelling salesman problem by *removing* city *A*. [7]

Q4. Find the shortest path from S to T in the digraph below using Dijkstra's algorithm. Your solution should show complete workings using tables.

[10]

CM0167

Q5.	(a) A card is drawn at random from a regular pack of 52 playing cards	: What
	is the probability that it is not a picture card of any suit?	[2]
	(b) Two cards are drawn at random from a regular pack of 52 playing c	ards:
	(i) What is the probability that they are a pair of aces?	[2]
	(ii) What is the probability that they are any pair?	[2]
	(iii) What is the probability that they are the same suit?	[2]
	(iv) What is the probability that they are both club suit cards?	[2]

- (c) A coin and dice are thrown together. What is the probability of a head *or* a number greater than 3 being obtained? [3]
- Q6. Consider a sample of size 12 about the monthly change in house prices.

0%, 4%, 3%, 3%, 4%, 1%, 0%, 2%, 0%, 1%, 1%, 0%

Calculate the *absolute* and *relative frequency* of each monthly change and draw a vertical bar graph for the sample. [8]

Q7. Consider the following sample.

0, 2, 6, 1, 8, 4, 3, 6, 5, 4, 1, 2, 4, 5, 2

- (a) Calculate the *arithmetic mean* \bar{x} and the *sample variance* s^2 . [5]
- (b) Calculate the *inter-quartile range* IQR and the *median* x_{med} of the sample. [4]
- (c) Draw a *box-plot* for the sample. Are there any *outliers*? [6]

Q8. Given the following vectors:

$$\mathbf{v} = (-1, 4), \mathbf{w} = (2, 3)$$

(a) What are the <i>norms</i> of \mathbf{v} and \mathbf{w} ?	[2]
(b) What is the <i>scalar product</i> v.w?	[2]
(c) What is the angle θ between v and w?	[3]
(d) What is the vector cross product $\mathbf{v} \times \mathbf{w}$?	[4]
(e) What is the area of the parallelogram spanned by \mathbf{v} and \mathbf{w} ?	[2]

Q9. Calculate the determinant of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & -3 \\ 2 & 0 & 1 \end{pmatrix}$$

[7]