## CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year: 2008/2009
Examination Period: Spring

Examination Paper Number: CM0167Solutions
Examination Paper Title: Mathematics for Computer Science
SOLUTIONS

Duration: 2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.
Structure of Examination Paper:
There are 22 pages.
There are 9 questions in total.
There are no appendices.
The mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:
The following items of stationery are to be provided:
ONE answer book.

## Instructions to Students:

Answer all questions.
The use calculators without programmable memory is permitted.
The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

Q1. Given the following vertex set, $V=\{A, B, C, D, E, F\}$, and edge set, $E=\{A B, A F, B C, B D, C E, C F, D E\}$ for a simple graph, $G=(V, E)$ :
(a) Draw the graph, $G$.


3 Marks - Clearly Many Drawing Variations possible must have same topology of course
(b) What is the order and size of the graph, $G$

$$
\begin{equation*}
\text { Order }=\text { number of vertices }=6 \tag{1}
\end{equation*}
$$

Size $=$ number of edges $=7$
2 Marks
(c) What is the adjacency matrix for the graph, $G$.

|  |  | Cols 1...n(=6) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $B$ |  | D | F |  |
| (Row 1) | $A$ |  |  | 1 | 0 | 0 | 0 |  |
| (Row 2) | $B$ |  | 1 | 0 | 1 | 1 | 0 | 0 |
| (Row 3) | C |  | 0 | 1 | 0 | 0 | 1 | 1 |
| (Row 4) | $D$ |  | 0 | 1 | 0 | 0 | 1 | 0 |
| (Row 5) | $E$ |  | 0 | 0 | 1 | 1 | 0 | 0 |
| (Row 6) | $F$ |  | 1 | 0 | 1 | 0 | 0 | 0 |
| 3 Marks |  |  |  |  |  |  |  |  |

## 8 Marks Question Total - Unseen Problem

Q2. Using the HuffmanCoding Algorithm code the following sequence of characters:

ABBBBCCAADDA
Letter count for above is

| $A$ | 4 |
| :---: | :---: |
| $B$ | 4 |
| $C$ | 2 |
| $D$ | 2 |

Applying Huffman Coding Algorithm:
So first we merge $C$ and $D$ to get:

| $A$ | 4 |
| :--- | :--- |
| $B$ | 4 |
| $C D$ | 4 |

Then Merge $B$ and $C D$ to get:

| $A$ | 4 |
| :--- | :--- |
| $B C D$ | 8 |

So tree is:

so the codes for the letters are:

| $A$ | 0 |
| :--- | :--- |
| $B$ | 10 |
| $C$ | 110 |
| $D$ | 111 |

So sequence is:


3 Marks For Sort<br>3 Marks For Tree<br>2 Marks For Coding Sequence<br>8 Marks Question Total - Unseen Problem

Q3. Consider the following table of distances between the cities $A, B, C, D$ and $E$ :

|  | $A$ | $B$ | $C$ | $D$ | $E$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | - | 24 | 16 | 29 | 23 |
| $B$ | 24 | - | 37 | 41 | 58 |
| $C$ | 16 | 37 | - | 14 | 23 |
| $D$ | 29 | 41 | 14 | - | 31 |
| $E$ | 23 | 58 | 23 | 31 | - |

(a) Draw a graph to represent the information in the table above.
(b) Find an upper bound for the solution to the travelling salesman problem for the six cities above using the heuristic nearest neighbour algorithm. [7]
(c) Find a lower bound for the solution to the travelling salesman problem by removing city $A$.
(a) Graph of table

The Graph representation for the above table is:


## 4 Marks

(b) Upper Bound Solution

To find the upper bound use the heuristic (nearest neighbour) algorithm:
(a) Choose a vertex, say $A$ (Note you get a different but valid solution if you start from another vertex, Draw $A$ Lowest weight is $A C$ so draw this as a cycle of clockwise directional arcs and draw $C$ :

(b) Vertices, $A$ and $C$ drawn. Lowest weight is $D C$ so draw this a clockwise cycle and draw $D$ :

(c) Vertices, $A, C$ and $D$ drawn. Lowest weight is $A E$ so draw this a clockwise cycle and draw $E$ : ( $C E$ is equal so could be drawn instead)

(d) Vertices, $A, C, D$ and $E$ drawn. Only Vertex $B$ undrawn. Lowest weight to $B$ is $A B$ so draw this a clockwise cycle and draw $B$ :


So Hamiltonian Cycle is given by:


The Upper BOUND for the TSP of this problem is the weight of this cycle which is:

$$
2 \times(16+14+23+24)=154
$$

1 mark for each step plus 1 marks for final cycle graph plus 2 marks for Upper bound calculation
7 Marks total - unseen problem
(c) Lower Bound Solution

To find the lower bound use the lower bound algorithm:
(a) Choose a vertex, say $A$ (Note you get a different but valid solution if you start from another vertex), Remove $A$ from graph.

(b) Find Minimum Spanning Tree via Prim's Algorithm:
i. Choose vertex $E$, draw $E$. Lowest weighted edge is $E C$ so draw this edge and vertex $C$

ii. Vertices $E$ and $C$ drawn. Lowest weighted edge is $C D$ so draw this edge and vertex $D$

iii. Vertices $E, C$ and $D$ drawn. Lowest weighted edge is $C B$ so draw this edge and vertex $B$


So Minimum Spanning Tree is:


So the weight of this tree, $w$ is: $23+14+37=74$.

Now we need to find the two lowest weight connecting $A$.
These are $A C, w_{1}=16$ and $A E, w_{2}=23$.


So the Lower Bound for this TSP problem is: $w+w_{1}+w_{2}=74+16+$ $23=113$

1 mark for each step, 2 Marks for Lower Bound calculation - 1 mark for tree weight plus 1 mark for lower bound calculation
7 Marks total - unseen problem

Q4. Find the shortest path from $S$ to $T$ in the digraph below using Dijkstra's algorithm. Show your working with tables.


|  | Vertex | Current | Distance to Vertex |  |  |  |  |  | Unchosen |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | marked | potential | S | A | B | C | D | T | vertices |
| 1 | S | 0 | 0 | 7 | $\mathbf{4}$ | 7 | 9 | - | A,B,C,D,T |
| 2 | B | 4 | 0 | $\mathbf{5}$ | 4 | 6 | 9 | - | A,C,D,T |
| 3 | A | 5 | 0 | 5 | 4 | $\mathbf{6}$ | 9 | 12 | C,D,T |
| 4 | C | 6 | 0 | 5 | 4 | 6 | $\mathbf{7}$ | 12 | D,T |
| 5 | D | 7 | 0 | 5 | 4 | 6 | 7 | 11 | T |

This is explained as follows (= choose,$=$ chosen, $=$ dont overwrite):
Step 1 - Only Valid Paths from $S$ are to vertices $A, B C$ and $D$. Add weights in table choose lowest with is $B$
Step 2 - Update Current Potential (4). $B$ does not link to any new nodes. However, $B$ links to $A$ and to $C$ lower than current so update. $A$ is lowest choose this.
Step 3 - Update Current Potential (5). $A$ can link to $T$ so add this. $C$ is lowest choose this.

Step 4 - Update Current Potential 6). $C$ can link to $T$ but with same potential (12) as $A$. $C$ can also link to $D$ with a lower potential of 7 so change this. $D$ is lowest choose this.
Step 5 - Update Current Potential (7). $D$ can link to $T$ with lower potential (11). Only $T$ left.

Shortest path following back from $T$ is: $S B C D T$.

## 2 Marks per step:1 Mark per step in Table + 1 mark for steps description 10 Marks TOTAL - unseen problem

Q5. (a) A card is drawn at random from a regular pack of 52 playing cards: What is the probability that it is not a picture card of any suit?

There are 12 picture cards in a pack: (Jack, Queen, King) $x 4$ suits. Therefore there are 40 non-picture cards.
So probability of a non-picture card is:

$$
P(\text { non }- \text { picture card })=\frac{40}{52}=\frac{10}{13}
$$

## 2 Marks - unseen problem

(b) Two cards are drawn at random from a regular pack of 52 playing cards:
(i) What is the probability that they are a pair of aces?

Probability of drawing first ace is

$$
P(\text { first ace })=\frac{4}{52}=\frac{1}{13}
$$

Probability of drawing second ace is

$$
P(\text { second ace })=\frac{3}{51}
$$

SO probability of drawing a pair of aces is:

$$
P(\text { drawing a pair of aces })=\frac{1}{13} \cdot \frac{3}{51}
$$

2 Marks - unseen problem
(ii) What is the probability that they are any pair?

Probability of drawing first card is

$$
P(\text { first card })=1
$$

Probability of drawing second card same number as first is

$$
P(\text { second card same number })=\frac{3}{51}
$$

So probability of drawing any pair is:

$$
P(\text { drawing any pair })=\frac{3}{51}
$$

2 Marks - unseen problem
(iii) What is the probability that they are the same suit?

Probability of drawing first card is

$$
P(\text { first card })=1
$$

Probability of drawing second card same suit as first is

$$
P(\text { second card same suit })=\frac{12}{51}
$$

So probability of drawing any pair is:

$$
P(\text { drawing pair same suit })=\frac{12}{51}
$$

## 2 Marks - unseen problem

(iv) What is the probability that they are both club suit cards?

Probability of drawing first ace is $P($ first card club $)=\frac{1}{4}$
Probability of drawing second card same club suit as first is

$$
P(\text { second card another club })=\frac{12}{51}
$$

So probability of drawing a pair of clubs is:

$$
P(\text { drawing pair same club suit })=\frac{1}{4} \cdot \frac{12}{51}=\frac{3}{51}
$$

2 Marks - unseen problem
(c) A fair coin and fair dice are thrown together. What is the probability of a head or a number greater than 3 being obtained?

Probability of getting head is

$$
P(H)=\frac{1}{2}
$$

Probability of getting a number greater than 3 is

$$
P(>3)=\frac{1}{2}
$$

So probability of a head and a number greater than 3 is

$$
P(H \text { and }>3)=P(H \cap>3)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
$$

Now by the addition rule:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

So:
$P(H$ or $>3)=P(H \cup>3)=P(H)+P(>3)-P(H \cap>3)=\frac{1}{2}+\frac{1}{2}-\frac{1}{4}=\frac{3}{4}$
3 Marks - unseen problem
13 Marks for TOTAL Question

Q6. Consider a sample of size 12 about the monthly change in house prices.

$$
0 \%, 4 \%, 3 \%, 3 \%, 4 \%, 1 \%, 0 \%, 2 \%, 0 \%, 1 \%, 1 \%, 0 \%
$$

Calculate the absolute and relative frequency of each monthly change and draw a vertical bar graph for the sample.

| value $a_{j}$ | absolute frequency $n_{j}$ | relative frequency $r_{j}$ |
| :---: | :---: | :---: |
| $0 \%$ | 4 | 0.333 |
| $1 \%$ | 3 | 0.25 |
| $2 \%$ | 1 | 0.083 |
| $3 \%$ | 2 | 0.167 |
| $4 \%$ | 2 | 0.167 |

Vertical Bar Graph: (Either Absolute or Relative frequency plot is adequate)

## \% Monthly House Price Change (Absolute Freq)


\% Monthly House Price Change
(Relative Freq)


3 Marks each for absolute frequency $n_{j}$, relative frequency $r_{j}$ and 2 marks for graph plot

8 Marks for TOTAL Question - unseen problem

Q7. Consider the following sample.

$$
0,2,6,1,8,4,3,6,5,4,1,2,4,5,2
$$

(a) Calculate the arithmetic mean $\bar{x}$ and the sample variance $s^{2}$.

There are $\mathbf{1 5}$ data samples
arithmetic mean:

$$
\begin{aligned}
\bar{x} & =(0+2+6+1+8+4+3+6+5+4+1+2+4+5+2) / 15 \\
& =53 / 15 \\
& =3.533
\end{aligned}
$$

## 2 Marks for arithmetic mean

The sample variance $s^{2}$ is defined as

$$
s^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

but also

$$
s^{2}:=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)
$$

which is easier to compute,
So

$$
\begin{aligned}
s^{2}= & \frac{1}{14}\left(\left(0^{2}+2^{2}+6^{2}+1^{2}+8^{2}+4^{2}+3^{2}+6^{2}+5^{2}+4^{2}+1^{2}+2^{2}+4^{2}+5^{2}+2^{2}\right)\right. \\
& \left.-15 \times 3.5333^{2}\right) \\
= & \frac{1}{14}(257-187.263) \\
= & \frac{69.737}{14} \\
= & 4.981
\end{aligned}
$$

3 Marks for Variance
5 Marks Total - unseen problem
(b) Calculate the inter-quartile range $I Q R$ and the median $x_{m e d}$ of the sample.
Sort Data:

$$
x=\{0,1,1,2,2,2,3,4,4,4,5,5,6,6,8\}
$$

Recap:
The inter-quartile-range is defined as the difference of the upper quartile and the lower quartile, i.e.

$$
\begin{gathered}
I Q R:=x_{0.75}-x_{0.25} \\
x_{\alpha}= \begin{cases}x_{[n \alpha+1]} & \text { if } n \alpha \text { is not an integer } \\
\frac{x_{n \alpha}+x_{n \alpha+1}}{2} & \text { if } n \alpha \text { is an integer }\end{cases}
\end{gathered}
$$

$[n \alpha+1]=$ the nearest integer to $n \alpha+1$ which is lower or equal to $n \alpha$.

- the 0.25 -quantile - the lower quartile,
- the 0.5 -quantile - the median
- and the 0.75 -quantile - the upper quartile.

In our case $0.25 \times 15,0.5 \times 15$ and $0.75 \times 15$ is not an integer.
So we get

- the 0.25 -quantile $-x_{4}=2$
- the median $-x_{8}=4$
- and the 0.75 -quantile $-x_{12}=5$

So $I Q R=5-2=3$ and the median is 4 .

## 3 Marks for IQR, 1 Mark for Median

4 Marks Total - unseen problem
(c) Draw a box-plot for the sample. Are there any outliers?

Box Plot:


3 Marks

Outliers:
We say that a value $x_{i}$ is an outlier if:

$$
x_{i}>x_{0.75}+1.5 \times I Q R:=z_{u}
$$

or if

$$
x_{i}<x_{0.25}-1.5 \times I Q R:=z_{l}
$$

So in our case
we have an outlier if:

$$
x_{i}>5+1.5 \times 3=9.5
$$

or if

$$
x_{i}<2-1.5 \times 3=-2.5
$$

So we have NO OutlierS in THIS data sample.
3 Marks
6 Marks Total - unseen problem
15 Marks for TOTAL Question

## CM0167Solutions

Q8. Given the following vectors:

$$
\mathbf{v}=(-1,4), \mathbf{w}=(2,3)
$$

(a) What are the norms of $\vec{v}$ and $\vec{w}$ ?

Norm of $\|v\|=\sqrt{-1^{2}+4^{2}}=\sqrt{1+16}=\sqrt{17}=4.12$
Norm of $\|w\|=\sqrt{2^{2}+3^{2}}=\sqrt{4+9}=\sqrt{13}=3.61$

2 Marks - unseen problem
(b) What is the scalar product $\vec{v} \cdot \vec{w}$ ?
$v . w=-1 \times 2+4 \times 3=-2+12=10$.
2 Marks - unseen problem
(c) What is the angle $\theta$ between $\vec{v}$ and $\vec{w}$ ?

$$
v \cdot w=\|v\| \||w| \cos (\theta)
$$

so

$$
\cos (\theta)=\frac{v \cdot w}{\|v\| \| w \mid}
$$

from (a) and (b)

$$
\cos (\theta)=\frac{10}{4.12 * 3.61}=0.672
$$

So $\theta=\cos ^{-1}(0.732)=47.75^{\circ}$

3 Marks - unseen problem
(d) What is the vector cross product $\vec{v} \times \vec{w}$ ?

Let $n=2$. We define the vector product of $v, w \in \mathbb{R}^{2}$ as a map $\times$ : $\mathbb{R}^{2} \times \mathbb{R}^{2} \mapsto \mathbb{R}$ with

$$
v \times w=v_{1} w_{2}-v_{2} w_{1}
$$

So for

$$
\mathbf{v}=(-1,4), \mathbf{w}=(2,3)
$$

we get $v \times w=-1 * 3-4 * 2=-3-8=-11$

## 4 Marks - unseen problem

(e) What is the area of the parallelogram spanned by $\mathbf{v}$ and $\mathbf{w}$ ?

Area of parallelogram is $|\vec{v} \times \vec{w}|=11$
2 Marks - unseen problem

13 Marks for TOTAL Question

## CM0167Solutions

Q9. Calculate the determinant of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & -3 \\
2 & 0 & 1
\end{array}\right)
$$

Can do determinant decomposition by any row (or column). As there is a zero in third row. We can exploit this to work out determinant more easily:

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & -3 \\
2 & 0 & 1
\end{array}\right| \\
& =2 \times\left|\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right|-\mathbf{0} \times\left|\begin{array}{cc}
1 & 3 \\
1 & -3
\end{array}\right|+1 \times\left|\begin{array}{cc}
1 & 2 \\
1 & 1
\end{array}\right| \\
& =2 \times(2 .-3-3.1)+1 \times(1.1-1.2) \\
& =2 \times-9+1 \times-1 \\
& =-18-1 \\
& =-19
\end{aligned}
$$

7 Marks - unseen problem

7 Marks for TOTAL Question

