CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year:	2008/2009
Examination Period:	Spring
Examination Paper Number:	CM0167Solutions
Examination Paper Title:	Mathematics for Computer Science
SOLUTIONS	
Duration:	2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:

There are 22 pages. There are 9 questions in total. There are no appendices. The mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:

The following items of stationery are to be provided: ONE answer book.

Instructions to Students:

Answer all questions.

The use calculators **without** programmable memory is permitted. The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

- *Q1.* Given the following vertex set, $V = \{A, B, C, D, E, F\}$, and edge set, $E = \{AB, AF, BC, BD, CE, CF, DE\}$ for a simple graph, G = (V, E):
 - (a) Draw the graph, G.

3 Marks — Clearly Many Drawing Variations possible must have same topology of course

(b) What is the order and size of the graph, G

2 Marks	
Size = number of edges = 7	[1]
Order = number of vertices = 6	[1]

(c) What is the adjacency matrix for the graph, G.

	Cols $1n(=6)$								
		A	В	C	D	E	\widehat{F}		
(Row 1)	A	$\int 0$	1	0	0	0	1		
(Row 2)	B	1	0	1	1	0	0		
(Row 3)	C	0	1	0	0	1	1		
(Row 4)	D	0	1	0	0	1	0		
(Row 5)	E	0	0	1	1	0	0		
(Row 6)	F	$\setminus 1$	0	1	0	0	0	Ϊ	
3 Marks									

8 Marks Question Total — Unseen Problem

Q2. Using the HuffmanCoding Algorithm code the following sequence of characters:

ABBBBCCAADDA

Letter count for above is

A	4
B	4
C	2
D	2

Applying Huffman Coding Algorithm: So first we merge *C* and *D* to get:

A	4
В	4
CD	4

Then Merge B and CD to get:

A	4
BCD	8

So tree is:

PLEASE TURN OVER

so the codes for the letters are:

A	0
В	10
C	110
D	111

So sequence is:

А	В	В	В	В	С	С	Α	Α	D	D	Α	
$\widehat{}$	$\overbrace{10}$	$\overbrace{10}$	$\overbrace{10}$	$\overbrace{10}$	$\overrightarrow{110}$	$\overrightarrow{110}$	$\widehat{}$	$\widehat{}$	111	111	$\overbrace{0}$	

3 Marks For Sort
3 Marks For Tree
2 Marks For Coding Sequence
8 Marks Question Total — Unseen Problem

	A	B	С	D	Ε
A	_	24	16	29	23
B	24	_	37	41	58
C	16	37	_	14	23
D	29	41	14	_	31
E	23	58	23	31	-

Q3. Consider the following table of distances between the cities A, B, C, D and E:

- (a) Draw a graph to represent the information in the table above. [4]
- (b) Find an upper bound for the solution to the travelling salesman problem for the six cities above using the heuristic nearest neighbour algorithm. [7]
- (c) Find a lower bound for the solution to the travelling salesman problem by removing city A. [7]

(a) Graph of table

The Graph representation for the above table is:

4 Marks

(b) Upper Bound Solution

To find the *upper bound* use the *heuristic (nearest neighbour) algorithm*:

(a) Choose a vertex, say A (Note you get a different but valid solution if you start from another vertex, Draw A Lowest weight is AC so draw this as a cycle of clockwise directional arcs and draw C:

(b) Vertices, A and C drawn. Lowest weight is DC so draw this a clockwise cycle and draw D:

(c) Vertices, A, C and D drawn. Lowest weight is AE so draw this a clockwise cycle and draw E: (CE is equal so could be drawn instead)

(d) Vertices, A, C, D and E drawn. Only Vertex B undrawn. Lowest weight to B is AB so draw this a clockwise cycle and draw B:

So *Hamiltonian Cycle* is given by:

PLEASE TURN OVER

The **Upper BOUND** for the TSP of this problem is the weight of this cycle which is:

 $2 \times (16 + 14 + 23 + 24) = 154$

1 mark for each step plus 1 marks for final cycle graph plus 2 marks for Upper bound calculation

7 Marks total — unseen problem

(c) Lower Bound Solution

To find the *lower bound* use the *lower bound algorithm*:

(a) Choose a vertex, say A (Note you get a different but valid solution if you start from another vertex), Remove A from graph.

- (b) Find Minimum Spanning Tree via Prim's Algorithm :
 - i. Choose vertex E, drawE. Lowest weighted edge is EC so draw this edge and vertex C

- [1]
- ii. Vertices E and C drawn. Lowest weighted edge is CD so draw this edge and vertex D

PLEASE TURN OVER

iii. Vertices E, C and D drawn. Lowest weighted edge is CB so draw this edge and vertex B

So Minimum Spanning Tree is:

So the weight of this tree, w is: 23 + 14 + 37 = 74. [1]

[1]

[1]

Now we need to find the two lowest weight connecting A.

So the **Lower Bound for this TSP** problem is: $w + w_1 + w_2 = 74 + 16 + 23 = 113$ [1]

1 mark for each step, 2 Marks for Lower Bound calculation — 1 mark for tree weight plus 1 mark for lower bound calculation

7 Marks total — unseen problem

Q4. Find the shortest path from S to T in the digraph below using Dijkstra's algorithm. Show your working with tables.

	Vertex	Current		Distance to Vertex					Unchosen
Step	marked	potential	S	Α	В	C	D	Т	vertices
1	S	0	0	7	4	7	9	-	A,B,C,D,T
2	В	4	0	5	4	6	9	_	A,C,D,T
3	Α	5	0	5	4	6	9	12	C,D,T
4	С	6	0	5	4	6	7	12	D,T
5	D	7	0	5	4	6	7	11	Т

This is explained as follows (= choose, = chosen, = dont overwrite):

- Step 1 Only Valid Paths from S are to vertices A, B C and D. Add weights in table choose lowest with is B
- **Step 2** Update Current Potential (4). *B* does not link to any new nodes. However, *B* links to *A* and to *C* lower than current so update. *A* is lowest choose this.
- **Step 3** Update Current Potential (5). *A* can link to *T* so add this. *C* is lowest choose this.
- Step 4 Update Current Potential 6). C can link toT but with same potential (12) as A. C can also link to D with a lower potential of 7 so change this. D is lowest choose this.
- Step 5 Update Current Potential (7). D can link to T with lower potential (11). Only T left.

Shortest path following back from T is: SBCDT.

2 Marks per step:1 Mark per step in Table + 1 mark for steps description 10 Marks TOTAL — unseen problem

Q5. (a) A card is drawn at random from a regular pack of 52 playing cards: What is the probability that it is not a picture card of any suit? [2]

There are 12 picture cards in a pack: (Jack, Queen, King)x 4 suits. Therefore there are 40 **non-picture** cards. So probability of a non-picture card is:

$$P(\text{non} - \text{picture card}) = \frac{40}{52} = \frac{10}{13}$$

2 Marks — unseen problem

- **(b)** *Two cards are drawn at random from a regular pack of 52 playing cards:*
 - (i) What is the probability that they are a pair of aces? [2]

Probability of drawing first ace is

$$P(\text{first ace}) = \frac{4}{52} = \frac{1}{13}$$

Probability of drawing second ace is

$$P(\text{second ace}) = \frac{3}{51}$$

SO probability of drawing a pair of aces is:

$$P(\text{drawing a pair of aces}) = \frac{1}{13} \cdot \frac{3}{51}$$

2 Marks — unseen problem

(ii) What is the probability that they are any pair? [2]

Probability of drawing first card is

$$P(\text{first card}) = 1$$

Probability of drawing second card same number as first is

$$P(\text{second card same number}) = \frac{3}{51}$$

So probability of drawing any pair is:

$$P(\text{drawing any pair}) = \frac{3}{51}$$

2 Marks — unseen problem

Probability of drawing first card is

$$P(\text{first card}) = 1$$

Probability of drawing second card same suit as first is

$$P(\text{second card same suit}) = \frac{12}{51}$$

So probability of drawing any pair is:

$$P(\text{drawing pair same suit}) = \frac{12}{51}$$

2 Marks — unseen problem

(iv) What is the probability that they are both club suit cards? [2]

Probability of drawing first ace is $P(\text{first card club}) = \frac{1}{4}$

Probability of drawing second card same club suit as first is

$$P(\text{second card another club}) = \frac{12}{51}$$

So probability of drawing a pair of clubs is:

$$P(\text{drawing pair same club suit}) = \frac{1}{4} \cdot \frac{12}{51} = \frac{3}{51}$$

2 Marks — unseen problem

(c) A fair coin and fair dice are thrown together. What is the probability of a head or a number greater than 3 being obtained? [3]

Probability of getting head is

$$P(H) = \frac{1}{2}$$

Probability of getting a number greater than 3 is

$$P(>3) = \frac{1}{2}$$

So probability of a head **and** a number greater than 3 is

$$P(H \text{ and } > 3) = P(H \cap > 3) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

Now by the *addition rule*:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

. So:

$$P(H\text{or} > 3) = P(H \cup > 3) = P(H) + P(>3) - P(H \cap > 3) = \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{3}{4}$$

3 Marks — unseen problem 13 Marks for TOTAL Question

Q6. Consider a sample of size 12 about the monthly change in house prices.

0%, 4%, 3%, 3%, 4%, 1%, 0%, 2%, 0%, 1%, 1%, 0%

Calculate the absolute *and* relative frequency *of each monthly change and draw a vertical bar graph for the sample.*

value a_j	absolute frequency n_j	relative frequency r_j
0%	4	0.333
1%	3	0.25
2%	1	0.083
3%	2	0.167
4%	2	0.167

Vertical Bar Graph: (Either Absolute or Relative frequency plot is adequate)

3 Marks each for absolute frequency n_j , relative frequency r_j and **2** marks for graph plot

8 Marks for TOTAL Question — unseen problem

Q7. Consider the following sample.

$$0,\ 2,\ 6,\ 1,\ 8,\ 4,\ 3,\ 6,\ 5,\ 4,\ 1,\ 2,\ 4,\ 5,\ 2$$

(a) Calculate the arithmetic mean \bar{x} and the sample variance s^2 . There are **15 data samples** arithmetic mean:

$$\bar{x} = (0+2+6+1+8+4+3+6+5+4+1+2+4+5+2)/15$$

= 53/15
= 3.533

2 Marks for arithmetic mean

The sample *variance* s^2 is defined as

$$s^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

but also

$$s^2 := \frac{1}{n-1} (\sum_{i=1}^n x_i^2 - n\bar{x}^2)$$

which is easier to compute, So

$$s^{2} = \frac{1}{14} ((0^{2} + 2^{2} + 6^{2} + 1^{2} + 8^{2} + 4^{2} + 3^{2} + 6^{2} + 5^{2} + 4^{2} + 1^{2} + 2^{2} + 4^{2} + 5^{2} + 2^{2})$$

-15 × 3.5333²)
= $\frac{1}{14} (257 - 187.263)$
= $\frac{69.737}{14}$
= 4.981

3 Marks for Variance

5 Marks Total — unseen problem

PLEASE TURN OVER

(b) Calculate the inter-quartile range IQR and the median x_{med} of the sample. Sort Data:

 $x = \{0, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6, 6, 8\}$

Recap:

The **inter-quartile-range** is defined as the difference of the upper quartile and the lower quartile , i.e.

$$IQR := x_{0.75} - x_{0.25}$$

$$x_{\alpha} = \begin{cases} x_{[n\alpha+1]} & \text{if } n\alpha \text{ is not an integer} \\ \frac{x_{n\alpha} + x_{n\alpha+1}}{2} & \text{if } n\alpha \text{ is an integer} \end{cases}$$

 $[n\alpha + 1]$ = the nearest integer to $n\alpha + 1$ which is lower or equal to $n\alpha$.

- the 0.25-quantile the lower quartile,
- the 0.5-quantile the median
- and the 0.75-quantile the upper quartile.

In our case 0.25×15 , 0.5×15 and 0.75×15 is not an integer. So we get

- the 0.25-quantile $x_4 = 2$
- the median $-x_8 = 4$
- and the 0.75-quantile $x_{12} = 5$

So IQR = 5 - 2 = 3 and the median is 4.

- 3 Marks for IQR, 1 Mark for Median
- 4 Marks Total unseen problem

(c) Draw a box-plot for the sample. Are there any outliers?

Box Plot:

3 Marks

Outliers:

We say that a value x_i is an *outlier* if:

 $x_i > x_{0.75} + 1.5 \times IQR := z_u$

or if

 $x_i < x_{0.25} - 1.5 \times IQR := z_l$

So in our case we have an outlier if:

 $x_i > 5 + 1.5 \times 3 = 9.5$

or if

 $x_i < 2 - 1.5 \times 3 = -2.5$

So we have **NO** OutlierS in THIS data sample. **3 Marks 6 Marks Total — unseen problem**

15 Marks for TOTAL Question

Q8. Given the following vectors:

$$\mathbf{v} = (-1, 4), \mathbf{w} = (2, 3)$$

(a) What are the norms of \vec{v} and \vec{w} ?

Norm of $||v|| = \sqrt{-1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} = 4.12$ Norm of $||w|| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} = 3.61$

2 Marks — unseen problem

(b) What is the scalar product $\vec{v}.\vec{w}$?

 $v.w = -1 \times 2 + 4 \times 3 = -2 + 12 = 10.$ 2 Marks — unseen problem

2 Marks — unseen problem

(c) What is the angle θ between \vec{v} and \vec{w} ?

$$v.w = \|v\|\|w|\cos(\theta)$$

so

$$\cos(\theta) = \frac{v.w}{\|v\|\|w|}$$

from (a) and (b)

$$\cos(\theta) = \frac{10}{4.12 * 3.61} = 0.672$$

So $\theta = \cos^{-1}(0.732) = 47.75^{\circ}$

3 Marks — unseen problem

(d) What is the vector cross product $\vec{v} \times \vec{w}$?

Let n = 2. We define the vector product of $v, w \in \mathbb{R}^2$ as a map $\times : \mathbb{R}^2 \times \mathbb{R}^2 \mapsto \mathbb{R}$ with

$$v \times w = v_1 w_2 - v_2 w_1$$

So for

 $\mathbf{v} = (-1, 4), \mathbf{w} = (2, 3)$

we get $v \times w = -1 * 3 - 4 * 2 = -3 - 8 = -11$

4 Marks — unseen problem

- (e) What is the area of the parallelogram spanned by v and w? Area of parallelogram is |v x w| = 11
 2 Marks — unseen problem
 - 13 Marks for TOTAL Question

Q9. Calculate the determinant of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & -3 \\ 2 & 0 & 1 \end{pmatrix}$$

Can do determinant decomposition by any row (or column). As there is a zero in third row. We can exploit this to work out determinant more easily:

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & -3 \\ 2 & 0 & 1 \end{vmatrix}$$
$$= 2 \times \begin{vmatrix} 2 & 3 \\ 1 & -3 \end{vmatrix} - \mathbf{0} \times \begin{vmatrix} 1 & 3 \\ 1 & -3 \end{vmatrix} + 1 \times \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix}$$
$$= 2 \times (2. -3 - 3.1) + 1 \times (1.1 - 1.2)$$
$$= 2 \times -9 + 1 \times -1$$
$$= -18 - 1$$
$$= -19$$

7 Marks — unseen problem

7 Marks for TOTAL Question