CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year:	$2005 / 2006$
Examination Period:	Resit
Examination Paper Number:	CM0167
Examination Paper Title:	Mathematics for Computer Science
Duration:	2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:

There are 6 pages.
There are 10 questions in total.
The following appendix is attached to this examination paper on page 5
CM0167 Exam Formula Sheet
The mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:

The following items of stationery are to be provided:
ONE answer book.

Instructions to Students:

Answer all questions.
The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

Q1. Find the Huffman code for the character string
'abrakadabrarak'
and represent it with a binary tree.

Q2. Consider the following table of distances between the cities L, S, C, E, M and Y.

	L	S	C	E	M	Y
L	-	44	38	68	48	39
S	44	-	29	46	19	17
C	38	29	-	41	25	31
E	68	46	41	-	12	37
M	48	19	25	12	-	11
Y	39	17	31	37	11	-

a) Find an upper bound for the solution to the travelling salesman problem for the six cities above using the heuristic algorithm.
b) Find a minimum connector for the six cities using Prim's algorithm.

Q3. Find the shortest path from S to T in the digraph below using Dijkstra's algorithm. Show your working with tables.

Q4. A medical disease occurs in 1% of the population. In 9 out of 10 cases, where the patient has the disease a new screening procedure gives a positive result. If the patient does not have the disease there is a 10% chance that the procedure still produces a positive result.
a) Draw a tree diagramm for the procedure above with the events C : patient has the disease and $S:$ Screening test gives a positive result.
b) Determine the probability that a randomly selected individual does not have the disease and gives a positive result and that a randomly selected individual gives a positive result on the test.
c) How large is the probability that a person with a positive test result actually got the disease?

Q5. Consider a sample of size 12 on numbers of children in families.

$$
0,4,1,1,2,0,1,2,3,3,2,1
$$

Calculate the absolute and relative frequency of each load and draw a horizontal bar graph for the sample.

Q6. Consider the following sample.

$$
0,4,2,5,3,5,7,8,7,9,8,5,5,6,1
$$

a) Calculate the arithmetic mean \bar{x} and the sample variance s^{2}.
b) Calculate the inter-quartil-range $I Q R$ and the median $x_{\text {med }}$ of the sample.
c) Draw a box-plot for the sample. Are there any outliers?

Q7. Consider a sample of the heights of stairs in office buildings.

$$
\begin{aligned}
& 9.8 \mathrm{~cm}, 8.4 \mathrm{~cm}, 8.8 \mathrm{~cm}, 7.5 \mathrm{~cm}, 6.7 \mathrm{~cm}, 9.6 \mathrm{~cm}, 9.1 \mathrm{~cm}, \\
& 10.7 \mathrm{~cm}, 7.8 \mathrm{~cm}, 8.3 \mathrm{~cm}, 6.9 \mathrm{~cm}, 11.0 \mathrm{~cm}, 10.2 \mathrm{~cm} .
\end{aligned}
$$

Draw a stem-and-leaf-display for the sample above.

Q8. Calculate the volume of the parallelepiped spanned by the three vectors

$$
a=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \quad b=\left(\begin{array}{c}
3 \\
-4 \\
0
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{c}
0 \\
5 \\
-5
\end{array}\right) .
$$

Q9. a) Let $\alpha \in \mathbb{R}$ and $A=\left(\begin{array}{cc}10-2 \alpha & 8 \\ 4-8 \alpha & -4 \alpha\end{array}\right)$. Find the values of α for which

$$
\operatorname{det} A=0
$$

holds.
b) Calculate the determinant of the matrix

$$
B=\left(\begin{array}{ccc}
2 & 5 & -4 \\
-6 & 1 & -7 \\
-4 & 6 & -11
\end{array}\right)
$$

Q10. Calculate the matrix representation of the linear map $f: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$

$$
f(x, y, z)=\left(\begin{array}{c}
\cos (4) y-z+12 x \\
y-100 x \\
\sin (5) x+8 y-z
\end{array}\right)
$$

CM0167 Exam Formula Sheet

The vector product in \mathbb{R}^{3} :
The vector product for two three-dimensional vectors $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ and $w=\left(\begin{array}{l}w_{1} \\ w_{2} \\ v_{3}\end{array}\right)$ is given by

$$
v \times w=\left(\begin{array}{l}
v_{2} w_{3}-v_{3} w_{2} \\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right)
$$

