CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year:	2005/2006
Examination Period:	Resit
Examination Paper Number:	CM0167
Examination Paper Title:	Mathematics for Computer Science
Duration:	2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:

There are 6 pages. There are 10 questions in total. The following appendix is attached to this examination paper on page 5 *CM0167 Exam Formula Sheet* The mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:

The following items of stationery are to be provided: ONE answer book.

Instructions to Students:

Answer all questions.

The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

CM0167

Q1. Find the Huffman code for the character string

'abrakadabrarak'

and represent it with a binary tree.

Q2. Consider the following table of distances between the cities L, S, C, E, M and Y.

	L	S	С	Ε	Μ	Y
L	_	44	38	68	48	39
S	44	_	29	46	19	17
С	38	29	-	41	25	31
Е	68	46	41	_	12	37
Μ	48	19	25	12	_	11
Y	39	17	31	37	11	_

- a) Find an upper bound for the solution to the travelling salesman problem for the six cities above using the heuristic algorithm. [8]
- b) Find a minimum connector for the six cities using Prim's algorithm. [6]

[9]

Q3. Find the shortest path from S to T in the digraph below using Dijkstra's algorithm. Show your working with tables. [15]

- Q4. A medical disease occurs in 1% of the population. In 9 out of 10 cases, where the patient has the disease a new screening procedure gives a positive result. If the patient does not have the disease there is a 10% chance that the procedure still produces a positive result.
 - a) Draw a tree diagramm for the procedure above with the events C: patient has the disease and S: Screening test gives a positive result. [4]
 - b) Determine the probability that a randomly selected individual does not have the disease and gives a positive result and that a randomly selected individual gives a positive result on the test. [4]
 - c) How large is the probability that a person with a positive test result actually got the disease? [4]

CM0167

Q5. Consider a sample of size 12 on numbers of children in families.

0, 4, 1, 1, 2, 0, 1, 2, 3, 3, 2, 1

Calculate the absolute and relative frequency of each load and draw a horizontal bar graph for the sample. [6]

Q6. Consider the following sample.

0, 4, 2, 5, 3, 5, 7, 8, 7, 9, 8, 5, 5, 6, 1

a)	Calculate the arithmetic mean \bar{x} and the sample variance s^2 .	[5]
b)	Calculate the inter-quartil-range IQR and the median x_{med} of the sample.	[4]

c) Draw a box-plot for the sample. Are there any outliers? [6]

Q7. Consider a sample of the heights of stairs in office buildings.

9.8cm, 8.4cm, 8.8cm, 7.5cm, 6.7cm, 9.6cm, 9.1cm, 10.7cm, 7.8cm, 8.3cm, 6.9cm, 11.0cm, 10.2cm.

Draw a stem-and-leaf-display for the sample above. [6]

Q8. Calculate the volume of the parallelepiped spanned by the three vectors

$$a = \begin{pmatrix} 1\\1\\-1 \end{pmatrix} \quad b = \begin{pmatrix} 3\\-4\\0 \end{pmatrix} \quad \text{and} \quad c = \begin{pmatrix} 0\\5\\-5 \end{pmatrix}.$$
[6]

Q9. a) Let
$$\alpha \in \mathbb{R}$$
 and $A = \begin{pmatrix} 10 - 2\alpha & 8\\ 4 - 8\alpha & -4\alpha \end{pmatrix}$. Find the values of α for which $\det A = 0$

holds.

[5]

b) Calculate the determinant of the matrix

$$B = \begin{pmatrix} 2 & 5 & -4 \\ -6 & 1 & -7 \\ -4 & 6 & -11 \end{pmatrix}$$
[6]

Q10. Calculate the matrix representation of the linear map $f : \mathbb{R}^3 \mapsto \mathbb{R}^3$

$$f(x, y, z) = \begin{pmatrix} \cos(4)y - z + 12x \\ y - 100x \\ \sin(5)x + 8y - z \end{pmatrix}.$$
[6]

CM0167 Exam Formula Sheet

The vector product in \mathbb{R}^3 :

The vector product for two three-dimensional vectors $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ and $w = \begin{pmatrix} w_1 \\ w_2 \\ v_3 \end{pmatrix}$ is given by

$$v \times w = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}$$