
CM0268
MATLAB

DSP
GRAPHICS

1

443

JJ
II
J
I

Back

Close

Geometric Computing
The last topic we will look at is aspects of Geometric Computing.

The fundamental basics of:

• Computer Graphics

• Image Processing and Computer Vision

• Spatial Reasoning, Geographic Information Systems.

Builds on Linear Algebra:

• Vectors, Matrices

• Linear Equations

CM0268
MATLAB

DSP
GRAPHICS

1

444

JJ
II
J
I

Back

Close

References

A Programmer’s Geometry,
Adrian Bowyer,
John Woodwark,
Butterworths, 1983,
ISBN: 0408012420.

MATLAB Geometry Toolbox

http://people.sc.fsu.edu/~burkardt/m_src/geometry/geometry.html

CM0268
MATLAB

DSP
GRAPHICS

1

445

JJ
II
J
I

Back

Close

Example Applications
We show some practical application scenarios of geometric computing

and some demos. These are only some examples and there are many
more possibilities:

• Geographic Information Systems: Point Location

• Geometric Modelling: Spline Fitting

• Computer Graphics: Ray Tracing

• Image Processing: Hough Transform

• Mobile Systems: Spatial Location Sensing

CM0268
MATLAB

DSP
GRAPHICS

1

446

JJ
II
J
I

Back

Close

Example Application: Point Location in GIS etc.

GIS involve lots of geometric primitives and their interactions. A
simple example is testing if a point locates within a certain region
(often modelled as a polygon). This can be used to find where you
are from GPS data or identify the region that the user clicks.

Interactive Map Demo

http://econym.org.uk/gmap/example_states.htm

CM0268
MATLAB

DSP
GRAPHICS

1

447

JJ
II
J
I

Back

Close

Example Application: Spline Fitting in Geometric Modelling

Geometric modelling provide tools that help design and manufacture
of products (e.g. cars, airplanes, garments etc.) Spline (piecewise
polynomial curves and surfaces) is a fundamental technique.

CM0268
MATLAB

DSP
GRAPHICS

1

448

JJ
II
J
I

Back

Close

Example Application: Ray Tracing in Computer Graphics

Computer graphics aim at reproducing or creating vivid animations
in computers. Ray tracing is a widely used technique for generating
high-quality rendering of virtual scenes.

Rendered with POV-RAY

http://www.povray.org/

CM0268
MATLAB

DSP
GRAPHICS

1

449

JJ
II
J
I

Back

Close

Ray Tracing in Computer Graphics (cont.)

Ray object intersection is the key operation in ray tracing algorithm.
Some demos:

CM0268
MATLAB

DSP
GRAPHICS

1

450

JJ
II
J
I

Back

Close

Example Application: Hough Transform in Image Processing
/ Computer Vision

Computer Vision considers the inverse problem of “understanding”
images. To identify some significant structures from images is needed
by many application scenarios. Hough transform is used to find
prominent features (lines, circles etc.) from images, using some voting
scheme in the implicit parameter space.

CM0268
MATLAB

DSP
GRAPHICS

1

451

JJ
II
J
I

Back

Close

Example Application: Spatial Location Sensing
in Mobile Systems

With techniques such as RFID, 3D location sensing is possible. Multiple
sources of information can be combined, potentially with some
uncertainty. A simple 2D demo involves circle to circle intersection
to identify the common region suggested by multiple sensors.

CM0268
MATLAB

DSP
GRAPHICS

1

452

JJ
II
J
I

Back

Close

Coordinate Systems: 2D
The Cartesian coordinate system (also called rectangular coordinate

system) determines each point uniquely in a plane through two
numbers,usually called

• the x-coordinate or abscissa

• the y-coordinate or ordinate of the point.

with respect to two orthogonal axes, the x-axis and y axis.

x

y

O x1

y1 P (x1, y1)

1

CM0268
MATLAB

DSP
GRAPHICS

1

453

JJ
II
J
I

Back

Close

2D Coordinate Systems: Handedness

We can draw our coordinate system in one of two ways.

Fixing the x-axis to point horizontally from left to right, we can
draw the y-axis in one of two ways:

y-axis pointing up vertically

x

y

O

1

Also called the positive or
standard orientation

y-axis pointing down vertically
x

y

O

1

CM0268
MATLAB

DSP
GRAPHICS

1

454

JJ
II
J
I

Back

Close

2D Coordinate Systems: Right/Left Handedness

An easy way to define and remember each coordinate system is to
use your hands:

• Assign your thumb to the x-axis

• Assign your index finger to the y-axis

• Right or left hand will align with axes accordingly (Palm facing
towards you).

Right Handed System

x

y

O

Thumb

Index

1

Left Handed System

x

y

O

Thumb

Index

1

CM0268
MATLAB

DSP
GRAPHICS

1

455

JJ
II
J
I

Back

Close

2D Coordinate Systems: Handedness Examples

Right Handed System:
Standard Graph Plotting

x

y

O

P1(x1, y1)

P2(x2, y2)

1

Left Handed System:
Image Pixel Coordinate Indexing

CM0268
MATLAB

DSP
GRAPHICS

1

456

JJ
II
J
I

Back

Close

3D Coordinate Systems
3D coordinates systems build on similar ideas to the previous 2D

systems, we now need to account for the third dimension — the
z-axis.

All three axes are orthogonal (perpendicular) to each other.

x

y

z

O x1

y1 z1
P (x1, y1, z1)

1

CM0268
MATLAB

DSP
GRAPHICS

1

457

JJ
II
J
I

Back

Close

3D Coordinate Systems: Handedness

As with 2D, we can draw our coordinate system in one of two ways.

Once the x- and y-axes are specified, they determine the line along
which the z-axis should lie, but there are two possible directions on
this line:

x

y

z

O

1

x

y

z

O

1

CM0268
MATLAB

DSP
GRAPHICS

1

458

JJ
II
J
I

Back

Close

3D Coordinate Systems: Right/Left Handedness

Again use your hands:

• Assign your thumb to the x-axis

• Assign your index finger to the y-axis

• Assign your second finger to the z-axis

• Right or left hand will align with axes accordingly (sometimes
with some contortion!).

Right Handed System

x

y

z

O

Thumb

Index

Second

1

Left Handed System

x

y

z

O

Thumb

Index

Second

1

CM0268
MATLAB

DSP
GRAPHICS

1

459

JJ
II
J
I

Back

Close

3D Coordinate Systems: Handedness Examples

Right Handed System:
Video Stack Indexing:

z-axis is time

x

y

z

Left Handed System:

x

y

z

O x1

y1 z1
P (x1, y1, z1)

1

CM0268
MATLAB

DSP
GRAPHICS

1

460

JJ
II
J
I

Back

Close

Mathematical Tools Recap
We review some simple mathematical tools used throughout the

session.

Basic Trigonometric Formulae / Pythagoras’ Theorem

For a right-angle triangle

sin θ = A/C , cos θ = B/C and tan θ = A/B
Also Pythagoras’ Theorem states that

A2 + B2 = C2

CM0268
MATLAB

DSP
GRAPHICS

1

461

JJ
II
J
I

Back

Close

Law of Consines

A generalisation of Pythagoras’s Theorem:

c2 = a2 + b2 − 2ab cos γ.

If γ = 90◦, cos γ = 0, this is equivalent to Pythagoras’ Theorem.

CM0268
MATLAB

DSP
GRAPHICS

1

462

JJ
II
J
I

Back

Close

Basic Linear Algebra/Vector Formulae

For two 3D vectors v1 = (x1, y1, z1) and v2 = (x2, y2, z2).

v1 ± v2 = (x1 ± x2, y1 ± y2, z1 ± z2)

v1 · v2 = x1x2 + y1y2 + z1z2

v1 × v2 =

∣∣∣∣∣∣
i j k
x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣ = (y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1).

Matrix operations (addition, subtraction, multiplication and division).

CM0268
MATLAB

DSP
GRAPHICS

1

463

JJ
II
J
I

Back

Close

Euclidean norm of a vector

For a vector v ∈ Rn we define its norm as

‖v‖ =
√
v.v

This norm is called the euclidean norm of the vector v.
The euclidean norm of a vector coincides with the length of the

vector in R2 and R3.

v

(v1, v2)

x

y

v1

v2

‖v‖

1

By Pythagoras’ Theorem, ‖v‖ =
√
v21 + v22 =

√
v.v

CM0268
MATLAB

DSP
GRAPHICS

1

464

JJ
II
J
I

Back

Close

Cauchy-Schwarz inequality

Let v and w be vectors in Rn

Then they satisfy the Cauchy-Schwarz inequality

v.w ≤ ‖v‖‖w‖.

Angle Between Two Vectors
If n = 2, 3 we even have the relation

v.w = ‖v‖‖w‖ cos θ

We call θ the angle between v and w.

CM0268
MATLAB

DSP
GRAPHICS

1

465

JJ
II
J
I

Back

Close

Geometric Visualisation of Angle Between Two Vectors in R2

v

w

θ

x

y

1

CM0268
MATLAB

DSP
GRAPHICS

1

466

JJ
II
J
I

Back

Close

Variable Substitution

To ease algebraic manipulation in deriving equations it may be useful
to group variables together by substituting the group for a single
variable. This may be replaced later in the derivation if needed.

For example it is far easier to expand (x+xt)
2 rather than (x+xa+

xb + xc)
2.

Here we simply let xt = xa + xb + xc

Quadratic Equations

If ax2 + bx + c = 0 then the roots of x are given by:

x =
−b±

√
b2 − 4ac

2a

CM0268
MATLAB

DSP
GRAPHICS

1

467

JJ
II
J
I

Back

Close

Determinants

A determinant is a number. A determinant is evaluated by scanning
along one of its rows or columns and alternately adding and subtracting
the value of the determinant formed by omitting the row and column
corresponding to the value multiplied by that value.

A second order determinant∣∣∣∣ d11 d12
d21 d22

∣∣∣∣ = d11d22 − d12d21
A third order determinant∣∣∣∣∣∣

d11 d12 d13
d21 d22 d23
d31 d32 d33

∣∣∣∣∣∣
= d11(d22d33 − d32d23)− d12(d21d33 − d31d23) + d13(d21d32 − d31d22).

CM0268
MATLAB

DSP
GRAPHICS

1

468

JJ
II
J
I

Back

Close

Linear Equations

For a linear system with n unknowns, x1, x2, . . . , xn, to have a unique
solution, n independent linear equations are needed:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . .

an1x1 + an2x2 + · · · + annxn = bn

Write in matrix form with A = (aij)n×n, x = (x1, x2, . . . , xn)T and
b = (b1, b2, . . . , bn)T :

Ax = b.

Cramer’s rule states: the system has unique answer if and only if
|A| 6= 0. The solution is

xi =
|Ai|
|A| .

Ai is matrix A with ith column replaced by b.

CM0268
MATLAB

DSP
GRAPHICS

1

469

JJ
II
J
I

Back

Close

Apply Other Geometric Formulae

Many of the simpler derivations, such as perpendicular distance of
a point to a line or derivation of a line equation, are used in more
involved derivations.

Know your core Geometric derivations

CM0268
MATLAB

DSP
GRAPHICS

1

470

JJ
II
J
I

Back

Close

Points and Lines
Distance between Two Points in 2D

Given 2 points K and L the distance, r, between them in 2D is:

L(xL, yL)

K(xK, yK)
x

y yL − yK

xL − xK

r

1

r =
√

(xL − xK)2 + (yL − yK)2

Proof by simple application of Pythagoras’ theorem.

CM0268
MATLAB

DSP
GRAPHICS

1

471

JJ
II
J
I

Back

Close

Distance between Two Points in 3D

Given 2 points K and L the distance, r, between them in 3D is, by
simple extension from 2D:

L(xL, yL, zL)

K(xK , yK , zK)

x

y

z

1

r =
√

(xL − xK)2 + (yL − yK)2 + (zL − zK)2

CM0268
MATLAB

DSP
GRAPHICS

1

472

JJ
II
J
I

Back

Close

MATLAB Computation Distance between Two Points

We can write a one line MATLAB statement to compute the distance
between points in n-dimensions, see points dist.m:

dist = sqrt (sum ((p1 - p2).ˆ2));

Alternatively we could use built in MATLAB function norm()

dist = norm(p1 - p2);

Note: MATLAB function norm() computes other norms also, see
MATLAB function help norm()

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/points_dist.m

CM0268
MATLAB

DSP
GRAPHICS

1

473

JJ
II
J
I

Back

Close

Equations of a Line
Explicit Equation of a line in 2D

The best known equation of a line is:

y = mx + c

y = mx + c

x

y
dy

dx
θ

c

m = tan(θ) = dy
dx

1

where m is the line gradient given by m = tan(θ) = dy
dx

and c is the intercept with the y-axis

CM0268
MATLAB

DSP
GRAPHICS

1

474

JJ
II
J
I

Back

Close

Computational Problems with Explicit Equation of a line

As line becomes near vertical (parallel with the y-axis) m becomes
very large as tan(90◦) =∞.

So computationally this representation of a line is practically useless.

Implicit Equation of a line in 2D

A more computationally stable form of line equation is:

ax + by + c = 0

(a2 + b2 6= 0)

Can you show how these representations are related?

CM0268
MATLAB

DSP
GRAPHICS

1

475

JJ
II
J
I

Back

Close

Normalised Implicit Equation of a line in 2D

The form ax+by+c = 0 can be multiplied by any non-zero constant
without altering its meaning — which can cause problems.

It is more useful to normalise, or put the equation into canonical
form, by imposing the constraint:

a2 + b2 = 1

This is most simply achieved by multiplying through by:

1√
a2 + b2

The normalised form also has more intuitive meaning.

CM0268
MATLAB

DSP
GRAPHICS

1

476

JJ
II
J
I

Back

Close

Intuitive Meaning Normalised Implicit Equation of a 2D line

r

ax + by + c = 0

x

y

α

β

1

• The normalised form of a and b are direction cosines — the cosines
of angles which the normal to the line makes with the x and y
axes.

• The normalised form of c is the perpendicular distance from the
line to the origin

So here: a = cos(α), b = cos(β), and c = −r

CM0268
MATLAB

DSP
GRAPHICS

1

477

JJ
II
J
I

Back

Close

Parametric Equation of a line

There is another form of line equation: parametric form:

• Based on a vector representation of line

• Generalises well to higher dimensions

The 2D parametric form consists of 2 equations and gives x and y
in terms of a third variable t:

x = x0 + ft

y = y0 + gt

We can visualise the parametric form via vectors

CM0268
MATLAB

DSP
GRAPHICS

1

478

JJ
II
J
I

Back

Close

Vector Visualisation of the Parametric Equation of a Line

Let point v0 = (x0, y0) and let a vector w = (f, g)

v

w

tw

v + tw

v0 = (x0, y0)

p = (x, y)

1

The position on any point, P (x, y) can be given as v0 + tw where:

• v0 is a vector given the offset of the vectors base from the origin.

• P (x, y) is some distance tw along the vector w

– v0 is clearly at position t = 0

• Vector w is usually specified as a normal vector (unit length).

• Negative t moves points in opposite direction to w

CM0268
MATLAB

DSP
GRAPHICS

1

479

JJ
II
J
I

Back

Close

Line Representations in MATLAB

As we will see shortly, MATLAB deals with line plotting very easily.
However lets look at plotting line points directly from the equations,
see lines.m:
% Explicit form of Equation y = mx + c
n=20; % 20 points
x = 0:n; % make n x coordinate values
m = 1; c = 2; % set explicit parameters
y = m*x + c; % compute y coordinates

figure(1) % Plot Figure
plot(x,y)
axis([0 20 0 25]) % set axes to see plot
title(’Explicit Line Equation y = mx +c’);

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25
Explicit Line Equation y = mx +c

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/lines.m

CM0268
MATLAB

DSP
GRAPHICS

1

480

JJ
II
J
I

Back

Close

% Implicit form ax + by +c = 0
% set implicit parameters
a = cos(45*pi/180); b = cos(45*pi/180); c = -4;
y = -(a*x +c)/b; % compute y coordinates

figure(2);
plot(x,y);
title(’Implicit Line Equation ax + by +c = 0’);

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

10
Implicit Line Equation ax + by +c = 0

CM0268
MATLAB

DSP
GRAPHICS

1

481

JJ
II
J
I

Back

Close

% Parametric form p = v0 + tw
v0 = [2,2];
w = [1,0];
t = 0:n; % create a vector of t values

x = v0(1) + t*w(1); % Compute x
y = v0(2) + t*w(2); % Compute x

figure(3);
plot(x,y);
axis([0 25 0 3]) % set axes to see plot
title(’Parametric Line Equation p = v0 + tw’);

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
Parametric Line Equation p = v0 + tw

CM0268
MATLAB

DSP
GRAPHICS

1

482

JJ
II
J
I

Back

Close

Drawing a line in MATLAB

To simply draw a line use the MATLAB, plot() or line() functions,
see previous notes:
figure(4)
% just plot end points
plot([x(1) x(end)],[y(1) y(end)],’*-’);
axis([0 25 0 3]) % set axes to see plot
title(’MATLAB Plot a line between two points’);

figure(5)
% just draw between end points
line([x(1) x(end)],[y(1) y(end)]);
axis([0 25 0 3]) % set axes to see plot
title(’MATLAB Draw a line between two points’);

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
MATLAB Plot a line between two points

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
MATLAB Draw a line between two points

http://www.cs.cf.ac.uk/Dave/CM0268/PDF/04_CM0268_MATLAB_FNS_GFX.pdf

CM0268
MATLAB

DSP
GRAPHICS

1

483

JJ
II
J
I

Back

Close

Converting between Parametric and Implicit Form

Solving the simultaneous equation:

x = x0 + ft

y = y0 + gt

for t we readily get the implicit form:

−gx + fy + (gx0 − fy0) = 0

So a = −g, b = f and c = (gx0 − fy0)

A MATLAB function to achieve this simple task is
line par2imp 2d.m

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/line_par2imp_2d.m

CM0268
MATLAB

DSP
GRAPHICS

1

484

JJ
II
J
I

Back

Close

Converting between Implicit and Parametric Form

A general (but not necessarily normailsed) implicit line
ax + by + c = 0 is parameterised as:

x =
−ac

(a2 + b2)
+ bt

y =
−bc

(a2 + b2)
− at

which can be coded as follows, line imp2par 2d:
root = a * a + b * b;
if (root == 0.0)

fprintf (1, ’ Error!: A * A + B * B = 0.\n’);
end

x0 = - a * c / root;
y0 = - b * c / root;
root = sqrt(root);
f = b / root;
g = - a / root;

if (f < 0.0)
f = -f;
g = -g;

end

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/line_imp2par_2d.m

CM0268
MATLAB

DSP
GRAPHICS

1

485

JJ
II
J
I

Back

Close

Perpendicular Distance from a Point to a
Line

P

1

For the implicit line form ax+by+c = 0, the shortest (perpendicular)
from a point P (xp, yp) to the line is given by:

d =
axp + byp + c√

a2 + b2

a2 + b2 clearly equals 1 if the line is normalised and can be omitted
in this case.

CM0268
MATLAB

DSP
GRAPHICS

1

486

JJ
II
J
I

Back

Close

Perpendicular Distance from a Point to a Line (cont.)

• If d equals 0, P is on the line.

• The sign of d indicates which side of the line the point is on.

• If this information is not required then take the absolute value of
d.

The MATLAB code to achieve this is line imp point dist 2d:

if (a * a + b * b == 0.0)
fprintf (1, ’error! Not a Line\n’);

end

dist = (a * p(1) + b * p(2) + c) / sqrt (a * a + b * b);

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/line_imp_point_dist_2d.m

CM0268
MATLAB

DSP
GRAPHICS

1

487

JJ
II
J
I

Back

Close

Perpendicular Distance from a Point to a Line (cont.)

For the parametric form,

x = x0 + ft

y = y0 + gt

things are little more complicated, line par point dist 2d:

dx = g * g * (p(1) - x0) - f * g * (p(2) - y0);
dy = - f * g * (p(1) - x0) + f * f * (p(2) - y0);

dist = sqrt (dx * dx + dy * dy) / (f * f + g * g);

Furthermore, the value of parameter, t, where the point intersects
the line is given by:
t = (f*(p(1) - x0) + g*(p(2) - y0))/ (f * f + g * g);

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/line_par_point_dist_2d.m

CM0268
MATLAB

DSP
GRAPHICS

1

488

JJ
II
J
I

Back

Close

Angle Between Two Lines

1
2

θ

1

For the implicit form aix + biy + c = 0 for lines i = 1, 2, the angle
between two normalised lines is:

θ = cos−1(a1a2 + b1b2)

For the normalised parametric form:

x = x0i + fit

y = y0i + git

The angle is: θ = cos−1(f1f2 + g1g2)

CM0268
MATLAB

DSP
GRAPHICS

1

489

JJ
II
J
I

Back

Close

Angle Between Two Unnormalised Lines

For unnormalised forms it is quicker to compute (rather normalise
each seperately) as follows:

θ = cos−1
a1a2 + b1b2√

(a21 + b21)(a
2
2 + b22)

(implicit)

θ = cos−1
f1f2 + g1g2√

(f 2
1 + g21)(f

2
2 + g22)

(parametric)

MATLAB functions to perform these operation are
lines imp angle 2d and lines par angle 2d.m

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/lines_imp_angle_2d.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/lines_par_angle_2d.m

CM0268
MATLAB

DSP
GRAPHICS

1

490

JJ
II
J
I

Back

Close

Intersection Between Two Lines (Implicit)

1
2

P

1

For the implicit form axi+byi+c = 0 for lines i = 1, 2, the intersection
between two lines at point P (x, y) is the solution of the two
simultaneous equations for x and y. This is given by the following
MATLAB code, lines imp int 2d.m:
det = a1*b2 - a2*b1
if (abs(det) < thresh)
% lines are parallel
end

p(1) = (b1*c2 - b2*c1)/det;
p(2) = (a2*c1 - a1*c2)/det;

Note: lines imp int 2d.m actually solve the system of equation
using MATLAB linear equation solver r8mat solve().

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/lines_imp_int_2d.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/lines_imp_int_2d.m
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/r8mat_solve.m

CM0268
MATLAB

DSP
GRAPHICS

1

491

JJ
II
J
I

Back

Close

Intersection Between Two Lines (Parametric)

For the normalised parametric form:

x = x0i + fit

y = y0i + git

The point of intersection is lines par int 2d.m:

det = f2 * g1 - f1 * g2;

if (det == 0.0)
% lines are parallel

else
t1 = (f2 * (y02 - y01) - g2 * (x02 - x01)) / det;
t2 = (f1 * (y02 - y01) - g1 * (x02 - x01)) / det;
pi(1) = x01 + f1 * t1;
pi(2) = y01 + g1 * t1;

end

t1 and t2 give the parameter values for each line. We only really
need to compute one of t1 and t2 in most cases.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/lines_par_int_2d.m

CM0268
MATLAB

DSP
GRAPHICS

1

492

JJ
II
J
I

Back

Close

Line Through Two Points (parametric form)

P

Q

1

The parametric form of a line through two points, P (xp, yp) and
Q(xq, yq) comes readily from the vector form of line:

• Set base to point P

• Vector along line is (xq − xp, yq − yp)
• The equation of the line is:

x = xp + (xq − xp)t

y = yp + (yq − yp)t

• In the above, t = 0 gives P and t = 1 gives Q

• Normalise if necessary.

CM0268
MATLAB

DSP
GRAPHICS

1

493

JJ
II
J
I

Back

Close

Line Through Two Points (implicit form)

P

Q

1

The implicit form of a line through two points,P (xp, yp) andQ(xq, yq)
comes readily from the parametric converted to the implicit form as
before:

(yq − yp)x + (xq − xp)y + (xpyq − xqyp) = 0

• This equation is not initially normalised

CM0268
MATLAB

DSP
GRAPHICS

1

494

JJ
II
J
I

Back

Close

Circles

r

C(xc, yc)

1

The implicit equation of a circle is the standard formula:

(x− xc)
2 + (y − yc)2 − r2 = 0

where the centre of the circle is C(xc, yc) and r is the radius of the
circle.

This form is commonly used for whole circles.

CM0268
MATLAB

DSP
GRAPHICS

1

495

JJ
II
J
I

Back

Close

Circle (parametric form)

θ = 0

θ = 2π

θ = π

θ = π
2

θ = 3π
2

C

1

The parametric equation of a circle is given by:

x = xc + r cos(θ)

y = yc + r sin(θ)

• Parameterisation in terms of angle subtended at the circle centre,
C .

CM0268
MATLAB

DSP
GRAPHICS

1

496

JJ
II
J
I

Back

Close

MATLAB Circle code

To create n points, p, equally space on cirlce of centre and radius,
r:

Implicit form, circle imp points 2d:

for i = 1 : n
theta = (2.0 * pi * (i - 1)) / n;
p(1,i) = center(1) + r * cos (theta);
p(2,i) = center(2) + r * sin (theta);

end

Parametric form, is similar.

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/circle_imp_points_2d.m

CM0268
MATLAB

DSP
GRAPHICS

1

497

JJ
II
J
I

Back

Close

Intersections of a Line and a Circle

P1(x1, y1)

P2(x2, y2)

r

C(xc, yc)

1

This problem is most easily solved if the circle is in implicit form:

(x− xc)
2 + (y − yc)2 − r2 = 0

and the line is parametric:

x = x0 + ft

y = y0 + gt

CM0268
MATLAB

DSP
GRAPHICS

1

498

JJ
II
J
I

Back

Close

Intersections of a Line and a Circle

Substituting for (parametric line) x and y into the circle equation
gives a quadratic equation in t:

• Two roots of which give points on the line where cuts the circle.

t =
f(xc − x0) + g(yc − y0)±

√
r2(f2 + g2)− (f(yc − y0)− g(xc − x0))2
(f2 + g2)

• The roots maybe coincident if the line is tangential to the circle.
P1(x1, y1)

r

C(xc, yc)

1

• If roots are imaginary then there is no intersection.

CM0268
MATLAB

DSP
GRAPHICS

1

499

JJ
II
J
I

Back

Close

Intersections of a Line and a Circle (MATLAB)

This is now a straightforward implementation in MATLAB,
circle imp line par int 2d.m:

root = r * r * (f * f + g * g) - (f * (center(2) - y0) ...
- g * (center(1) - x0)).ˆ2;

if (root < 0.0)
num_int = 0;

elseif (root == 0.0)
num_int = 1;

t = (f * (center(1) - x0) + g * (center(2) - y0)) / (f * f + g * g);
p(1,1) = x0 + f * t;
p(2,1) = y0 + g * t;

elseif (0.0 < root)
num_int = 2;

t = ((f * (center(1) - x0) + g * (center(2) - y0)) ...
- sqrt (root)) / (f * f + g * g);

p(1,1) = x0 + f * t;
p(2,1) = y0 + g * t;

t = ((f * (center(1) - x0) + g * (center(2) - y0)) ...
+ sqrt (root)) / (f * f + g * g);

p(1,2) = x0 + f * t;
p(2,2) = y0 + g * t;

end

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/circle_imp_line_par_int_2d.m

CM0268
MATLAB

DSP
GRAPHICS

1

500

JJ
II
J
I

Back

Close

Intersections of Two Circles
Two circles may have intersections at:

• Two points
P1

P2

r1

C1

r2

C2

1

• One point at a common tangent

P1r1

C1

r2

C2

1

• Or they may not intersect at all.

CM0268
MATLAB

DSP
GRAPHICS

1

501

JJ
II
J
I

Back

Close

Intersections of Two Circles

• A line between the two circles’ centres and a line between the
the two points of intersection make a right angle (or the tangent
point’s line).

• So we can find the (not normalised) implicit line between the two
points of intersection ax + by + c = 0:
a = x2 − x1, b = y2 − y1 and (since P1P2 is orthogonal to C1C2).

P1

P2

r1

C1

r2

C2

1

To obtain c, note the distance from C1 to P1P2 (let θ = ∠P1C1C2,
d = |C1C2| =

√
a2 + b2).

−r1 cos θ =
ax1 + by1 + c

d

CM0268
MATLAB

DSP
GRAPHICS

1

502

JJ
II
J
I

Back

Close

cos θ can be derived with law of cosines as

r22 = r21 + d2 − 2r1d cos θ

So

cos θ =
r21 + d2 − r22

2r1d

−r1
r21 + d2 − r22

2r1d
=
ax1 + by1 + c

d

We have

c =
(r22 − r21)− (x2 − x1)

2 − (y2 − y1)2
2

−x1(x2−x1)−y1(y2−y1)

• Now solve as for a circle and line intersection as before.

CM0268
MATLAB

DSP
GRAPHICS

1

503

JJ
II
J
I

Back

Close

Intersections of Two Circles (MATLAB)

The intersection of two circles is implemented as follows in MATLAB,
circles imp int 2d.m:

tol = eps; % some small value tolerance
p(1:dim_num,1:2) = 0.0;;

%
% Take care of the case in which the circles have the same center.
%
t1 = (abs (center1(1) - center2(1)) ...

+ abs (center1(2) - center2(2))) / 2.0;
t2 = (abs (center1(1)) + abs (center2(1)) ...

+ abs (center1(2)) + abs (center2(2)) + 1.0) / 5.0;

if (t1 <= tol * t2)
t1 = abs (r1 - r2);
t2 = (abs (r1) + abs (r2) + 1.0) / 3.0;

if (t1 <= tol * t2)
num_int = 3;

else
num_int = 0;

end
return

end

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/circles_imp_int_2d.m

CM0268
MATLAB

DSP
GRAPHICS

1

504

JJ
II
J
I

Back

Close

distsq = sum ((center1(1:2) - center2(1:2)).ˆ2);
root = 2.0 * (r1 * r1 + r2 * r2) * distsq - distsq * distsq ...

- (r1 - r2) * (r1 - r2) * (r1 + r2) * (r1 + r2);

if (root < -tol)
% Circles DO NOT Intersect
num_int = 0; % No Solution
return

end

sc1 = (distsq - (r2 * r2 - r1 * r1)) / distsq;
if (root < tol)
% Circles touch at P(x,y)
num_int = 1; % One solution
p(1:dim_num,1) = center1(1:dim_num)’ ...
+ 0.5 * sc1 * (center2(1:dim_num) - center1(1:dim_num))’;

return
end

num_int = 2; % Two solutions
sc2 = sqrt (root) / distsq;

p(1,1) = center1(1) + 0.5 * sc1 * (center2(1) - center1(1)) ...
- 0.5 * sc2 * (center2(2) - center1(2));

p(2,1) = center1(2) + 0.5 * sc1 * (center2(2) - center1(2)) ...
+ 0.5 * sc2 * (center2(1) - center1(1));

p(1,2) = center1(1) + 0.5 * sc1 * (center2(1) - center1(1)) ...
+ 0.5 * sc2 * (center2(2) - center1(2));

p(2,2) = center1(2) + 0.5 * sc1 * (center2(2) - center1(2)) ...
- 0.5 * sc2 * (center2(1) - center1(1));

return
end

CM0268
MATLAB

DSP
GRAPHICS

1

505

JJ
II
J
I

Back

Close

Tangents from a Point to a Circle

P (x, y)

J(xj , yj)

r

C(xc, yc)

1

Demo: see Java Applet Demo

• If the point is outside the circle there are two tangents

• If it lies on the circumference of the circle there is one tangent

• If it lies inside circle there is no tangent

http://www.netsoc.tcd.ie/~jgilbert/maths_site/applets/circles/tangents_to_circles.html

CM0268
MATLAB

DSP
GRAPHICS

1

506

JJ
II
J
I

Back

Close

Tangents from a Point to a Circle

P (x, y)

J(xj , yj)

r

C(xc, yc)

1

We wish to find the implicit equation of the tangent
ax+ by + c = 0

The coefficients a and b are obtained from:

a =
∓r(xc − xj)− (yc − yj)

√
(xc − xj)2 + (yc − yj)2 − r2

(xc − xj)2 + (yc − yj)2

b =
∓r(yc − yj) + (xc − xj)

√
(xc − xj)2 + (yc − yj)2 − r2

(xc − xj)2 + (yc − yj)2

c then obtained from the fact that the tangent passes through J :
c = −axj − byj

CM0268
MATLAB

DSP
GRAPHICS

1

507

JJ
II
J
I

Back

Close

Curves other than Circles
General Implicit Quadratic Equations

The general implicit quadratic equation form is:

ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0

Such general quadratics are called conic sections as they can
represent all the shapes that can be cut from a cone with a plane.

• Ellipse

• Parabola

• Hyperbola

CM0268
MATLAB

DSP
GRAPHICS

1

508

JJ
II
J
I

Back

Close

Ellipse, Parabola or Hyperbola

By considering three values we can determine if the quadratic is
either an ellipse, parabola or hyperbola:

∆ = a(cf − e2) + b(bf − de) + d(be− dc)
δ = ac− b2
S = a + c

• If ∆ = 0 then the quadratic is degenerate and represents two
straight lines (which may not always exist!)

• Otherwise:

– If δ < 0 quadratic is a hyperbola.
– If δ = 0 quadratic is a parabola.
– If δ > 0 quadratic is an ellipse if ∆S < 0.

CM0268
MATLAB

DSP
GRAPHICS

1

509

JJ
II
J
I

Back

Close

Parametric Polynomials
Implicit equations of higher order than a quadratic (x3, x2y . . .) are

not generally useful because of problems in solving them for x and
y.

Parametric equations extended to higher order do not suffer such
problems.

The simplest non-linear parametric curve is the quadratic:

x = a1 + b1t + c1t
2

y = a2 + b2t + c2t
2

The next form is the parametric cubic:

x = a1 + b1t + c1t
2 + d1t

3

y = a2 + b2t + c2t
2 + d2t

3

This formulation is easily extended to 3D parametric surfaces by
introducing a z equation component.

CM0268
MATLAB

DSP
GRAPHICS

1

510

JJ
II
J
I

Back

Close

Fitting and Interpolation Using Parametric
Polynomials

Parametric Polynomials are often used to interpolate data through
a set of data points:

1

CM0268
MATLAB

DSP
GRAPHICS

1

511

JJ
II
J
I

Back

Close

Fitting and Interpolation Using Parametric Polynomials

1

• Choose a value of t which corresponds to each given point, thus
determining the order in which points occur on the curve.

• Chosen values of t and corresponding values of x and y substituted
at each point, give a set of linear simultaneous equations to solve
for parameters, ai, bi, ci etc.

• If the order of the curve (highest power of t) is one less than
the number of points (3 for quadratic, 4 for cubic etc. then the
simultaneous equations can be solved.

The above procedure (interpolation through points) is called
Lagrangian Interpolation. Lagrangian interpolation demo code

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/lagrangian.html

CM0268
MATLAB

DSP
GRAPHICS

1

512

JJ
II
J
I

Back

Close

Hermite Interpolation
Here we need to introduce and fulfil some slope constraints on the

parametric polynomial.

1

• Slope means gradient or tangent at a point here.

CM0268
MATLAB

DSP
GRAPHICS

1

513

JJ
II
J
I

Back

Close

Hermite Interpolation

• We need to compute the partial derivatives of the parametric
polynomial. To this we differentiate each equation in x and y
with respect to t
For example for a cubic:

x = a1 + b1t + c1t
2 + d1t

3

y = a2 + b2t + c2t
2 + d2t

3

We get the deriviatives:

∂x

∂t
= b1 + 2c1t + 3d1t

2

∂y

∂t
= b2 + 2c2t + 3d2t

2

CM0268
MATLAB

DSP
GRAPHICS

1

514

JJ
II
J
I

Back

Close

Hermite Interpolation
Some points to note:

• Gradients at each point need to estimated and then they can be substituted into
the above equations and solved together with the original (Lagrangian) point
equations.

• It is not necessary to have slope constraints at every point — position and slope
constraints can be mixed as required (so long as we have enough to satisfy the
simultaneous equations)

• If the points are spread evenly then the point can be parameterised at equal
intervals of t.

• Setting start t = 0 and end t = 1 and having proportional values of t for unequal
steps of t is a common approach.

• In Hermite interpolation there are no unique values for ∂x
∂t and ∂y

∂t for a required
dx
dy , only the ratio ∂x

∂t / ∂y
∂t must correspond. This can introduce some unwanted

results.

• As the order of the curves becomes higher, undesired oscillations, waviness,
tends to occur. Higher than order 5 or 6 is not common.

• There are more elaborate parametric curve representation — Bézier curves, Spline
curves.

MATLAB Hermite spline interpolation example, hermite interpolation demo code

http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/Computational_Geometry/hermite.html

	Geometric Computing
	Coordinate Systems: 2D
	3D Coordinate Systems
	Mathematical Tools Recap
	Points and Lines
	Equations of a Line
	Parametric Equation of a line
	Perpendicular Distance from a Point to a Line
	Line Through Two Points (parametric form)
	Circles
	Intersections of a Line and a Circle
	Intersections of Two Circles
	Tangents from a Point to a Circle
	Curves other than Circles
	Parametric Polynomials
	Fitting and Interpolation Using Parametric Polynomials
	Hermite Interpolation
	Lines, Curves and Surfaces in 3D
	Implicit Surfaces
	Parametric Surfaces
	Piecewise Shape Models
	Geometric Transformations
	Least Squares Fitting
	Least Squares Fit of a Line
	Least Squares Fit of a Plane

