
CM2204: Advanced Programming
Laboratory Worksheet (Week 8)

Prof. D. Marshall

Aims and Objectives

After working through this worksheet you should be familiar with:

• C++ constructors & destructors

• Inheritance in C++ to define new classes

• Be able to override functions in subclasses

• Understand the purpose of abstract classes and pure virtual func-
tions

None of the work here is part of the assessed coursework for this
module.

• Follow the web links for files highlighted and underscored to get
code listings

• All lecture and lab class code is a available on the CM2204 Web page

• Solutions to the exercises will be released on the CM2204 Web page
in Week 9.

1

http://www.cs.cf.ac.uk/Dave/CM2204
http://www.cs.cf.ac.uk/Dave/CM2204


C++ Initialization, cleanup & inheritance

1. (Question 1 of Chapter 6 of Thinking in C++, Vol. 1) Write a simple
class called Simplewith a constructor that prints something to tell
you that its been called. In main() make an object of your class.

2. (Question 2 of Chapter 6 of Thinking in C++, Vol. 1) Add a destructor
to Question 1 above that prints out a message to tell you that its been
called.

3. (Question 3 of Chapter 6 of Thinking in C++, Vol. 1) Modify Ques-
tion 2 above so that the class contains an int member. Modify the
constructor so that it takes an int argument that it stores in the class
member. Both the constructor and destructor should print out the
int value as part of their message, so you can see the objects as they
are created and destroyed.

4. Add a circle class to the Shapes.cpp example.

5. Write a class B that contains a single int data member named x, with
a function f() that prints out a simple message and the value of x.
Provide a constructor that initialises x.

• Write a subclass of B named D. Provide a constructor for D that
calls the constructor for B to initialise x.

• Provide a function f() in D that does not override f() in B, and
prints out the square of x.

• There are (at least) two ways that you can structure the code so
that this function can access the value of x — implement both
ways.

• Is it possible to call the function f() defined in B on an object
of type D? How?

• Modify your code so that f() is overridden in D.

• Make f() a pure virtual function and verify that it is no
longer possible to create objects of type B.

2

http://www.cs.cf.ac.uk/Dave/CM2204/Code/Code_Week_8/Shapes.cpp


6. (Question 1 of Chapter 6 of Thinking in C++, Vol. 2, Multiple Inheri-
tance) The traps of Multiple Inheritance:

• Create a base class X with a single constructor that takes an int
argument and a member function f(), that takes no arguments
and returns void.

• Now inherit X into Y and Z, creating constructors for each of
them that takes a single int argument.

• Now multiply inherit Y and Z into A.

• Create an object of class A, and call f() for that object.

• Fix the problem with explicit disambiguation.

Further Practice

1. (Question 2 of Chapter 6 of Thinking in C++, Vol. 2, Multiple Inheri-
tance) Starting with the results of Question 6 above,

• create a pointer to an X called px, and assign to it the address of
the object of type A you created before.

• Fix the problem using a virtual base class.

• Now fix X so you no longer have to call the constructor for X
inside A.

2. (Question 3 of Chapter 6 of Thinking in C++, Vol. 2, Multiple Inheri-
tance) Starting with the results of the above Further Practice Exercise
1

• remove the explicit disambiguation for f(), and see if you can
call f() through px.

• Trace it to see which function gets called.

• Fix the problem so the correct function will be called in a class
hierarchy.

3


