
535

!!
""
!
"

Back

Close

Some More Perl — Useful Examples
Perl is full of some very useful features

Perl makes many task very easy once you understand how these
features work.

Some features, especially text processing with Regular Expressions
help explain why Perl is so Popular as a CGI and more general

purpose language.

536

!!
""
!
"

Back

Close

Regular Expressions

A regular expression is a template or pattern to be matched against
a string.

In Perl a regular expression is enclose inside two slashes:

/regular_expression/

The regular expression may contain:

• Ordinary text to be matched to an exact pattern (or sub pattern)

• Special operator characters — characters that have a special
meaning and control how we match patterns

537

!!
""
!
"

Back

Close

Special pattern matching character operators

Perl has a few special pattern matching character within /../:

\ Quote the next metacharacter
ˆ Match the beginning of the line
. Match any character (except newline)
$ Match the end of the line

(or before newline at the end)
| Alternation
() Grouping
[] Character class

538

!!
""
!
"

Back

Close

The . Operator — Any Character Matches

The simplest and very common pattern matching character operators
is the .

This simply allows for any single character to match where a . is
placed in a regular expression.

For example /b.t/ can match to bat, bit, but or anything like bbt,
bct

539

!!
""
!
"

Back

Close

Alternative Character Matches

Square brackets ([..]) allow for any one of the letters listed inside
the brackets to be matched at the specified position.

For example /b[aiu]t/ can only match to bat, bit or but.

You can specify a range of values inside[..].

For example:

[012345679] # any single digit
[0-9] # also any single digit
[a-z] # any single lower case letter
[a-zA-Z] # any single letter
[0-9\-] # 0-9 plus minus character

540

!!
""
!
"

Back

Close

The Caret (Negative Matching) Operator

The caret (ˆ) can be used to negate matches

For example:

[ˆ0-9] # any single non-digit
[ˆaeiouAEIOU] # any single non-vowel

The following control characters can also be used:

• \d— Match any digit character,

• \s — Match a space character,

• \w — Match any word character

• \D, \S, \W are the negations of \d\s\w — They match any
respective NON-digit, space or word character.

541

!!
""
!
"

Back

Close

Standard Quantifiers

Quantifiers let us extend the basic pattern matching operators (above)
into a much wider and powerful matching territory.

The following standard quantifiers are recognized:

* Match 0 or more times
+ Match 1 or more times
? Match 1 or 0 times
{n} Match exactly n times
{n,} Match at least n times
{n,m} Match at least n

but not more than m times

542

!!
""
!
"

Back

Close

Some Simple Quantifier Examples

fa*t matches to ft, fat, faat, faaat etc

• a* allows for matches of zero or more as

.* can be used a wild card match for any number (zero or more)
of any characters.

For Example:

f.*k matches to fk, fak, fork, flunk, etc.

In fact any strings (However long but at least 2 characters (fk))
that start with f and end with k will match

543

!!
""
!
"

Back

Close

Some Simple Quantifier Examples (Cont.)

fa+t matches to fat, faat, faaat etc

• a+ allows for matches of one or more as

.+ can be used to match to one or more of any character i.e. at
least something must be there.

For Example:

f.+k matches to fak, fork, flunk, etc. but not fk.

In fact any strings (However long but at least 3 characters) that
start with f and end with k with any (one or more) characters in
between will match

544

!!
""
!
"

Back

Close

Some Simple Quantifier Examples (Cont.)

ba?t matches to bt or bat

• a? matches to zero or one a character.

b.?t matches to bt, bat, bbt, bct etc. but not bunt or string
lengths higher than four-letters.

ba{3}t} only matches to baaat

• as a{3} only matches to 3 a characters

ba{1,4} matches to bat, baat, baaat and baaaat

• as a{1,4} matches to between 1 and 4 a characters

More Examples in Online HTML Notes and
Additional Online Perl Notes.

545

!!
""
!
"

Back

Close

Parenthesis (..) For Enforcing Precedence and For
Memory and Backtracking

In Perl Regular Parenthesis Brackets (..) have two functions:

• Enforcing Precedence

• For Memory and Backtracking in Current and
Further Perl Expressions

546

!!
""
!
"

Back

Close

Parenthesis (..) For Enforcing Precedence

Parenthesis (..) can be used to delimit special matches and
therefore enforce precedence.

• Much like you control evaluation of arithmetic and other
expressions in any programming language

For example:

(abc)*

matches " ",abc, abcabc, abcabcabc,.....

and

(a|b)(c|d)

matches ac, ad,bc,bd

547

!!
""
!
"

Back

Close

Parenthesis (..) as Memory and Backtracking

• The brackets () can be used to remember (sub)patterns

• Any number of pairs of brackets () may be used:

– Each Pair may be referenced within the Perl Regular Expression
by a \1,\2,\3

– Each \1,\2,\3 refers to a pattern matched at the
respective (preceding) ()

Example :
dave(.)marshall\1

will match something like

daveXmarshallX

BUT NOT

daveXmarshallY

548

!!
""
!
"

Back

Close

Multiple Memories of Matches

You can have more than one memory per Regular Expression

For Example:

a(.)b(.)c\2d\1

would match axbycydx.

Multiple chars (incl. zero character) can be remembered:

a(.*)b\1c

matches to abc or aFREDbFREDc

BUT NOT

aXXbXXXc, for example.

549

!!
""
!
"

Back

Close

Memory Variables (Read Only)

Not only does Perl remember matches inside a Regular Expression
but immediately after matches are remembered

• After a successful match the variable $1, $2, $3, ... are set
on the same values as \1,\2,\3,

• These are Special Perl Variables that a Read Only — you cannot
assign any values to them in your Perl code.

• Only the last match is guaranteed to have meaningful values
loaded into $1, $2, $3, ...

• After every Regular Expression Match $1, $2, $3, ... will
be loaded — Even if you do not use them in your program

550

!!
""
!
"

Back

Close

Memory Variables Example

$_ = "One Two Three Four Once";
/(\w+)\W+(\w+)/; # match first two words

print "1st Word is " . $1" . "\n";
print "2nd Word is " . $2" . "\n";

How does this work?
• We check for valid sequences of characters — Not Valid English Words

• \w matches any word character

• w+ matches one or more word characters

• (\w+) remembers respective matches

• \W matches any Non-word character

• \W+ matches one or more Non-word characters

• \W+ delimits any break between two sets of word characters

• $1 and $2 loaded with two sets of respective word characters.

551

!!
""
!
"

Back

Close

Suppressing Memories

(?:regular_expression)

• This groups things like regular () but doesn’t make back
references to internal or external memories like () does.

552

!!
""
!
"

Back

Close

Perl Regular Expression Matching in Practice

We have so far seen how matching can be set up but not how it works
in practice.

By default, Perl matches all regular expressions to a special variable:
$_

• We will see may uses of $_ in a moment

• This makes for very short hand file access, for example.

However, in many case we may wish to bind the matching to our
own Target Variable

553

!!
""
!
"

Back

Close

Setting the Target Operator

The |=˜| operator lets you match against a specified target

• Rather than the environment variable $_.

• For example: In CGI we frequently need to match against input
name/value pairs.

A typical use is with an if statement to control the match, for
example:

$infile = ; # whatever

if ($infile =˜ /.*\.gif/)
{ # file is gif format file
well at least it ends in a .gif

........
}

Note: We need the \. as . has a special regular expression (wild
card character) meaning.

554

!!
""
!
"

Back

Close

Substitution

We may frequently need to change a pattern in a string.

The substitution operator (s) is the simplest form of substitution.
It has the form:

s/old_regex/new_string/

Note: We can (optionally) qualify the substitution with

• A g global substitution,

• A i ignore case and

• A e evaluate right side as expression and others.

We place the qualifiers, if appropriate, on the right hand side of the
substitution, For example:

s/old_regex/new_string/gie

Zero, one or more qualifiers may be used.

555

!!
""
!
"

Back

Close

Practical CGI Related Example

To replace the + characters from CGI input with a space we could do:

$CGI_in_val =˜ s/\+/ /ge;

• We use g global substitution to replace all occurrences of + in the
input string.

• We need e to force the evaluations of the expression so that the
value can be returned to the input string:

– That is to say the input string will have its value changed, for
future use in the Perl code, by this operation

Note: cgi-lib.pl actually does this and other cgi character
conversion automatically — peek at the cgi-lib.pl source code
and find such examples

556

!!
""
!
"

Back

Close

Split() and join()

Split() and join() are two very useful functions.
Split() takes a regular expression and a string:

split(reg_ex,string)

and looks for all occurrences of the regular expression and the
parts of the string that don’t match are returned, in sequence, in a
list.

Example: To split an input name/value pair CGI input we could
do:

$cgi_pair = "name=value"; #format of input
($name,$value) = split(/=/,$cgi_pair);
@cgi_list = = split(/=/,$cgi_pair);

The join() function takes two lists and glues them together.

557

!!
""
!
"

Back

Close

Reading Directories

Perl has several functions to operate on functions the opendir(),
readdir() and closedir() functions are a common way to
achieve this.

opendir(DIR HANDLE,"directory")

returns a Directory handle — just an identifier (no $) — for a given
directory to be opened for reading.

Note: Exact or relative subpath directories are required.

• UNIX/LINUX/Mac OS X directory paths are denoted by /.

readdir(DIR HANDLE) returns a scalar (string) of the basename
of the file (no sub directories (: or /))

closedir(DIR HANDLE) simply closes the directory.

558

!!
""
!
"

Back

Close

UNIX Read Directory Example

On UNIX we may do:

opendir(IDIR,"./Internet")
|| die "NO SUCH Directory: Images";

while ($file = readdir(DIR))
{

print " $file\n";

}
closedir(DIR);

The above reads a sub-directory Internet assumed to be located
in the same directory from where the Perl script has been run ./.

Note: The || die "..." is a short hand if type statement that
outputs a string, enclosed in "..." and then quits the program

559

!!
""
!
"

Back

Close

Alphabetical Order Directory Example

One further example to alphabetically list files is:

opendir(IDIR,"./Internet")
|| die "NO SUCH Directory: Images";

foreach $file (sort readdir(DIR))
{

print " $file\n";

}
closedir(DIR);

560

!!
""
!
"

Back

Close

Reading and Writing Files

We have just introduced the concept of a Directory Handle for
referring to a Directory on disk.

We now introduce a similar concept of File Handle for referring
to a File on disk from which we can read data and to which we can
write data.

Similar ideas of opening and closing the files also exist.

You use the open() operator to open a file (for reading):

open(FILEHANDLE,"file_on_device");

The file may be accessed with an absolute or relative path.

561

!!
""
!
"

Back

Close

Opening a File for Reading and Appending

To open a file for writing you must use the “>” symbol in the open()
operator:

open(FILEHANDLE,">outfile");

Write always starts writing to file at the start of the file.
• If the file already exists and contains data.

• The file will be opened and the data overwritten.

To open a file for appending you must use the “>>” symbol in the
open() operator:

open(FILEHANDLE,">>appendfile");

The close() operator closes a file handle:

close(FILEHANDLE);

562

!!
""
!
"

Back

Close

Three Special File Handles

in Perl, hree special file handles are always open STDIN, STDOUT
and STDERR.

STDIN reads from standard input which is usually the keyboard
in normal Perl script or input from a Browser in a CGI script.

cgi-lib.pl reads from this automatically.

STDOUT (Standard Output) and STDERR (Standard Error)by default
write to a console or a browser in CGI.

563

!!
""
!
"

Back

Close

File Reading Example

To read from a file
• You simply use the <FILEHANDLE> in a statement (typically
while)

• This tells Perl to read one line at a time from a file references by
FILEHANDLE — specified in open()

• Each line is read and stored it in a special Perl variable $_ —
which we mentioned a few slides back

• When no more lines can be read FALSE is returned — which
terminates the while statement.

For example:
open(FILE,"myfile")

|| die "cannot open file";
while(<FILE>)
{ print $_; # echo line read
}
close(FILE);

564

!!
""
!
"

Back

Close

Writing to a File

To write to a file you use the print command and simply refer to
the FILEHANDLE before you format and output the string, I.e.:

print FILEHANDLE "Output String\n";

Example: To read from one file infile and copy line by line to
another outfile we could do:

open(IN,"infile")
|| die "cannot open input file";

open(OUT,"outfile")
|| die "cannot open output file";

while(<IN>)
{ print OUT $_; # echo line read
}
close(IN);
close(OUT);

565

!!
""
!
"

Back

Close

Perl Subroutines or functions

We have actually been using Perl (cgi-lib.pl) subroutines or functions
from the start.

We will know look at how we develop our own.

Subroutines are useful in breaking up or programs into smaller
more manageable pieces that make program development and
maintenance much easier.

A subroutine in Perl is defined as follows:

sub subname {
statement_1;
statement_2;
........
statement_n;

}

566

!!
""
!
"

Back

Close

Defining Subroutines

Subroutine names can be any usual name as used for scalars, arrays
etc.

Subroutines are always referred to by a & in Perl.

You can supply arguments to a subroutine:

• They are passed in as a list and referred to by the $_ list within
the subroutine body.

• Another use of $_

• Syntax different from Java/C etc.

567

!!
""
!
"

Back

Close

Simple Perl Subroutine Example: sum

Example: To add two numbers together, a function sum.
In Perl we may call a function sum as follows

$a = 3;
$b = 4;
$c = &sum($a,$b);

Note: The & prefix when we call sum

The subroutine may be defined as follows:

sub sum {
$_[0] + $_[1];

}

Note: The value of the expression is $_[0] + $_[1] is the
returned value
• The final expression (last function statement) is the value returned

by any function unless you explicitly call a return operation in
the function.

568

!!
""
!
"

Back

Close

Some Example Perl Scripts

Let us conclude our brief study of Perl by looking at some example
CGI scripts.

The examples are taken form the Laura Lemay book:

”Teach yourself web publishing in HTML” Series of books.

569

!!
""
!
"

Back

Close

An Address Book Search Engine

This is a more complex and larger script:

• It illustrates how information may be queried from a information
stored in a type database — for now we keep things simple.

• The data base is just a text file and we can only read from the file.

To see this form in action click here.

570

!!
""
!
"

Back

Close

Address Book Example — The HTML/Browser/Client Side

The HTML Form Front-End is composed via:
<HTML>
<HEAD>
<TITLE>Address Book Search Forms</TITLE>
</HEAD>
<BODY>
<H1>WWW Address Manager</H1>
<P>Enter search values in any field.
<PRE><HR>
<FORM METHOD=POST
ACTION="http://www.cs.cf.ac.uk/user/Dave.Marshall/cgi-bin/address.pl">
<P>Name:
<INPUT TYPE="text" NAME="Name" SIZE=40>
<P>Address:
<INPUT TYPE="text" NAME="Address" SIZE=40>
<P>Home Phone:
<INPUT TYPE="text" NAME="Hphone" SIZE=40>
<P>Work Phone:
<INPUT TYPE="text" NAME="Wphone" SIZE=40>
<P>Email Address:
<INPUT TYPE="text" NAME="Email" SIZE=40>
<P>Home Page:
<INPUT TYPE="text" NAME="WWW" SIZE=40>
</PRE>
<INPUT TYPE="submit" VALUE="Search">
<INPUT TYPE="reset" VALUE="Clear">

<HR>
</FORM>
</BODY>
</HTML>

571

!!
""
!
"

Back

Close

Address Book Example — The Perl/CGI/Server Side

The Perl CGI script is as follows:
require ’cgi-lib.pl’;

grab values passed from form:
&ReadParse(*in);

print "Content-type: text/html\n\n";

print the top part of the response
print "<HTML><HEAD><TITLE>Addresss Book Search Results</TITLE></HEAD>\n";
print "<BODY><H1>Addresss Book Search Results</H1>\n";

read and parse data file
$data="address.data";

open(DATA,"$data") || die "Can’t open $data: $!\n</BODY></HTML>\n";
while(<DATA>) {
chop; # delete trailing \n
if (/ˆ\s*$/) {
break between records
if ($match) {
if anything matched, print the whole record
&printrecord($record);
$nrecords_matched++;
}
undef $match;
undef $record;
next;
}
tag: value
($tag,$val) = split(/:/,$_,2);
if ($tag =˜ /ˆName/i) {

572

!!
""
!
"

Back

Close

$match++ if($in{’Name’} && $val =˜ /\b$in{’Name’}\b/i) ;
$record = $val;
next;
}
if ($tag =˜ /ˆAddress/i) {
$match++ if($in{’Address’} && $val =˜ /\b$in{’Address’}\b/i) ;
$record .= "\n
$val" if ($val);
next;
}
if ($tag =˜ /ˆHome\s*Pho/i) {
$match++ if($in{’Hphone’} && $val =˜ /\b$in{’Hphone’}\b/i) ;
$record .= "\n
Home: $val" if ($val);
next;
}
if ($tag =˜ /ˆWork/i) {
$match++ if($in{’Wphone’} && $val =˜ /\b$in{’Wphone’}\b/i) ;
$record .= "\n
Work: $val" if ($val);
next;
}
if ($tag =˜ /ˆEmail/i) {
$match++ if($in{’Email’} && $val =˜ /\b$in{’Email’}\b/i) ;
$record .= "\n
$val" if ($val);
next;
}
if ($tag =˜ /Page/i) {
$match++ if($in{’WWW’} && $val =˜ /\b$in{’WWW’}\b/i) ;
$record .= "\n
$val" if ($val);
next;
}
anything else
$record .= $_;
}
close DATA;

if (! defined $nrecords_matched)
{ print "<H2>No Matches</H2>\n"; }

573

!!
""
!
"

Back

Close

print "</BODY></HTML>\n";
exit;

sub printrecord {
local($buf) = @_;
print "<P>\n$buf<P>\n";
}

574

!!
""
!
"

Back

Close

What is going on here?

This Perl Script essentially does the following:

• We use the cgi-lib.pl ReadParse subroutine to read the CGI
input.

• We extract out the associated name value pairs.

• The data is read in from a file address.data.txt

• The data is searched using Perl regular expressions for given
Names, Addresses etc. and matches stored and printed out.

• The subroutine printrecord prints out the matched record.

575

!!
""
!
"

Back

Close

Creating a Guest Book

The Guest book is a more complicated example:

• An extension of our the address book example.

• In a guestbook readers can post comments about you WWW pages.

• We write to a file in this example

Guestbooks are quite common on WWW sites.

The HTML Form is as follows:

To see this form in action click here.

576

!!
""
!
"

Back

Close

GuestBook Example — The HTML/Browser/Client Side

The HTML Form Front-End is composed via:
<HTML>
<HEAD>
<TITLE>Comments!</TITLE>
</HEAD>
</BODY>

<!--GUESTBOOK-->
<H1>Comments!</H2>
<P>Here are comments people have left
about my pages. Post your own
using the form at the end of the page.
<P>Comments list started on
<!--STARTDATE--> Apr 4 2003
Last post on
<!--LASTDATE-->
Thu Aug 24 09:25:46 PDT 2003
<HR>Susan M.
sus@monitor.com

Tue Apr 10 05:57:09 EDT 2003
<P>This is the worst home page
I have ever seen on the net. Please

577

!!
""
!
"

Back

Close

stop writing.
<HR>Tom Blanc

tlb666@netcom.com Wed Apr 11
21:58:50 EDT 2003
<P>Dude. Get some professional help.
Now.

<!--POINTER-->
<!--everything after this is standard
and unchanging. -->
<HR>
Post a response:

<FORM METHOD=POST
ACTION="http://www.cs.cf.ac.uk/user/Dave.Marshall/
cgi-bin/guestbook.pl/guest.html">

Name: <INPUT TYPE="text" NAME="name"
SIZE=25 MAXLENGTH=25>

Email address: <INPUT TYPE="text"
NAME="address" SIZE=30 MAXLENGTH=30>

578

!!
""
!
"

Back

Close

Text:

<TEXTAREA ROWS=15 COLS=60 NAME="body">
</TEXTAREA>

<INPUT TYPE=submit VALUE="POST">
<INPUT TYPE=reset VALUE="CLEAR">
</FORM>
<HR>
</BODY>
</HTML>

579

!!
""
!
"

Back

Close

GuestBook Example — The Perl/CGI/Server Side
The Perl CGI is as follows:

require ’cgi-lib.pl’;

grab values passed from form:
&ReadParse(*in);

print "Content-type: text/html\n\n";

print the top part of the response
print "<HTML><HEAD>\n";
print "<TITLE>Post Results</TITLE>\n";
print "</HEAD><BODY>\n";

change to your favorite date format:
$date = ‘date‘;
chop($date); # trim \n

Grab the HTML file and make a file name for the temp file.
$file = "$ENV{’PWD’}" . "$ENV{’PATH_INFO’}";
$tmp = $file . ".tmp";
$tmp =˜ s/\//@/g; # make a unique tmp file name from the path
$tmp = "/tmp/$tmp";

if any fields are blank, then skip the post and inform user:
if (!$in{’name’} || !$in{’address’} || !$in{’body’}) {

&err("You haven’t filled in all the fields. Back up and try again.");
}

reformat the body of the post. we want to preserve paragraph breaks.
$text = $in{’body’};
$text =˜ s/\n\r/\n/g;
$text =˜ s/\r\r/<P>/g;
$text =˜ s/\n\n/<P>/g;

580

!!
""
!
"

Back

Close

$text =˜ s/\n/ /g;
$text =˜ s/<P><P>/<P>/g;

get an exclusive open on the tmp file, so
two posts at the same time don’t clobber each other.
for($count = 0; -f "$tmp"; $count++) {
oh no. someone else is trying to update the message file. so we wait.
sleep(1);
&err("Tmp file in use, giving up!") if ($count > 4); # but not for long
}
open(TMP,">$tmp") || &err("Can’t open tmp file.");
open the HTML file
open(FILE,"<$file") ||
&err("Can’t open file $file: $!");

an HTMLBBS file. look through it for the HTML comments
that denote stuff we want to change:
while(<FILE>) {
if (/<!--LASTDATE-->/) { print TMP "<!--LASTDATE--> $date \n"; }
elsif (/<!--GUESTBOOK-->/) {
print TMP "<!--GUESTBOOK-->\n";
$guestbook++;
}
elsif (/<!--POINTER-->/) {
add this post
print TMP "<HR>";
print TMP "$in{’name’} \n";
print TMP "

$in{’address’} $date\n";
print TMP "<P> $text\n<!--POINTER-->\n";
}
else { print TMP $_; } # copy lines
}
if (! defined $guestbook)
{ &err("not a Guestbook file!"); }

581

!!
""
!
"

Back

Close

move the new file over the old:
open(TMP,"<$tmp") || &err("Can’t open tmp file.");
open the HTML file
open(FILE,">$file") ||
&err("Can’t open file $file: $!");

while(<TMP>) {
print FILE $_;
}
close(FILE);
close(TMP);
unlink "$tmp";

print the rest of the response HTML
print "<H1>Thank you!</H1>";
print "<P>Your comment has been added to the ";
print "guestbook\n";
print "</BODY></HTML>\n";
1;

if we got an error, print message, close & clean up
sub err {
local($msg) = @_;
print "$msg\n";
close FILE;
close TMP;
unlink "$tmp";
print "</BODY></HTML>\n";
exit;
}

582

!!
""
!
"

Back

Close

What is going on here?
This Perl Script essentially does the following:
• We use the cgi-lib.pl ReadParse subroutine to read the CGI input.

• We extract out the associated name value pairs.

• Note that the form ACTION passes in a file to read — actually the HTML source
that generated the form in the first place.

– On Unix because HTML and CGI scripts are placed in different directories
you may either have to copy or make a UNIX symbolic link to the file:
To make a UNIX link:
∗ Telnet to UNIX account.
∗ cd to your public html/cgi-bin directory.
∗ Type from the command line:

ln -s ../public html/file.html
where file.html is the file you need to link to.

Linking is better than copying since if you change any HTML in the
file.html the link refers to the updates file. A copied file is out of
date and therefore incorrect.

• Data is actually written to this file as “guests” leave their comments.

• We therefore have a recursive dynamic HTML file/CGI script interaction. HTML
form calls script save to HTML file etc.

583

!!
""
!
"

Back

Close

A Web Page Counter

Web page counters can be used to indicate how many time your Web
page or pages have been visited.

The URL:

http://www.htmlgoodies.com/beyond/countcgi.html

contains Perl scripts, instructions and explanations as to how to
achieve this.

