
Time-varying Filters

Time-varying Filter E↵ects

Some common e↵ects are realised by simply time varying a
filter in a couple of di↵erent ways:

Wah-wah: A bandpass filter with a (modulated) time
varying centre (resonant) frequency and a small
bandwidth. Filtered signal mixed with direct
signal.

Phasing: A notch filter, that can be realised as set of
cascading IIR filters, again mixed with direct
signal.

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 22

Wah-wah Example

Wah-wah, Signal flow diagram:

y(n)+�

�BP

direct-mix

wah-mix
Time

Varying

x(n)

1

where BP is a time-varying frequency bandpass filter.

Wah-wah Variations

A phaser is similarly implemented with a notch filter

replacing the bandpass filter.
A variation is the M-fold wah-wah filter where M tap delay
bandpass filters spread over the entire spectrum change their
centre frequencies simultaneously.

A bell e↵ect can be achieved with around a hundred M

tap delays and narrow bandwidth filters

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 23

Time Varying Filter Implementation:

State Variable Filter

The Practical State Variable Filter

In time varying filters we now want independent control over
the cut-o↵ frequency and damping factor of a filter.

(Borrowed from analog electronics) We can implement a
State Variable Filter to solve this problem.

One further advantage is that we can simultaneously

get lowpass, bandpass and highpass filter output.

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 24

The State Variable Filter

+ +

yh(n)

�
F1

+

yb(n)

�
F1

+

yl(n)

T T

�
�1 � Q1

T

T�
�1

x(n)

1

where:

x(n) = input signal

yl(n) = lowpass signal

yb(n) = bandpass signal

yh(n) = highpass signal

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 25

The State Variable Filter Algorithm

State Variable Filter di↵erence equations are given by:

yl(n) = F1yb(n) + yl(n � 1)

yb(n) = F1yh(n) + yb(n � 1)

yh(n) = x(n) � yl(n � 1) � Q1yb(n � 1)

with tuning coe�cients F1 andQ1 related to the cut-o↵
frequency, fc , and damping, d :

F1 = 2 sin(⇡fc/fs), and Q1 = 2d

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 26

MATLAB Wah-wah Implementation

Making a Wah-wah

We simply implement the State Variable Filter with a Sinusoid
Modulated (variable) frequency, fc .

wah wah.m:

% wah_wah.m state variable band pass
%
% BP filter with narrow pass band, Fc oscillates up and
% down the spectrum
% Difference equation taken from DAFX chapter 2
%
% Changing this from a BP to a BR/BS (notch instead of a bandpass)
% converts this effect to a phaser
%
% yl(n) = F1*yb(n) + yl(n-1)
% yb(n) = F1*yh(n) + yb(n-1)
% yh(n) = x(n) - yl(n-1) - Q1*yb(n-1)
%
% vary Fc from 500 to 5000 Hz

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 27

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/wah_wah.m

Wah-wah Implementation

wah wah.m (Cont.):

infile = 'acoustic.wav';

% read in wav sample
[x, Fs] = audioread(infile);

%%%%%%% EFFECT COEFFICIENTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
% damping factor
% lower the damping factor the smaller the pass band
damp = 0.05;

% min and max centre cutoff frequency of variable bandpass filter
minf=500;
maxf=3000;

% wah frequency, how many Hz per second are cycled through
Fw = 2000;
%%%

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 28

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/wah_wah.m

Wah-wah Implementation

wah wah.m (Cont.):

% change in centre frequency per sample (Hz)
delta = Fw/Fs;

% create triangle wave of centre frequency values
Fc=minf:delta:maxf;
while(length(Fc) < length(x))

Fc= [Fc (maxf:-delta:minf)];
Fc= [Fc (minf:delta:maxf)];

end

% trim tri wave to size of input
Fc = Fc(1:length(x));

% difference equation coefficients
% must be recalculated each time Fc changes
F1 = 2*sin((pi*Fc(1))/Fs);
% this dictates size of the pass bands
Q1 = 2*damp;

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 29

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/wah_wah.m

Wah-wah Implementation

wah wah.m (Cont.):

yh=zeros(size(x)); % create emptly out vectors
yb=zeros(size(x));
yl=zeros(size(x));

% first sample, to avoid referencing of negative signals
yh(1) = x(1);
yb(1) = F1*yh(1);
yl(1) = F1*yb(1);

% apply difference equation to the sample
for n=2:length(x),

yh(n) = x(n) - yl(n-1) - Q1*yb(n-1);
yb(n) = F1*yh(n) + yb(n-1);
yl(n) = F1*yb(n) + yl(n-1);
F1 = 2*sin((pi*Fc(n))/Fs);

end

% normalise and Output

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 30

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/wah_wah.m

Wah-wah MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 5 10 15

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Wah−wah and original Signal

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click on images or here to hear: original audio, wah-wah audio.

CM3106 Chapter 7: Digital Audio E↵ects Time-varying Filters 31

out_wah.mov
Media File (video/quicktime)

acoustic1.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_wah.wav

