System Representation: Algorithms and Signal Flow Graphs

It is common to represent digital system signal processing routines as a visual signal flow graphs.

We use a simple equation relation to describe the algorithm.

Three Basic Building Blocks

We will need to consider three processes:

- Delay
- Multiplication
- Summation

Signal Flow Graphs: Delay

Delay

■ We represent a delay of one sampling interval by a block with a T label:

- We describe the algorithm via the equation:

$$
y(n)=x(n-1)
$$

Signal Flow Graphs: Delay Example

A Delay of 2 Samples

A delay of the input signal by two sampling intervals:

- We can describe the algorithm by:

$$
y(n)=x(n-2)
$$

- We can use the block diagram to represent the signal flow graph as:

$$
x(n)
$$

$$
y(n)=x(n-2)
$$

Signal Flow Graphs: Multiplication

Multiplication

■ We represent a multiplication or weighting of the input signal by a circle with a \times label .

- We describe the algorithm via the equation: $\mathbf{y}(\mathbf{n})=\mathbf{a} \cdot \mathbf{x}(\mathbf{n})$

$x(n)$

$$
y(n)=0.5 x(n)
$$

Signal Flow Graphs: Addition

Addition

- We represent a addition of two input signal by a circle with a + label.
- We describe the algorithm via the equation:

$$
\mathbf{y}(\mathbf{n})=\mathbf{a}_{1} \cdot \mathbf{x}_{1}(\mathbf{n})+\mathbf{a}_{2} \cdot \mathbf{x}_{2}(\mathbf{n})
$$

Signal Flow Graphs: Addition Example

In the example, set $a_{1}=a_{2}=1$:

Signal Flow Graphs: Complete Example

All Three Processes Together

We can combine all above algorithms to build up more complex algorithms:

$$
y(n)=\frac{1}{2} x(n)+\frac{1}{3} x(n-1)+\frac{1}{4} x(n-2)
$$

- This has the following signal flow graph:

Signal Flow Graphs: Complete Example Impulse Response

$x(n)$

$y(n)=\frac{1}{2} \times(n)+\frac{1}{3} \times(n-1)+\frac{1}{4} \times(n-2)$

