Multimedia
Module No: CM0340
Laboratory Worksheet Week 8:
MATLAB Digital Audio Effects

Dr. D. Marshall

Aims and Objectives

After working through this worksheet you should be familiar with:

The basic theories of digital audio effects

Implementation of a variety digital audio effects through filters, de-
lays and modulation of their control parameters, e.g. delay period,
frequency.

The distinction between different audio effects classes.
Familiarity with the basic sound of each digital effect.

The basic implementation of digital audio effects in
MATLAB.

None of the work here is part of the assessed coursework for this
module ALTHOUGH many of the exercises below will help in parts of
of your solution for the assessed coursework



MATLAB Digital Audio Effects

1. Equalisers: Using the shelving filter MATLAB code discussed in lec-
tures (http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/shelving_eg.m and shelving.m) modify the
shelving.m function to implement a peak filter. Try your peak fil-
ter out on some audio and vary the centre frequency, ‘Q” and gain
values and listen to the results.

2. Phaser: Using the Wah-wah MATLAB code discussed in lectures
(http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/wah_wah.m but changing the filter to notch filter (in-
stead of a bandpass filter). Implement a phaser effect. Try this out
on some input audio changing the frequency parameters.

3. M-fold wah-wah: Using the Wah-wah MATLAB code discussed in
lectures (http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/wah_wah.m) as starting point Implement an M-fold
wah-wah effect — create M delayed bandpass filters with different
centre frequencies and modulate each centre frequency as with the
single wah-wah. Try this out on some input audio changing the fre-
quency parameters. Try and create a ‘bell” type effect with a large
value of M.

4. Chorus: Using the flanger MATLAB code discussed in lectures
(http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/flanger.m) as a basis: Implement an chorus effect —
by having several copies of the base effects unit and randomly modu-
lating each unit’s delay time within a suitable range. Try this out on
some input audio changing the delay time accordingly. Listen to the
results.

5. Resonator/Slapback/Echo: Using the flanger MATLAB code discussed
in lectures (http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/flanger.m) as a basis: Implement a Resonator/Slapback/
Echo effect — by removing the modulation and using an appropri-
ate delay time range. Try this out on some input audio changing the
delay time accordingly. Listen to the results, compare the different
effects.



6.

10.

11.

Ring Modulation: Using the ring modulation lecture examples
(http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/ring_mod.m )and changing the carrier (and sine wave
modulator in the example) familiarise yourself with the ring modu-
lator effect. In the case of the sine wave example predict the audio
tones you hear.

Ring Modulation: Using the ring modulation lecture examples
(http:/fwww.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/ring_mod.m) and changing the carrier waveform from
a sine wave to other simple waveforms and audio samples experi-
ment with the ring modulation effect.

. Amplitude Modulation: Using the ring modulation lecture exam-

ples (http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio FX/ring_mod.m ) as well as the amplitude modulation
tremolo example
(http:/fwww.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/tremolol.m) as a basis implement a two sine wave
amplitude modulation. Predict the audio tones you hear.

Try amplitude modulation with other non-sinusoidal waveform mod-
ulations.

Limiter/Compressor/Expander: Using the example MATLAB code
for each effect (http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/limiter.m, compexp.m, compression_eg.m and
expander_eg.m) experiment with different parameter settings to audi-
tion and observe via MATLAB plots the effects of such changes.

Exciters/Enhancers: Using the Fourier transform implement a sim-
ple exciter and enhancer

Reverb: Implement a 10 comb filter 2 allpass filter version of Schroeder’s
reverb algorithm in MATLAB. Use http://www.cs.cf.ac.uk/Dave/Multimedia/
Lecture_Examples/Digital_Audio_FX/Reverb/schroeder2.m and
http:/fwww.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/Reverb/reverb_schroeder_eg.m as examples. Compare

the output with the more classic 4 comb filter 2 allpass filter version.



12.

13.

Reverb: Implement a 12 comb filter allpass filter version of Moorer’s
reverb algorithm in MATLAB. Use http://wwuw.cs.cf.ac.uk/Dave/Multimedia/
Lecture_Examples/Digital_Audio_FX/Reverb/moorer.m and
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/
Digital_Audio_FX/Reverb/moorer_eg.m as examples. Compare the out-

put with the 6 comb filter example given in the lectures.

Convolution Reverb: Using the http://www.cs.cf.ac.uk/Dave/Multimedia/
Lecture_Examples/Digital_Audio_FX/Reverb/reverb_convolution_eg.m and
fconv.m examples discussed in the lecture apply convolution:

e Find some free impulse response on the Internet and experi-
ment with these in place of the ones given in the lecture, e.g.:
http://www.voxengo.com/impulses/
http://www.cksde.com/p_6_250.htm
http://www.prosonig.net/

Try and find some odd ones that do not model reverb and try
these.

e Try convolution reverb using any short piece of audio as the
impulse response.



