Moving into the Frequency Domain

Frequency domains can be obtained through the transformation from one (Time or Spatial) domain to the other (Frequency) via

- **Discrete Cosine Transform (DCT)** — Heart of JPEG and MPEG Video, (alt.) MPEG Audio. **(New)**

- **Fourier Transform (FT)** — MPEG Audio **(See Tutorial 2 —Recall From CM0268 and)**

Note: We mention some image (and video) examples in this section with DCT (in particular) but also the FT is commonly applied to filter multimedia data.
Recap: What do frequencies mean in an image?

- Large values at **high** frequency components then the data is changing rapidly on a short distance scale.

 e.g. a page of text

- Large **low** frequency components then the large scale features of the picture are more important.

 e.g. a single fairly simple object which occupies most of the image.
The Road to Compression

How do we achieve compression?

• Low pass filter — ignore high frequency noise components
 – Only store lower frequency components

• High Pass Filter — Spot Gradual Changes
 – If changes to low Eye does not respond so ignore?
Low Pass Image Compression Example: **dctdemo.m**

MATLAB demo, **dctdemo.m**, (uses DCT (see very soon)) to

- Load an image
- **Low Pass Filter** in frequency (DCT) space
- *Tune* compression via a single slider value to select \(n \) coefficients
- **Inverse DCT**, subtract input and filtered image to see compression artefacts.
Recap: Fourier Transform

The tool which converts a spatial (real space) description of audio/image data into one in terms of its frequency components is called the **Fourier transform**.

The new version is usually referred to as the **Fourier space description** of the data. We then essentially process the data:

- *E.g.* for **filtering** basically this means attenuating or setting certain frequencies to zero.

We then need to convert data back to real audio/imagery to use in our applications.

The corresponding **inverse** transformation which turns a Fourier space description back into a real space one is called the **inverse Fourier transform**.
The Discrete Cosine Transform (DCT)

Relationship between DCT and FFT

DCT (Discrete Cosine Transform) is actually a cut-down version of the Fourier Transform or the Fast Fourier Transform (FFT):

- Only the real part of FFT
- Computationally simpler than FFT
- DCT — Effective for Multimedia Compression
- DCT MUCH more commonly used (than FFT) in Multimedia Image/Video Compression — more later
- Cheap MPEG Audio Variant — more later
Applying The DCT

• Similar to the discrete Fourier transform:
 – it transforms a signal or image from the spatial domain to the frequency domain
 – DCT can approximate lines well with fewer coefficients

• Helps separate the image into parts (or spectral sub-bands) of differing importance (with respect to the image’s visual quality).
1D DCT

For N data items 1D DCT is defined by:

$$F(u) = \left(\frac{2}{N}\right)^{1/2} \sum_{i=0}^{N-1} \Lambda(u) \cdot \cos \left[\frac{\pi \cdot u}{2 \cdot N} (2i + 1)\right] f(i)$$

and the corresponding inverse 1D DCT transform is simple $F^{-1}(u)$, i.e.:

$$f(i) = F^{-1}(u) = \left(\frac{2}{N}\right)^{1/2} \sum_{u=0}^{N-1} \Lambda(u) \cdot \cos \left[\frac{\pi \cdot u}{2 \cdot N} (2i + 1)\right] F(u)$$

where

$$\Lambda(\xi) = \begin{cases} \frac{1}{\sqrt{2}} & \text{for } \xi = 0 \\ 1 & \text{otherwise} \end{cases}$$
2D DCT

For a 2D N by M image 2D DCT is defined:

$$F(u,v) = \left(\frac{2}{N}\right)^{\frac{1}{2}} \left(\frac{2}{M}\right)^{\frac{1}{2}} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \Lambda(u) \cdot \Lambda(v) \cdot \cos\left[\frac{\pi \cdot u}{2 \cdot N} (2i + 1)\right] \cos\left[\frac{\pi \cdot v}{2 \cdot M} (2j + 1)\right] \cdot f(i,j)$$

and the corresponding inverse 2D DCT transform is simple $F^{-1}(u,v)$, i.e.:

$$f(i,j) = F^{-1}(u,v)$$

$$= \left(\frac{2}{N}\right)^{\frac{1}{2}} \sum_{u=0}^{N-1} \sum_{v=0}^{M-1} \Lambda(u) \cdot \Lambda(v) \cdot \cos\left[\frac{\pi \cdot u}{2 \cdot N} (2i + 1)\right] \cdot \cos\left[\frac{\pi \cdot v}{2 \cdot M} (2j + 1)\right] \cdot F(u,v)$$

where

$$\Lambda(\xi) = \begin{cases}
\frac{1}{\sqrt{2}} & \text{for } \xi = 0 \\
1 & \text{otherwise}
\end{cases}$$
Performing DCT Computations

The basic operation of the DCT is as follows:

- The input image is N by M;
- \(f(i,j) \) is the intensity of the pixel in row \(i \) and column \(j \);
- \(F(u,v) \) is the DCT coefficient in row \(u_i \) and column \(v_j \) of the DCT matrix.
- For JPEG image (and MPEG video), the DCT input is usually an 8 by 8 (or 16 by 16) array of integers. This array contains each image window’s respective colour band pixel levels;
Compression with DCT

- For most images, much of the signal energy lies at low frequencies;
 - These appear in the upper left corner of the DCT.
- Compression is achieved since the lower right values represent higher frequencies, and are often small
 - Small enough to be neglected with little visible distortion.
Computational Issues (1)

- Image is partitioned into 8 x 8 regions — The DCT input is an 8 x 8 array of integers. Why 8 x 8?

- An 8 point DCT would be:

\[
F(u, v) = \frac{1}{4} \sum_{i,j} \Lambda(u) \cdot \Lambda(v) \cdot \cos \left[\frac{\pi \cdot u}{16} (2i + 1) \right] \cdot \cos \left[\frac{\pi \cdot v}{16} (2j + 1) \right] f(i, j)
\]

where

\[
\Lambda(\xi) = \begin{cases}
\frac{1}{\sqrt{2}} & \text{for } \xi = 0 \\
1 & \text{otherwise}
\end{cases}
\]

- The output array of DCT coefficients contains integers; these can range from -1024 to 1023.
Computational Issues (2)

- Computationally easier to implement and more efficient to regard the DCT as a set of *basis functions*

 - Given a known input array size (8 x 8) can be precomputed and stored.

 - Computing values for a convolution mask (8 x 8 window) that get applied

 * Sum values x pixel the window overlap with image apply window across all rows/columns of image

 - The values as simply calculated from DCT formula.
Computational Issues (3)
Visualisation of DCT basis functions

See MATLAB demo, dctbasis.m, to see how to produce these bases.
Computational Issues (4)

- Factoring reduces problem to a series of 1D DCTs (No need to apply 2D form directly):
 - apply 1D DCT (Vertically) to Columns
 - apply 1D DCT (Horizontally) to resultant Vertical DCT above.
 - or alternatively Horizontal to Vertical.
Computational Issues (5)

• The equations are given by:

\[
G(i, v) = \frac{1}{2} \sum_{i} \Lambda(v) \cdot \cos \left[\frac{\pi \cdot v}{16} (2j + 1) \right] f(i, j)
\]

\[
F(u, v) = \frac{1}{2} \sum_{i} \Lambda(u) \cdot \cos \left[\frac{\pi \cdot u}{16} (2i + 1) \right] G(i, v)
\]

• Most software implementations use fixed point arithmetic. Some fast implementations approximate coefficients so all multiplies are shifts and adds.
Filtering in the Frequency Domain: Some more examples

FT and DCT methods pretty similar:
• DCT has less data overheads — no complex array part
• FT captures more frequency ‘fidelity’ (e.g. Phase).

Low Pass Filter

Example: Frequencies above the Nyquist Limit, Noise:

• The idea with noise smoothing is to reduce various spurious effects of a local nature in the image, caused perhaps by
 – noise in the acquisition system,
– arising as a result of transmission of the data, for example from a space probe utilising a low-power transmitter.
Recap: Frequency Space Smoothing Methods

Noise = High Frequencies:

- In audio data many spurious peaks in over a short timescale.
- In an image means there are many rapid transitions (over a short distance) in intensity from high to low and back again or vice versa, as faulty pixels are encountered.

- Not all high frequency data noise though!

Therefore noise will contribute heavily to the high frequency components of the image when it is considered in Fourier space.

Thus if we reduce the high frequency components — Low-Pass Filter, we should reduce the amount of noise in the data.
(Low-pass) Filtering in the Fourier Space

We thus create a new version of the image in Fourier space by computing

\[G(u, v) = H(u, v)F(u, v) \]

where:

- \(F(u, v) \) is the Fourier transform of the original image,
- \(H(u, v) \) is a filter function, designed to reduce high frequencies, and
- \(G(u, v) \) is the Fourier transform of the improved image.
- Inverse Fourier transform \(G(u, v) \) to get \(g(x, y) \) our improved image

Note: Discrete Cosine Transform approach identical, sub. FT with DCT
Ideal Low-Pass Filter

The simplest sort of filter to use is an *ideal low-pass filter*, which in one dimension appears as:

\[
H(u) = \begin{cases}
2.0 & \text{if } |u| < u_0 \\
0 & \text{otherwise}
\end{cases}
\]
Ideal Low-Pass Filter (Cont.)

This is a top hat function which is 1 for u between 0 and u_0, the cut-off frequency, and zero elsewhere.

- So All frequency space information above u_0 is thrown away, and all information below u_0 is kept.
- A very simple computational process.
Ideal 2D Low-Pass Filter

The two dimensional analogue of this is the function

\[H(u, v) = \begin{cases} 1 & \text{if } \sqrt{u^2 + v^2} \leq w_0 \\ 0 & \text{otherwise,} \end{cases} \]

where \(w_0 \) is now the cut-off frequency.

Thus, all frequencies inside a radius \(w_0 \) are kept, and all others discarded.
Not So Ideal Low-Pass Filter?

The problem with this filter is that as well as the noise:

- In audio: plenty of other high frequency content
- In Images: edges (places of rapid transition from light to dark) also significantly contribute to the high frequency components.

Thus an ideal low-pass filter will tend to **blur** the data:

- High audio frequencies become muffled
- Edges in images become blurred.

The lower the cut-off frequency is made, the more pronounced this effect becomes in **useful data content**
Ideal Low Pass Filter Example 1

(a) Input Image

(b) Image Spectra

(c) Ideal Low Pass Filter

(d) Filtered Image
Ideal Low-Pass Filter Example 1 MATLAB Code

low pass.m:

```matlab
% Create a white box on a black background image
M = 256; N = 256;
image = zeros(M,N)
box = ones(64,64);
%box at centre
image(97:160,97:160) = box;

% Show Image

figure(1);
imshow(image);

% compute fft and display its spectra

F = fft2(double(image));
figure(2);
imshow(abs(fftshift(F)));```

Ideal Low-Pass Filter Example 1 MATLAB Code (Cont.)

% compute Ideal Low Pass Filter
u0 = 20; % set cut off frequency

u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);
D=sqrt(U.^2+V.^2);
H=double(D<=u0);

% display
figure(3);
imshow(fftshift(H));

% Apply filter and do inverse FFT
G=H.*F;
g=real(ifft2(double(G)));

% Show Result
figure(4);
imshow(g);
Ideal Low-Pass Filter Example 2

(a) Input Image

(b) Image Spectra

(c) Ideal Low-Pass Filter

(d) Filtered Image
Ideal Low-Pass Filter Example 2 MATLAB Code

lowpass2.m:

% read in MATLAB demo text image
image = imread('text.png');
[M N] = size(image)

% Show Image
figure(1);
imshow(image);

% compute fft and display its spectra
F = fft2(double(image));
figure(2);
imshow(abs(fftshift(F))/256);
%compute Ideal Low Pass Filter
u0 = 50; % set cut off frequency

u=0:(M-1); 
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);
D=sqrt(U.^2+V.^2);
H=double(D<=u0);

% display
figure(3);
imshow(fftshift(H));

% Apply filter and do inverse FFT
G=H.*F;
g=real(ifft2(double(G)));

% Show Result
figure(4);
imshow(g);
Low-Pass Butterworth Filter

Another filter sometimes used is the *Butterworth low pass filter*.

In the 2D case, \( H(u, v) \) takes the form

\[
H(u, v) = \frac{1}{1 + \left[\frac{(u^2 + v^2)}{w_0^2}\right]^n},
\]

where \( n \) is called the order of the filter.
Low-Pass Butterworth Filter (Cont.)

This keeps some of the high frequency information, as illustrated by the second order one dimensional Butterworth filter:

Consequently reduces the blurring.
Low-Pass Butterworth Filter (Cont.)

The 2D second order Butterworth filter looks like this:

![Diagram of a low-pass Butterworth filter with a circle and a point labeled $w_0$.]
Butterworth Low Pass Filter Example 1

(a) Input Image
(b) Image Spectra
(c) Butterworth Low-Pass Filter
(d) Filtered Image
Butterworth Low-Pass Filter Example 1 (Cont.)

Comparison of Ideal and Butterworth Low Pass Filter:

Ideal Low-Pass

Butterworth Low Pass
Butterworth Low-Pass Filter Example 1 MATLAB Code

*butterworth.m*:

```matlab
% Load Image and Compute FFT as in Ideal Low Pass Filter
% Example 1

% Compute Butterworth Low Pass Filter
u0 = 20; % set cut off frequency

u = 0:(M-1);
v = 0:(N-1);
idx = find(u > M/2);
u(idx) = u(idx) - M;
idy = find(v > N/2);
v(idy) = v(idy) - N;
[V, U] = meshgrid(v, u);

for i = 1:M
 for j = 1:N
 % Apply a 2nd order Butterworth
 UVw = double((U(i, j) * U(i, j) + V(i, j) * V(i, j)) / (u0 * u0));
 H(i, j) = 1 / (1 + UVw * UVw);
 end
end

% Display Filter and Filtered Image as before
```
Butterworth Low-Pass Butterworth Filter Example 2

(a) Input Image

(b) Image Spectra

(c) Butterworth Low-Pass Filter

(d) Filtered Image
Butterworth Low-Pass Filter Example 2 (Cont.)

Comparison of Ideal and Butterworth Low-Pass Filter:

Ideal Low Pass

Butterworth Low Pass
butterworth2.m:
% Load Image and Compute FFT as in Ideal Low Pass Filter
% Example 2

% Compute Butterworth Low Pass Filter
u0 = 50; % set cut off frequency

u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);

for i = 1: M
    for j = 1:N
        % Apply a 2nd order Butterworth
        UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));
        H(i,j) = 1/(1 + UVw*UVw);
    end
end

% Display Filter and Filtered Image as before
Other Filters

High-Pass Filters — opposite of low-pass, select high frequencies, attenuate those below $u_0$

Band-pass — allow frequencies in a range $u_0 \ldots u_1$ attenuate those outside this range

Band-reject — opposite of band-pass, attenuate frequencies within $u_0 \ldots u_1$ select those outside this range

Notch — attenuate frequencies in a narrow bandwidth around cut-off frequency, $u_0$

Resonator — amplify frequencies in a narrow bandwidth around cut-off frequency, $u_0$

Other filters exist that are a combination of the above
Convolution

Several important audio and optical effects can be described in terms of convolutions.

- In fact the above Fourier filtering is applying convolutions of low pass filter where the equations are Fourier Transforms of real space equivalents.
- deblurring — high pass filtering
- reverb — see CM0268.
1D Convolution

Let us examine the concepts using 1D continuous functions.

The convolution of two functions $f(x)$ and $g(x)$, written $f(x) \ast g(x)$, is defined by the integral

$$f(x) \ast g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x - \alpha) \, d\alpha.$$
1D Convolution Example

For example, let us take two top hat functions of the type described earlier.

Let $f(\alpha)$ be the top hat function shown:

$$f(\alpha) = \begin{cases} 1 & \text{if } |\alpha| \leq 1 \\ 0 & \text{otherwise}, \end{cases}$$

and let $g(\alpha)$ be as shown in next slide, defined by

$$g(\alpha) = \begin{cases} 1/2 & \text{if } 0 \leq \alpha \leq 1 \\ 0 & \text{otherwise}. \end{cases}$$
1D Convolution Example (Cont.)

\[ f(\alpha) = \begin{cases} 
  1 & \text{if } |\alpha| \leq 1 \\
  0 & \text{otherwise},
\end{cases} \]

\[ g(\alpha) = \begin{cases} 
  1/2 & \text{if } 0 \leq \alpha \leq 1 \\
  0 & \text{otherwise}.\]

1D Convolution Example (Cont.)

- $g(-\alpha)$ is the reflection of this function in the vertical axis,
- $g(x - \alpha)$ is the latter shifted to the right by a distance $x$.
- Thus for a given value of $x$, $f(\alpha)g(x - \alpha)$ integrated over all $\alpha$ is the area of overlap of these two top hats, as $f(\alpha)$ has unit height.
- An example is shown for $x$ in the range $-1 \leq x \leq 0$. 

![Graph showing 1D Convolution Example](chart.png)
If we now consider $x$ moving from $-\infty$ to $+\infty$, we can see that

- For $x \leq -1$ or $x \geq 2$, there is no overlap;
- As $x$ goes from $-1$ to $0$ the area of overlap steadily increases from $0$ to $1/2$;
- As $x$ increases from $0$ to $1$, the overlap area remains at $1/2$;
- Finally as $x$ increases from $1$ to $2$, the overlap area steadily decreases again from $1/2$ to $0$.

Thus the convolution of $f(x)$ and $g(x)$, $f(x) \ast g(x)$, in this case has the form shown on next slide.
1D Convolution Example (cont.)

Result of $f(x) \ast g(x)$
1D Convolution Example (cont.)

Mathematically the convolution is expressed by:

\[ f(x) * g(x) = \begin{cases} 
\frac{x + 1}{2} & \text{if } -1 \leq x \leq 0 \\
1/2 & \text{if } 0 \leq x \leq 1 \\
1 - x/2 & \text{if } 1 \leq x \leq 2 \\
0 & \text{otherwise.} 
\end{cases} \]
Fourier Transforms and Convolutions

One major reason that Fourier transforms are so important in image processing is the **convolution theorem** which states that:

If $f(x)$ and $g(x)$ are two functions with Fourier transforms $F(u)$ and $G(u)$, then the Fourier transform of the convolution $f(x) \ast g(x)$ is simply the product of the Fourier transforms of the two functions, $F(u)G(u)$.

Recall our Low Pass Filter Example (MATLAB CODE)

```matlab
% Apply filter
G=H.*F;
```

Where $F$ was the Fourier transform of the image, $H$ the filter
Computing Convolutions with the Fourier Transform

E.g.:

- To apply some reverb to an audio signal, example later
- To compensate for a less than ideal image capture system:

To do this fast convolution we simply:

- Take the Fourier transform of the audio/imperfect image,
- Take the Fourier transform of the function describing the effect of the system,
- Multiply by the effect to apply effect to audio data
- To remove/compensate for effect: Divide by the effect to obtain the Fourier transform of the ideal image.
- Inverse Fourier transform to recover the new audio/ideal image.

This process is sometimes referred to as deconvolution.