From Video to Animated 3D Reconstruction: A Computer Graphics Application for Snooker Skills Training

P. A. Legg1,2, M. L. Parry1,2, D. H. S. Chung1,2, M. R. Jiang1, A. Morris1, I. W. Griffiths2, D. Marshall3 and M. Chen1

1Department of Computer Science, Swansea University, UK.
2College of Engineering, Swansea University, UK.
3School of Computer Science, Cardiff University, UK.

Captured video

3D Reconstruction
From video, table is extracted using Hough Transform on green region. Viewpoint corrected using inverse perspective transform on corner points. Specular highlight and colour classification used to detect ball objects. Data passed to graphics renderer to display animated 3D reconstruction. Viewpoint can be adjusted to replay video data from any arbitrary angle.

Animated 3D reconstruction

Processing pipeline

Table detection

Inverse perspective transform

Ball detection and tracking

Positioning Test

Potting Test

Potting & Positioning Test

Illustrative Graphics
Annotations are introduced based on video tracking data. Combine multiple shot data played from a Snooker training scheme. Provides a visual performance indicator to assess player consistency. Offers comparative study between repeat practices and other players.