
Adding and subtracting eigenspaces with eigenvalue decomposition

and singular value decomposition

Peter Halla,*, David Marshallb, Ralph Martinb

aDepartment of Computer Science, School of Mathematical Science, Bath University, Bath, UK
bDepartment of Computer Science, Cardiff University, Cardiff, UK

Abstract

This paper provides algorithms for adding and subtracting eigenspaces, thus allowing for incremental updating and downdating of data

models. Importantly, and unlike previous work, we keep an accurate track of the mean of the data, which allows our methods to be used in

classification applications. The result of adding eigenspaces, each made from a set of data, is an approximation to that which would obtain

were the sets of data taken together. Subtracting eigenspaces yields a result approximating that which would obtain were a subset of data

used. Using our algorithms, it is possible to perform ‘arithmetic’ on eigenspaces without reference to the original data. Eigenspaces can be

constructed using either eigenvalue decomposition (EVD) or singular value decomposition (SVD). We provide addition operators for both

methods, but subtraction for EVD only, arguing there is no closed-form solution for SVD. The methods and discussion surrounding SVD

provide the principle novelty in this paper. We illustrate the use of our algorithms in three generic applications, including the dynamic

construction of Gaussian mixture models. q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Singular value decomposition; Eigenvalue decomposition; Dynamic updating and downdating; Gaussian mixture models

1. Introduction

This subject of this paper is incremental eigenanalysis;

we provide algorithms for including new data, and another

for removing data. An eigenspace comprises: the number of

data points, their mean, the set of support vectors through

the data, and a measure of the spread of the data over each

support vector. Eigenspaces can be computed using either

eigenvalue decomposition (EVD) of the covariance matrix

of the data, or singular value decomposition (SVD) of the

data itself. In either case, the same set of support vectors is

produced. The spread values in EVD are proportional to the

variance of the data, while in SVD spread values are

proportional to the standard deviation of the data. When

SVD is used, an eigenspace also includes information about

data points projected into the eigenspace; this is absent from

EVD computations. This difference will be significant later

in the paper. This paper, uniquely, discussed both SVD and

EVD. The principal novelty is provided by the discussions

surrounding SVD.

Typically an eigenspace is deflated, which is to say that

only ‘significant’ support vectors and spread values are

retained in the eigenspace. The inclusion of new data is

sometimes called updating, while the removal of data is

sometimes called downdating. Rather than use data directly,

we use eigenspace representations of the data, hence we add

or subtract eigenspaces. We must make clear the difference

between batch and incremental methods for computing

eigenspace models. A batch method computes an eigen-

space using all observations simultaneously. An incremen-

tal method computes an eigenspace model by successively

updating an earlier model as new observations become

available. Our operators for addition and subtraction are

presented in Section 2.

Incremental eigenanalysis has been studied previously

[1–4,7,14]. Each considers either EVD or else SVD

approaches. Only one [2] considers downdating, and in

that case EVD is used to remove only one data point. These

authors either have ignored the fact that a change in data

changes the mean, or else have handled it in an ad hoc way.

This is a surprising omission when we consider that

important functions such as the Mahalanobis distance,

often used in classification applications, cannot be com-

puted without the mean.

Our previous work considered both update and downdate

of EVD with many data points, and allowed for a change of

mean in a principled way [10]. Here, we also consider

addition and subtraction operators that act on many data at

0262-8856/02/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 26 2 -8 85 6 (0 2) 00 1 14 -2

Image and Vision Computing 20 (2002) 1009–1016

www.elsevier.com/locate/imavis

* Corresponding author.

E-mail address: pmh@cs.bath.ac.uk (P. Hall).

http://www.elsevier.com/locate/imavis


once, they are block methods. These operators explicitly

keep track of the mean in a principled way. We shown how

to block update both EVD and SVD. We provide block

downdating for EVD, but argue that downdating of SVD is

not possible in general.

Applications of incremental methods are wide ranging

both within computer vision and beyond. Focusing on

computer vision, applications include: face recognition [13],

modelling variances in geometry [6], and the estimation of

motion parameters [4]. Our motivations for this work arose

from several sources, one example being the construction of

classification models for many images—too many to store

all into memory at once. Intuition, confirmed by experiment,

suggests it is better to construct the eigenspace from all the

images rather than a subset of them, which is all that could

be done using any batch method; hence the need for an

incremental method (see Section 3). An example is a

database of photographs for a security application in which

images need to be added and deleted each year, yet not all

images can be stored in memory at once (see Section 3). Our

methods allow the database to be updated and downdated

without recomputing the eigenspace ab initio. We are also

interested in constructing dynamic Gaussian mixture

models (GMMs) that is being able to add and subtract

GMMs. For this, the ability to keep track of the mean while

adding (or subtracting) eigenspaces is essential. A full

discussion of the issues involved is beyond the scope of the

paper, and is the subject of future work, but we present

initial results (see Section 3) because of the potential of

dynamic GMMs. For example, the mixture model used by

Cootes and Taylor [5] can be brought into a dynamic

learning framework and since our GMMs rely on a

hierarchy of subspaces, so too can work such as that of

Heap and Hogg [11], or Karaulova et al. [12].

2. Adding and subtracting eigenspaces

Before stating the problems which are our subject, we

should explain in greater detail what we mean by the term

eigenspace, with reference to both SVD and EVD.

Let X ¼ ½x1;…; xN� be a collection of N data points, each

n dimensional. The EVD of the covariance of the data is

defined by ðX 2 m1ÞðX 2 m1ÞT ¼ ð1=NÞULUT where m is

the data mean, 1 is a row N 1’s, U is a n £ n matrix of

eigenvectors (support vectors), and L is and n £ n diagonal

matrix of eigenvalues (spread values). The ith eigenvalue is

the scalar variance of the data about the mean in the

direction of the ith eigenvector (the ith column), under the

assumption that the data are Gaussian distributed. U is,

necessarily, orthonormal.

It is often assumed that only those eigenvectors that

correspond to large spread values are of interest, the

others are discarded by deleting columns from the

matrix U. Typically the number of non-zero eigenvalues

is p # minðn;NÞ; this is the rank of the covariance matrix of

X 2 m: In practice, p is chosen to include small values, in

addition to zero values (see Ref. [9] for a discussion). This

deflation leaves p eigenvectors in a n £ p matrix Unp; and p

eigenvalues in a diagonal matrix Lpp: We call p the

dimension of the eigenspace. We hve ðX 2 mÞðX 2 mÞT <
UnpLppUT

np; because of deflation (here L is a diagonal

matrix). We also have UT
npUnp ¼ I; but UnpUT

np – I: The

eigenvectors support a subspace of dimension p embedded

in a space of dimension n.

We specify an EVD eigenspace as

VðXÞ ¼ ðmðXÞ;UðXÞnp;LðXÞp;NðXÞÞ ð1Þ

in which mðXÞ is the data mean; UðXÞnp is a collection of p

column eigenvectors; LðXÞp is a vector of p eigenvalues,

and N is the number of data points. The subscripts on each

element identify its size, where we deem it helpful. VðXÞ

may be interpreted as representing a multidimensional

Gaussian distribution over a hyperplane, of dimension p, in

some embedding space, of dimension n. Contours of equal

likelihood generate hyperellipses of dimension p.

Turning now to SVD. The SVD of the same data, X is

X 2 m1 ¼ USVT in which U is a matrix of left singular

vectors (support vectors), S is a n £ N matrix that is non-

zero only on its leading diagonal, these are the singular

values (spread values), and V is a matrix of right singular

vectors, which contain information about the data projected

into eigenspace. The ith singular value is the standard

deviation of the data along the ith left singular vector. Both

U and V are orthonormal. EVD and SVD are related for the

left singular vectors and eigenvectors are identical. Also it is

easy to show that NS2 ¼ L: We can therefore specify an

SVD eigenspace as

QðXÞ ¼ ðmðXÞ;UðXÞnp;SðXÞp;VðXÞNp;NðXÞÞ ð2Þ

This may be given exactly the same interpretation as VðXÞ;

provided the relation between L and S is borne in mind. We

note that QðXÞ has greater information content due to the

presence of VðXÞ; which carries information about the point

coordinates in the eigenspace UðXÞ:

We can now state the problems of interest. Suppose

we have another collection of observations Y ¼

½y1;…; yM�: These have the EVD eigenspace VðYÞ ¼

ðmðYÞ;UðYÞnq;LðYÞq;NðYÞÞ and the SVD eigenspace

QðYÞ ¼ ðmðYÞ;UðYÞnq;SðYÞq;VðYÞMq;NðYÞÞ This collec-

tion is usually distinct from X, but such distinction is not

a requirement. Notice that q eigenvectors and eigenvalues

are kept in this model, and in general q – p even if

Y ¼ X : deflation may occur in different ways.

The problem for addition, using EVD, is to compute

the eigenspace for the concatenated pair of collections

Z ¼ ½X;Y�

VðZÞ ¼ ðmðZÞ;UðZÞnr;LðZÞr;NðZÞÞ ¼ VðXÞ%VðYÞ ð3Þ

with reference to VðXÞ and VðXÞ only: that is, define the

algorithm for our % operator. We assume the original

data are not available. In general, the number of

P. Hall et al. / Image and Vision Computing 20 (2002) 1009–10161010



eigenvectors and eigenvalues kept, r, differs from both p

and q. This implies that addition must account for a

possible change in dimension of the eigenspace. The

problem for SVD is exactly analogous: to define

QðZÞ ¼ QðXÞ%QðYÞ ð4Þ

We wish to perform addition in the most parsimonious

way possible.

The problem for subtraction is to compute VðXÞ

VðXÞ ¼ VðZÞ*VðYÞ ð5Þ

which is to remove the observations in Y from the

eigenspace in Z. As in the case of addition, a possible

change in the dimension of the eigenspace must be

accounted for. We will argue that subtraction is possible

for EVD only: that is, the SVD subtraction QðXÞ ¼

QðZÞ*QðYÞ is not possible in closed form.

2.1. Addition

We present solutions to VðZÞ ¼ VðXÞ%VðYÞ and to

QðXÞ ¼ QðXÞ%QðXÞ: Derivations for EVD available else-

where [10], derivations for SVD are analogous.

Incremental computation of NðZÞ and mðZÞ is straight-

forward:

NðZÞ ¼ NðXÞ þ NðYÞ ð6Þ

mðZÞ ¼ ðNðXÞmðXÞ þ NðYÞmðYÞÞ=NðZÞ ð7Þ

This is the same in either case. The general approach to

addition is very similar for EVD and SVD; in fact the

following discussion suffices for both, except for one step.

Since UðZÞ must support all data in both collections,

X and Y, both UðXÞ and UðYÞ must be subspaces of UðZÞ:

Generally, we might expect that these subspaces ‘intersect’

in the sense that UðXÞTUðYÞ – 0: The null space of each

of UðXÞ and UðYÞ may contain some component of the

other, that is H ¼ UðYÞ2 UðXÞðUðXÞTUðYÞÞ – 0: Both of

these conditions are illustrated in Fig. 1. Furthermore,

even if UðXÞ and UðYÞ support the same subspace, then

UðZÞ could still be of larger dimension. This is because

some component, h say, of the vector joining the means,

mðXÞ2 mðYÞ may be in the null space of both subspaces,

simultaneously. For example, mðXÞ; UðXÞ and mðYÞ; UðYÞ

define a pair of planes parallel to the xy-plane, but

separated in the z direction, as in Fig. 1.

Momentarily putting to one side issues relating to

changes in dimension, adding data acts to rotate the support

vectors and scale the values relating to data spread. Hence,

the new support vectors must be linear combination of the

old. We deal with a change in dimension by constructing a

basis sufficient span UðZÞ; for which we use UðXÞ

augmented by v, v spans [H, h ], which is in the null space

of UðXÞ: Note that v spans a t-dimensional subspace; t #

q þ 1: We have UðZÞ ¼ ½UðXÞ; v�R where R is an ortho-

normal matrix. Addition for EVD and SVD diverge only in

the manner in which R is computed.

For EVD, the following eigenproblem is solved

NðXÞ

NðZÞ

LðXÞpp 0pt

0tp 0tt

2
4

3
5

þ
NðYÞ

NðZÞ

GpqLðYÞqqGT
pq GpqLðYÞqqG

T
tq

GtqLðYÞqqGT
pq GtqLðYÞqqG

T
tq

2
4

3
5

þ
NðXÞNðYÞ

NðZÞ2

gpgT
p gpg

T
t

gtg
T
p gtg

T
t

2
4

3
5¼RssPssR

T
ss ð8Þ

in which P is diagonal and

gp ¼UðXÞTðmðXÞ2mðYÞÞ ð9Þ

Gpq ¼UðXÞTUðYÞ ð10Þ

Hnq ¼ ½UðYÞ2UðXÞGpq� ð11Þ

hn ¼ ðmðXÞ2mðYÞÞ2UðXÞgp ð12Þ

vnt ¼Orthobasisðz½Hnq;hn�Þ ð13Þ

Gtq ¼ vT
ntUðYÞnq ð14Þ

gt ¼ vTðmðXÞ2mðYÞÞ ð15Þ

z is an operation that removes very small column vectors

from the matrix, and Orthobasis computes a set of mutually

orthogonal, unit vectors that support its argument; typically

Gramm–Schmidt orthogonalization [8] is used to compute

significant support vectors, v from z½H;h�; these are

‘outside’ the eigenspace VðXÞ: Note that while vTv¼ I;

vvT – I: Also, G is the projection of the VðYÞ eigenspace

onto VðXÞ (the U vectors), while G is the projection of VðYÞ

onto the complementary space to VðXÞ (the v vectors). This

complementary space must be determined to compute the

new eigenspace VðZÞ; which argues in favour of adding and

subtracting eigenspaces, rather than direct updating or

downdating of data blocks.

Each matrix in the above eigendecomposition is of size

s ¼ p þ t # p þ q þ 1 # minðn;M þ NÞ: Thus, we have

eliminated the need for the original covariance matrices.

Note this also reduces the size of the central matrix on the

left hand side of Eq. (8). This is of crucial computational

importance because it makes the eigenproblem tractable for

problems in which n is very large, such as when each datum

is an image.
Fig. 1. An illustration of relationships between subspaces embedded in a

larger space: intersecting subspaces (left), and parallel subspaces (right).

P. Hall et al. / Image and Vision Computing 20 (2002) 1009–1016 1011



When adding SVD models we must compute R using

RSVT

¼
SðXÞppVðXÞTNp GpqSðYÞqqVðYÞTMq

0tp ðvT
ntUðYÞnqÞSðYÞqqVðYÞTMq

2
4

3
5

þ
UðXÞTnpðmðXÞ2mðZÞÞ1NðXÞ UðXÞTnpðmðYÞ2mðZÞÞ1NðYÞ

vT
ntðmðXÞ2mðZÞÞ1NðXÞ vT

ntðmðYÞ2mðZÞÞ1NðYÞ

2
4

3
5

ð16Þ

which is an s£ðNþMÞ problem. This is the smallest sized

problem, because it occupies the smallest dimension

subspace possible. The number of columns cannot be

reduced, because SVD explicitly maintains information

about each data point, and VVT–I:

Each of the above decompositions directly yields the

eigenvalues or singular values. The SVD expression also

directly yields the required right singular values. In either

case, the new support vectors must be found by rotation:

UðZÞ ¼ ½UðXÞv�R: The model can then be deflated, if

desired, to dimension r # s:

2.2. Subtraction

The algorithm for subtraction using EVD is very similar

to that for addition. First compute the number of data, and

their mean:

NðXÞ ¼ NðZÞ2 NðYÞ ð17Þ

mðXÞ ¼ ðNðZÞmðZÞ2 NðYÞmðYÞÞ=NðXÞ ð18Þ

In this case, UðZÞ is a sufficient spanning set to rotate. To

compute the rotation, we use the eigendecomposition:

NðZÞ

NðXÞ
LðZÞrr2

NðYÞ

NðXÞ
GrpLðYÞppGT

rp2
NðYÞ

NðZÞ
grg

T
r ¼RrrLðXÞrrR

T
rr

ð19Þ

where Grp¼UðZÞTnrUðXÞnq and gr¼UðZÞTnrðmY2mXÞ: The

eigenvalues we seek are the p non-zero elements on the

diagonal of LðXÞrr: Thus, we can permute Rrr and LðXÞrr ;

and write without loss of generality:

RrrLðXÞrrR
T
rr¼½RrpRrt�

LðXÞpp0pt

0tp 0tt

2
4

3
5½RrpRrt�

T

¼RrpLðXÞppRT
rp ð20Þ

where p¼r2q: Hence, we need only identify the eigenvec-

tors in Rrr with non-zero eigenvalues, and compute the

UðXÞnp as:

UðXÞnp¼UðZÞnrRrp ð21Þ

Splitting must always involve the solution an eigenproblem

of size r.

We now argue that subtraction is not possible for SVD

models. Difficulties arise in two areas, even if we neglect

a change in mean. The first difficulty comes from the

(simplest) form of the problem which is ½ABCT;DEFT� ¼

GHJT; where X ¼ ABCT; Y ¼ DEFT; and Z ¼ GHJT: We

must obtain A, B, and C. By computing the inner product of

both sides we obtain AB2AT þ DE2DT ¼ GH2GT; which

gives us an EVD problem from which we can compute A

and B: we cannot produce A or B directly using SVD.

The second difficulty arises in computing C, when we

note that the ordering of right singular vectors depends upon

the ordering of data points in the matrix being decomposed.

The left singular vectors and singular values are invariant to

permutation of the data. To see this, we suppose P is a

permutation matrix (obtained by randomly permuting rows

or columns of the identity matrix, so that PPT ¼ PTP ¼ I),

and note that given Z ¼ GHJT; then ZP ¼ GHJTP ¼

GHðPTJÞT: Therefore, in order to compute the right singular

vectors, C, while downdating, we must have access to some

matrix P which ‘picks out’ data elements in Z (or,

equivalently, corresponding elements in J ). Unfortunately

no such information exists within the SVD model, and

consequently computing C in a closed-form manner seems

impossible. The only solution is to resort to search using

data elements in J and F (for these specify data points in Z

and Y, respectively). If search is the only solution, then we

may simply downdate Z by building up X incrementally as

elements in Z\Y are found, which is unsatisfactory in our

opinion.

3. Properties of operators, and some applications

It can be shown [10] that the addition of exactly one new

datum is a special case of the above addition, with V ¼

ðx; 0; 0; 1Þ or Q ¼ ðx; 0; 0; 0; 1Þ: In terms of its outcome, the

addition of EVD eigenspaces is both commutative and

associative (provided that in practice we allow for

numerical errors, especially in association). SVD eigen-

spaces also commutes, up to a permutation of the right

singular vectors. The null eigenspace is an additive identity.

The addition of an eigenspace to itself yields an eigenspace,

which is identical in all respects except the number of points

(which doubles). As NðXÞ!1 so the effect of addition

becomes negligible. As both NðXÞ and NðYÞ tend to infinity

together, so the result tends to a stable state.

The time complexity for addition will shadow that used

in computing the particular decomposition. Our exper-

iments [10] demonstrate that the time taken is Oðs3Þ; where s

is the size of the eigenproblem to be solved (we used a

proprietary eigensolver). We also found that the time to

compute the two eigenspaces ab initio and add them is about

that of computing a large eigenspace using all the original

data. However, it is much more efficient to add a pair of

existing eigenspaces than to compute their sum ab initio.

Similar remarks apply to splitting: removing a few data

points is a comparatively efficient operation. The conclusion

we reach is that addition and subtraction of eigenspaces is

P. Hall et al. / Image and Vision Computing 20 (2002) 1009–10161012



no less efficient than batch methods, and in most cases is

performed much more efficiently. Memory complexity is

optimal for both EVD and SVD.

We measured accuracy of addition by adding a pair of

eigenspaces and comparing the result with an eigenspace

computed by concatenating data matrices. All data were

Gaussian distributed. To compare models, we computed the

Euclidean distances between origins and eigenvectors

values (or singular value vectors). To measure the deviation

of support vectors, Uadd and Uconcat; say, we used

lUT
concatUaddl2 1: The data we used was drawn from a

Gaussian distribution. In both EVD and SVD, the accuracy

in all measures usually was about 10214 units. (No

particular unit was used in the experiment, each datum

being a random variable.) However, when adding a model

with many eigenvectors to one with few, using EVD, the

error in values and vectors peak sharply at about the number

of vectors in the smaller model, but remained less than

10211 units. The reason for the peak seems related to

numerical instabilities in computing v, the basis in the null

space of the smaller model.

The subtraction operator tends to instability as the

number of points being removed rises, since in this case

NðXÞ!1; hence 1=NðXÞ!1: In the limit of all points

being removed NðXÞ ¼ 0; and an exception must be coded

to return a null eigenspace. Unfortunately, we have found

that prior scaling by NðXÞ to be ineffective and have

concluded that, in practice, subtraction is best used to

remove a small fraction of the data points.

An obvious application of our methods is to build an

eigenspace from many images—too many to all at once

store into memory. We ran a simulation of this by building

two eigenspaces: one using batch methods and another

using our incremental methods. We were then able to

compare the two models. The eigenspaces themselves turn

out to be very similar, although differences between batch

and incremental eigenspaces are greater in cases where

eigenspaces are subtracted. Performance results bear out

intuition: those images used to make the eigenspace had a

much lower residue error than those not so used. As more

images were added into the construction the maximum

residue error for each image rose—but never so high as to

reach the minimum residue error for images not used in

eigenspace construction. Classification results follow a

similar trend: each image is better classified by an

eigenspace that uses all images.

We now present two more substantial applications of our

methods. These are of a generic nature. The intention is to

furnish the reader with a practically useful appreciation of

the characteristics of our methods, and avoid the specific

problems of any particular application.

3.1. Building an accurate eigenspace model

Here, we consider an image database application. The

scenario is that of a university wishing to efficiently store

photographs of its thousands of students for use in a security

application of some kind, such as access to a laboratory. The

students are to be identified from their facial appearance.

Face recognition is well researched, and we do not claim to

make a contribution, rather we aim to show how our

methods might be used in a support role. In particular, we

consider the case in which the database of images changes,

as old students leave and new ones arrive.

We proceed in a very simple way: we construct an

eigenspace of all those people who are to be recognized, and

rely on the fact that eigenspaces do not generalize well to

distinguish between those people in the set, and those not in

the set. To allow for changes in pose, expression, and so on,

we use several images of each individual.

Conventional batch methods cannot be used to construct

an eigenspace because there are too many images to store

into memory at once, so incremental methods are a pre-

requisite to our approach. Given that the database is subject

to change we could reconstruct an eigenspace at each

change, but we will use our incremental methods to effect the

changes more efficiently; for which subtraction is required.

We used the Olivetti database of 400 faces1 as our group

of students. We constructed an eigenspace from a selection

of 21 people, there being 10 photographs for each person.

Each person in the entire database was then given a ‘weight

of evidence’ between 0 (not in the database) and 1 (in the

database). To compute the weight, we computed the

maximum Mahalanobis distance (using Moghaddam and

Pentland’s method [13]) of any photograph used in

constructing the database. Each photograph was then

classified as ‘in’ if its Mahalanobis distance was less than

this. Since each person has 10 photographs associated with

them, we can then compute a weight for each person as the

fraction of their photographs classified as in Fig. 2 shows the

weight of evidence measure for the second year our

hypothesized database has been running. The scenario is

that in year one, only persons 0–21 inclusive were in, while

in year two only persons 1–22 inclusive were in. The

leftmost plot shows the measure for the images against a

batch model. That on the right shows the same measure for

the same images, but for a model incrementally computed

from year one by first including any new students

(person 22), and then removing old students (person 0).

(The ordering used to make sure the fraction of images

removed was minimized.)

We notice that both models produce some ambiguous

cases, with weights between 0 and 1, and that the

incrementally computed eigenspace gives rise to more of

these cases than the eigenspace computed via batch

methods. This result is in line with our earlier comments

regarding the relative inaccuracy of subtraction. Even so,

only those people in the database score 1, while

everyone outside scored less than 1 and hence classifi-

cation is still possible.

1 http://www.cam-orl.co.uk/facedatabase.html.

P. Hall et al. / Image and Vision Computing 20 (2002) 1009–1016 1013

http://www.cam-orl.co.uk/facedatabase.html


Given our observations, above, regarding previous

measures when subtracting eigenspaces, we conclude that

additive incremental eigenanalysis is safe for classification

metrics, but that subtractive incremental eigenanalysis

needs a greater degree of caution.

3.2. Dynamic Gaussian mixture models

We are interested in using our methods to construct

dynamic GMMs. GMMs are useful n many computer vision

contexts [5]. Our approach treats a GMM as a hierarchy of

eigenspaces, which is a mechanism for improving the

specificity of the data description [11,12]. To construct a

hierarchy we first make an eigenspace, then project all data

into it to reduce dimensionality, next construct a GMM

using the projected data, and then represent each mixture as

an eigenspace. Thus, each Gaussian in the mixture can be

thought of as a hyperellipse, and each may have a different

dimensions. The problem here is to merge two such GMMs.

As an example, we used photographs of two distinct toys,

each photographed at 58 angles on a turntable. Hence we had

144 photographs. Examples of these photographs can be

seen in Fig. 3. The photographs for each toy were input

separately, and a hierarchy of eigenspaces constructed as

described earlier; we used eighteen Gaussians in each

mixture model, on the grounds that this would very probably

produce too many Gaussians—a number which is later

improve by merging.

Thus including the top-level eigenspace, each set of toy

photographs was represented with nineteen eigenspace

models. To merge the GMMs for the pair of toys we first

added together the two top-most eigenspaces to make a

complete eigenspace for all 144 photographs. Next, we

transformed each of the GMM clusters into this space, thus

bringing each of the 36 GMMs (18 from each individual

hierarchy) into the same (large) eigenspace covering the

ensemble of data. We then merged eigenspaces (Gaussian

components), using a very simple criterion to merge based

on reducing volume of hyperellipses, which is explained

below. Hence, we were able to reduce the total number of

Gaussians to 22 in the mixture. These clusters tend to model

different parts of the cylindrical trajectories of the original

data projected into the large eigenspace. Examples of cluster

centres are shown in Fig. 4: the two models can be clearly

seen in different positions. In addition, we found a few

clusters occupying the space ‘in between’ the two toys—an

example of which is seen in Fig. 4.

As mentioned earlier, we used a simple method based on

volume to decide whether two eigenspaces should be

merged. The procedure was as follows. First compute the

volume of each of the eigenspaces, using the hyperellipse at

one Mahalanobis distance. The volume of a hyperellipse

with semi-axes A each element the square root of an

eigenvalue), of dimension M, and at characteristic radius s

(square root of the Mahalanobis distance) is

sMlAlpM=2

G
M

2
þ 1

� � ð22Þ

withGð·Þ the gamma function. We permanently merged a pair

of eigenspaces in the GMM if the sum of their individual

volumes was greater than their volume when merged. This

measure suffers from problems of dimension: we should not

Fig. 2. Weight of evidence measures: year 2 batch (left), and year 2 incremental (right).

Fig. 3. Sample images of each toy used as source data in our dynamic GMM

application.

P. Hall et al. / Image and Vision Computing 20 (2002) 1009–10161014



compare the volume of a p-dimensional hyperellipse with

that of a q-dimensional hyperellipse. A solution is to use

a characteristic length in place of volume, which for a

p-dimensional hyperellipse of volume v is v1=p:

Of course, the utility and properties of the final GMM is

fully in line with any produced by conventional means, and

hence can be used in any application that a conventional

GMM is used. We conclude from these experiments that

dynamic GMMs are a feasible proposition using our

methods.

4. Conclusion

We have presented methods for adding and subtracting

eigenspaces. We have discussed the form of our solutions,

and shown that previous work is a special case of this work.

Our contribution is to track the mean in a principled way,

which makes our contribution novel. This is essential in

classification applications, which makes our contribution

important. This paper is unique in discussing block methods

for both EVD and SVD.

Having experimentally compared eigenspaces, con-

sidered performance metrics of our algorithms, and having

experimented with several more applications we have

concluded that the addition of eigenspaces is stable and

reliable. We advise that our methods be used carefully.

Special are should be taken when subtracting eigenspaces:

the way in which the results are to be used impacts on

efficacy.

We should point out several omissions from this work.

We have not performed any rigorous error analysis and

hence any explanations we have for the behaviour of our

algorithms are anecdotal in character. We have not fully

worked through any particular application, and so can make

general recommendations only. The important conclusion

from that work is that updating the mean is crucial for

classification results [9].

We would expect our methods to find much wider

applicability than those we have already mentioned in this

paper: updating image motion parameters [4], and selecting

salient views [3] are two applications that exist already for

incremental methods. We have experimented with image

segmentation, building models of three-dimensional blood

vessels, and texture classification. We believe that dynamic

GMMs provide a very interesting future path for they enable

useful representations [5,11]—and all their attendant

properties—to be brought into a dynamic framework.

References

[1] J.R. Bunch, C.P. Nielsen, Updating the singular value decomposition,

Numerische Mathematik 31 (1978) 111–129.

[2] J.R. Bunch, C.P. Nielsen, D.C. Sorenson, Rank-one modification of

the symmetric eigenproblem, Numerische Mathematik 31 (1978)

31–48.

[3] S. Chandrasekaran, B.S. Manjunath, Y.F. Wang, J. Winkler, H.

Zhang, An eigenspace update algorithm for image analysis, Graphical

Models and Image Processing 59 (5) (1997) 321–332. September.

[4] S. Chaudhuri, S. Sharma, S. Chatterjee, Recursive estimation of

motion parameters, Computer Vision and Image Understanding 64 (3)

(1996) 434–442. November.

[5] T.F. Cootes, C.J. Taylor, A mixture model for representing shape

variations, Proceedings of British Machine Vision Conference (1997)

110–119.

[6] T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, Training models of

shape from sets of examples, Proceedings of British Machine Vision

Conference (1992) 9–18.

[7] R.D. DeGroat, R. Roberts, Efficient, numerically stabilized rank-one

eigenstructure updating, IEEE Transactions on Acoustics, Speech,

and Signal Processing 38 (2) (1990) 301–316. February.

[8] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins,

Baltimore, MD, 1983.

Fig. 4. Dynamic GMMs, showing 5 examples of the 22 cluster centres. These are arranged to show clusters for each toy (top row), and the clusters between

them (bottom).

P. Hall et al. / Image and Vision Computing 20 (2002) 1009–1016 1015



[9] P. Hall, A.D. Marshall, R. Martin, Incrementally computing eigen-

space models, Proceedings of British Machine Vision Conference,

Southampton (1998) 286–295.

[10] P. Hall, A.D. Marshall, R. Martin, Merging and splitting eigenspaces,

IEEE Transactions on Pattern Analysis and Machine Intelligence 22

(9) (1998) 1042–1049. September.

[11] T. Heap, D. Hogg, Improving specificity in PDMs using a

hierarchical approach, Proceedings of British Machine Conference

(1997) 80–89.

[12] J. Karaulova, P.M. Hall, A.D. Marshall, A hierarchical model for

tracking people with a single video camera, British Machine Vision

Conference (2000) 352–361.

[13] B. Moghaddam, A. Pentland, Probabilistic visual learning for object

representation, IEEE Transactions on Pattern Analysis and Machine

Intelligence 19 (7) (1997) 696–710. July.

[14] H. Murakami, B.V.K. Kumar, Efficient calculation of primary images

from a set of images, IEEE Pattern Analysis and Machine Intelligence

4 (1982) 511–515. September.

P. Hall et al. / Image and Vision Computing 20 (2002) 1009–10161016


	Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition
	Introduction
	Adding and subtracting eigenspaces
	Addition
	Subtraction

	Properties of operators, and some applications
	Building an accurate eigenspace model
	Dynamic Gaussian mixture models

	Conclusion
	References


