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Abstract

Eigenspace models are a convenient way to represent sets of observations
with widespread applications, including classification. In this paper we de-
scribe a new constructive method for incrementally adding observations to an
eigenspace model. Our contribution is to explicitly account for a change in
origin as well as a change in the number of eigenvectors needed in the basis
set. No other method we have seen considers change of origin, yet both are
needed if an eigenspace model is to be used for classification purposes. We
empirically compare our incremental method with two alternatives from the
literature and show our method is the more useful for classification because
it computes the smaller eigenspace model representing the observations.

1 Introduction

The contribution of this paper is a method for incrementally computing eigenspace mod-
els in the context of using them for classification. Eigenspace models are widely used
in computer vision. Applications include: face recognition [8] where observations are
images which lie in a linear space formed by lexicographically ordered pixels; modelling
variable geometry [5] where observations are ordered points from a curve; and estimation
of motion parameters [4] where observations comprise matching points in consecutive
frames. Only the first two of these applications are examples of classification. Previ-
ous workers have also considered incremental eigenspace computation, but their methods
have severe limitations when used for classification, namely they do not consider a shift
of origin. This is important, as will be described later.

Before continuing, a note on notation is in order. Vectors are columns, and denoted
by a single underline. Matrices are denoted by a double underline. The size of a vector,
or matrix, where it is important, is denoted with subscripts. Particular column vectors
within a matrix are denoted with a superscript, while a superscript on a vector denotes
a particular observation from a set of observations, so we treat observations as column
vectors of a matrix. As an example,Ai

mn
is theith column vector in an(m� n) matrix.

We denote a column extension to a matrix using square brackets. Thus[A
mn

b] is an
(m� (n+ 1) matrix, with vectorb appended toA

mn
, as a last column.

Eigenspace models can be computed using eigenvalue decomposition (EVD) of the
covariance matrix,C

nn
of a set ofN observationsX

nN
, where

C
nn

= (1=N)
PN

i=1(x
i � �x)(xi � �x)T , and �x is the mean of the observations. (This
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technique is also referred to as principal component analysis or Karhunen-Loeve expan-
sion.) Such models can be regarded as ap-dimensional hyperellipse in ann-dimensional
space, wheren is the number of variables per observation, andp is the number of new
variables used to represent those observations to within some desired degree of accuracy:
thusp � n. The hyperellipse’s centre is at the mean of the observations�x, its axes are the
eigenvectors which are the columns of the matrixU

np
, and the lengths of its axes are the

square-roots of the eigenvalues along the diagonal of�
pp

. The full eigensystem involved
is C

nn
U
nn

= U
nn

�
nn

; certain eigenvalues are discarded using an appropriate criterion
which reduces this system to the approximationC

nn
U
np
� U

np
�
pp

.
In practice,“low-dimensional”methods are available that solve eigenproblems no larger

than the number of observations, see Murakami and Kumar [9], or Sirovich and Kirby [10]
for examples. Note that the rank of the covariance matrx may be less than the number of
observations.

An alternative approach to computing the eigenmodel is to use singular value decom-
position (SVD).

We must also make clear the difference betweenbatchand incrementalmethods for
computing eigenspace models. A batch method computes an eigenmodel using all ob-
servations simultaneously. An incremental method computes an eigenspace model by
successively updating an earlier model as new observations become available. In either
case, the observations used to construct the eigenspace model are thetraining observa-
tions; that is, they are instances from some class. This model is then used to decide
whether further observations belong to the class.

Despite the popularity of eigenspace models, there is little in the vision literature for
computing them incrementally [3, 4, 9], although researchers in other fields have ad-
dressed the issue. For example, the numerical analysts Bunchet al. update eigenmodels
using EVD [1], and again using SVD [2]. Their work was built upon by De Groat and
Roberts who, working in signal processing, examined error accumulation [6] of such al-
gorithms.

Incremental methods are important to the vision community because of the opportu-
nities they offer. We give two examples: (a) They allow the construction of eigenmodels
via procedures that use less storage, and so render feasible some previously inaccessible
problems [3]; (b) They could be used as part of a learning system in which observations
are added to an eigenmodel. For example, a security system may need to learn new people
as part of a classifier system.

The first of these applications requires that the observations are reproducible from
their eigenspace representation to a very high fidelity. We definefidelityas the reciprocal
of the size of theresidue vector, which in turn is defined byh = (x��x)�U

np
UT

np
(x��x),

wherex is an observation. The residue vector is that part of the observation which is
perpendicular to the eigenspace.

The second application requires that observations are well classified. For this to be
so, the eigenspace model describing the training observations must have a hyperellipse
no larger than necessary, so that observations are correctly classified whether they belong
to the class or not. If the hyperellipse is too large, then too many observations will be
classified incorrectly as belonging. Typically the classification is decided by computing a
probability measure. It is conventional to use a multi-dimensional Gaussian distribution
with eigenspace models, in which case the surface of the hyperellipse can be considered
as a contour at one standard deviation. Thus the classification measure for an observation
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x is exp(�0:5(x� �x)T (C
nn

)�1(x� �x))=((2�)p=2det(�
pp
)0:5).

Note that in an incremental method,�x is unknown until all the training observations
have been input. For reproduction of observations, our experiments showed improved
fidelity if we used the true mean of the observations rather than assuming a mean at the
origin. In classification methods, our experiments showed that using the wrong value of
�x generally leads to too large a hyperellipse and thus poor classification. No previous
incremental method in the literature we have found [1, 2, 3, 4, 6, 9] attempt to estimate
the mean; and they use the origin in its place. Thus their methods while being useful
for reproduction applications, are not appropriate for classifiers. In the rest of this paper
we give an incremental method which does update the mean as observations are added
to produce a model which is useful for classification. Of course, our models can also be
used for reproduction.

Section 2 states the problem more precisely and then derives our new incremental
method. In Section 3, we go on to compare it with two alternative incremental methods
from the literature [3, 9]. Our experimental results (Section 4) show that our method
is consistently the best for classifying, yet loses little (and often gains) in fidelity. Final
conclusions are drawn in Section 5.

2 The problem and our method

2.1 The problem

An eigenspace model,
, constructed overN observationsxi 2 <n comprises a mean,
a set of eigenvectors, the eigenvalue associated with each eigenvector, and the number of
observations. The mean is given by:�x = 1

N

PN
i=1 x

i The eigenvectors are columns of
the matrixU

nn
, and the spread of the observations over each is measured by the corre-

sponding eigenvalue in the diagonal matrix�
nn

. The eigenvectors and their eigenvalues
are solutions to the eigenproblem:C

nn
U
nn

= U
nn

�
nn

in whichC
nn

is the covariance
matrix defined previously. Typically, onlyp of the eigenvectors and eigenvalues are kept,
andp � rank(C

nn
) � min(n;N). The criteria for keeping eigenvectors and eigenvalues

vary, and are application dependent. We give three examples: (a) keep thep largest eigen-
vectors [9]; (b) keep all eigenvectors whose eigenvalue exceed an absolute threshold [3];
(c) keep the largest eigenvectors such that a specified fraction of energy in the eigenvalue
spectrum is retained. In any case, the remainingn�p eigenvalues and their corresponding
eigenvectors are discarded. From now on, we use those eigenvectors and eigenvalues that
remain as our eigenspace model (or eigenmodel), and denote it by
 = (�x; U

np
;�

pp
; N).

It is instructive to examine discarding eigenvectors and eigenvalues using spectral
decomposition and writing matrices in block form, thus:

C
nn

= U
nn

�
nn
UT
nn

= [U
np
U
n(n�p)

]

"
�
pp

0
p(n�p)

0
(n�p)p

�
(n�p)(n�p)

#
[U

np
U
n(n�p)

]T

= U
np

�
pp
UT
np

+ U
n(n�p)

�
(n�p)(n�p)

UT
n(n�p)

� U
np

�
pp
UT
np

(1)
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provided that�
(n�p)(n�p)

� 0
(n�p)(n�p)

.

A new observationy is projected into the eigenspace model to give ap-dimensional
vector,g, using the eigenvectors as a basis. Thisg can be projected back inton-dimensional
space, but with loss represented by the residue vectorh:

g = UT
np
(y � �x) (2)

h = (y � �x)� U
np
g (3)

The vector�x + U
np
g lies entirely within the subspace spanned by the eigenvectors.

The residue vector is orthogonal to this, and it lies in the complementary space, i.e.h
is orthogonal to every vector in the eigenmodel. Ifh is large, then the observationy is
not well represented by the eigenmodel. Therefore, if a general incremental method is to
be effective it must be able to include new, orthogonal directions as new observations are
included in the model; in short, it must allow the number of dimensions to increase when
appropriate.

The problem we address is this: given an eigenspace model
 = (�x; U
np
;�

pp
; N),

but not neither the original observations nor their correlation matrix, and a new observa-
tion y 2 <n, estimate the eigenspace model
0 = (�x0; U

nq
;�0

qq
; N + 1) that would be

computed from all previous observations and the new one. Importantly, the incremen-
tal method should include an additional eigenvector if necessary, henceq = p + 1 or
q = p. Equally importantly it should account for a change of mean, to be effective for
classification.

2.2 Derivation of our method

We now show how a new eigenspace model can be incrementally computed using EVD.
The eigenproblem, after addingy is

C 0
nn
U 0
nn

= U 0
nn

�0
nn

(4)

It is easy to confirm that the new mean is:

�x0 =
1

N + 1
(N�x+ y) (5)

and the new covariance matrix is:

C 0
nn

=
N

N + 1
C
nn

+
N

(N + 1)2
y0(y0)T (6)

wherey0 = y � �x.
We assume initially thatq = p + 1; if it turns out that the additional eigenvalue is

small we will discard it and the corresponding eigenvector at a later stage.
The new eigenvectors must be a rotation,R

(p+1)(p+1)
, of the current eigenvectors

plus some new orthogonal unit vector. The unit residue vector is an obvious choice for
the additional vector. We form the unit residue vector; however, if the new observation
lies exactly within the current eigenspace, then the residue is zero:

ĥ =

(
h

jjhjj2
if jjhjj2 6= 0

0 otherwise
(7)
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and setting

U 0

nq
= [U

np
; ĥ]R

(p+1)(p+1)
(8)

Substitution of Equations 6 and 8 into 4, followed by left multiplication by([U
np
; ĥ]T

gives:

[U
np
; ĥ]T (

N

N + 1
C
nn

+
N

(N + 1)2
y0(y0)T )[U

np
; ĥ]R

(p+1)(p+1)
=

R
(p+1)(p+1)

�0
(p+1)(p+1)

(9)

which is a(p + 1) � (p + 1) eigenproblem with solution eigenvectorsR
(p+1)(p+1)

and

solution eigenvalues�0

(p+1)(p+1)
. Note that we have reduced dimensions fromn to p+1

by discarding eigenvalues in�0
nn

already deemed negligible.
The left hand side comprises two additive terms. Up to a scale factor the first of these

terms is

[U
np
; ĥ]TC

nn
[U

np
; ĥ] =

"
UT

np
C
nn
U
np

UT

p
C
nn
ĥ

ĥ
T
C
nn
U
np

ĥ
T
C
nn
ĥ

#

�

�
�
pp

0

0T 0

�
(10)

where0 is ap-dimensional vector of zeros. This uses Equation 1,C
nn
� U

np
�
pp
UT

np

and the fact thath is orthogonal to every vector inU
np

.
The second term, up to a scale factor, is

[U
np
; ĥ]T y0(y0)T [U

np
; ĥ] =

"
UT

np
y0(y0)TU

np
UT

np
y0(y0)T ĥ

ĥ
T
y0(y0)TU

np
ĥ
T
y0(y0)T ĥ

#

=

�
ggT g
gT 2

�
(11)

where we have used Equations 2 and 3, and set = ĥ
T
y0.

Thus, using these results, to compute the updated eigenspace model we must solve an
intermediate eigenproblem of size(p+ 1)� (p+ 1):�

N

N + 1

�
� 0

0T 0

�
+

N

(N + 1)2

�
ggT g
gT 2

��
R
(p+1)(p+1)

=

R
(p+1)(p+1)

�0

(p+1)(p+1)
(12)

A solution to this problem yields the new eigenvalues directly, and the new eigenvectors
are then computed from Equation 8. For future reference we call the the matrix whose
eigensolution is sought aboveD

(p+1)(p+1)
.

We note some properties of our solution. In the case whenĥ = 0, D
pp

reduces to
N

N+1� + N
(N+1)2 gg

T ; the effect is simply to rotate the current eigenvectors. Should it

happen thaty = �x, then the new eigenvectors are scaled byNN+1 . Finally, asN 7! 1,

so N
N+1 7! 1 and N

(N+1)2 7! 0, which shows our method converges to a stable solution in
the limit.
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3 Previous work

We fix our attention on solutions in the vision literature that allow for a change in dimen-
sion (some do not); we have found two such methods. No method we have found, in either
the vision literature or elsewhere, allows for a change in origin. All methods, however pre-
sented, use the same basic method as our: they solve an intermediate eigenproblem of the
formD

(p+1)(p+1)
R
(p+1)(p+1)

= R
(p+1)(p+1)

�0

(p+1)(p+1)
to compute rotation matrices

and eigenvalues, but theirD
(p+1)(p+1)

takes a different form. Thus, we can compare the

methods considered on the basis of the form of the “intermediate matrix”,D and the kind
of decomposition (EVD or SVD) used.

Murakami and Kumar [9] assume a fixed mean at the origin. They compute the EVD
of

D
(p+1)(p+1)

=
N

N + 1

"
�
pp

0p
0Tp 0

#
+

N1=2

N + 1

"
0
pp

�1=2
pp

g
p

gT
p
�1=2

pp
y0T y0

#
(13)

where0pis ap vector of zeros, and0
pp

is ap�pmatrix of zeros, and�1=2
pp

is the diagonal

matrix whose entries are the square roots of�
pp

. (In the above�x is set to zero, so thaty0

andg have different values than in our method.) The eigenvectors and eigenvalues of the
new model are then given as:

U
n(p+1)

= [U
np
; ĥ]R

(p+1)(p+1)
((N + 1)�0

(p+1)(p+1)
)�1=2 (14)

The scaling term((N + 1)�0

(p+1)(p+1)
)�1=2 ensures that the new eigenvectors form an

orthonormal basis set. We note the risk of division by zero, which in practice means that
very small eigenvectors must be removed if the system is not to suffer from numerical
problems. In addition, we see they lack aggT term in the second matrix, which provides
rotation and scaling even when the new observation lies in the same eigenspace as the
previous observations. They proposed that a stipulated number of eigenvectors should be
kept. Later work by Vermeulen and Casasent [11] enhanced this method by providing a
way to determine whether a new observation lies in the same eigenspace as the previous
observations.

Chandrasekaranet al.[3] also use a fixed mean at the origin. Despite the fact they use
SVD rather than EVD they still solve an “intermediate problem”. They compute the SVD
of:

D
(p+1)(p+1)

=

"
�1=2
pp

0p
0Tp 0

#
+

�
0
pp

g
p

0T 

�
(15)

Again, note�x has been set to zero. The SVD of this matrix yields left singular vectors
R
(p+1)(p+1)

, singular values(�0)
1=2
(p+1)(p+1), and right singular vectorsS

(p+1)(p+1)
. The

new left singular vectors are computed exactly as in Equation 8, the new singular values
are identically(�0)(p+1)(p+1)1=2 , and the right singular vectors are not used. The form of
D
(p+1)(p+1)

arises because Chandrasekaranet al. [3] compute the SVD ofX
nN

, which

is the matrix in which every column is an observation, whereas EVD is computed from
the covariance matrix of the observations.



292 British Machine Vision Conference

Other authors have also used SVD. For example, Chaudhuriet al. [4] also use SVD in
recursive estimation of motion parameters, but setD

pp
= �

pp
+ ggT and consequently

make no allowance for a change in the rank of the covariance matrix. Therefore, their
work is of interest to this paper only in that they also include aggT term.

4 Experimental Method and Results

Space prevents us from giving here all results from all the experimental tests we have
performed. Rather, we summarise some results and present results relating to fidelity and
classification in a little more detail. The reader is referred elsewhere for a more detailed
report [7].

No matter which of the incremental methods was under consideration, we used a
strategy whereby as each new observation was added, the sizep+1 new eigenmodel was
computed, and then a decision was made as to whether to keep it, or reduce it to size
p. We examined the effects of three different methods for reduction: the first kept all
eigenvectors whose eigenvalues exceeded an absolute threshold (recommended by [3]),
the second kept a stipulated number of the largest eigenvectors (recommended by [9]);
the third kept the largest eigenvectors such that a stipulated fraction of the eigenspectrum
energy was retained.

We measured general accuracy of incremental eigenmodels compared to batch eigen-
models, ensuring EVD models were compared with EVD models, and SVD models with
SVD models. Accuracy was measured in a variety of ways: average alignment of clos-
est eigenvectors; the average difference between eigenvalues; and the energy in the batch
model not accounted for by the incremental model (and vice-versa). The most accurate
was the SVD method of Chandrasekaranet al. [3]. For example, if more than about 95%
of the energy was retained, then the average angular deviation of incremental eigenvectors
and batch eigenvectors was about5Æ. Under the same conditions our method gave eigen-
vectors whose average angular deviation was about15Æ, while the measure for Murakami
and Kumar [9] was about45Æ. Again, the SVD method was also more accurate in terms
of eigenvalues. However, our method proved best in terms of energy measures.

However desirable similarity to the batch model is, the task in hand is to represent
incrementally presented observations. High fidelity is important to general applications,
while probability measures are of importance for classification (as discussed in Section
1). In both cases, we discarded eigenvectors by stipulating a number to be kept. However,
when using our method we kept one vector less than when using either of the comparative
methods. This is because we explicitly keep a mean, and doing the former allows the
testing to be fair in that each method keeps the same amount of information.

Fidelity measures how well the observations used to construct an eigenmodel are rep-
resented by that model. To measure this, for each observation we computed the size of the
residue vector with respect to the final model. Here we use the mean value of the reside
as a measure of error, fidelity is the reciprocal of this.

Classification is based on the probability that observationx belongs to eigenspace
model
:

P (xj
) �
exp(�0:5(x� �x)TU

np
��1

pp
UT

np
(x� �x))

(2�)p=2det(�)1=2
(16)
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in which (x � �x)TU
np

��1

pp
UT

np
(x � �x) is the Mahalanobis distance [8]. We computed

the Mahalanobis distance for each observation used to construct the eigenspace model,
and then computed the probability of the mean distance as our classification measure.

One prediction we can make regarding classification is that for fixed-mean methods
the observations should be less well classified the further the cluster mean is from the
origin because the hyperellipse representing the data grows in volume. However, for
varying-mean methods the classification value should be invariant because the hyperel-
lipse is centred on the data. To test this we generatedN observations in ann dimensional
space, for various values ofn andN ; n < N , n = N , andn > N were all tried. The
cluster was initially generated such that the mean was at the origin, and there was unit
standard deviation in every direction. We then progressively shifted this cluster away
from the origin, until the cluster was 10 standard deviations from the origin.

Typical results are presented in Figure 1(a), which shows 10 observations in a 100
dimensional space; in this figure 10 eigenvectors were kept for the comparator methods,
our method kept 9 eigenvectors plus the mean. These results bear out our prediction
regarding classification. Figure 1(b) shows the mean residue as a function of distance.
This rises with distance for other methods, but hardly at all with ours. Thus, when all
eigenvectors are kept our method gives better performance.
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Figure 1: Probability and residue measures as a function of distance: 1(a) log10 of proba-
bility at mean Mahalanobis distance v. shift; 1(b) mean residue error v. shift.

A second prediction is that the fixed-mean methods are prone to mis-classification.
To show this we again used synthetic data. We computed an eigenmodel using a set of
training observations, and then computed the fidelity and classification measures on a set
of test observations. The training set was synthesised in the same way, shifted as before.
The test set was also generated as a cluster, but always centred on the origin. Clearly, as
the distance of the training set from the origin increases, the classification measure should
fall as the two sets become ever more distinct.

Typical results are presented in Figure 2(a). Again, the results bear out our prediction,
we see that the probability of mis-classification with our method falls with distance, while
those for comparator methods remain about constant. Figure 2(b) shows that as the test
set becomes increasingly distant from the training set our residue error grows, while it
does not for the other methods.

Finally, we present results of experiments using real image data in which we tested the
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Figure 2: Probability of mis-classification and residue error of observations in set larger
than class: 2(a) log10 of probability at mean Mahalanobis distance v. shift; 2(b) mean
residue error v. shift .

effect of discarding eigenvectors by keeping a fixed number, as for the synthetic data. We
randomly selected 50 images from the Olivetti database of faces1. We then computed an
eigenmodel using each of the three incremental methods, and computed the residue and
classification measures. Of interest here was the performance of each method as varying
numbers of eigenvectors and eigenvalues were discarded. Results are shown in Figure 3.
We see that our method consistently classifies the observations better than the fixed mean
methods, and that it is consistently competitive with respect to mean residue error.
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Figure 3: The variation in classification and residue with number of vectors retained, real
image data used: 3(a) log10 of probability at mean Mahalanobis distance v. vectors kept;
3(b) mean residue error v. vectors kept.

5 Conclusions

We have presented a new method for incremental eigenspace models that updates the
mean. Experimental results show that our method is better suited for classification ap-

1http://www.cam-orl.co.uk/facedatabase.html
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plications than either of the other methods we tested. Additionally, our method is com-
petitive in terms of fidelity. We therefore conclude our method gives the best general
performance for incremental eigenspace computation. Fixed mean methods cannot be
relied upon for classification.

SVD methods are generally regarded as more numerically stable than EVD. We intend
to investigate incremental SVD with a shift in mean. However, our early investigations
suggest this is not straightforward.
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