Spectral Theory Network
     
Nodes
Bristol
Cardiff
Heriot Watt
Hull
Kings College, London
Leicester
Loughborough
  Members  
     
  Spectral Theory Home  
 

Leicester

M. Marletta and C. Tretter's work on spectral theory of differential operators has concentrated on three main topics: classical spectral problems for selfadjo int Hamiltonian systems; non-classical spectral problems for non-selfadjoint differential equations, including the Orr-Sommerfeld problem; and spectral theory of block operator matrices with applications in mathematical physics, e.g. to Dirac operators.

Recent work includes a new operator approach to the Orr-Sommerfeld problem on a compact interval, a complete spectral analysis of non-selfadjoint boundary eigenvalue problems for differential equations $N(y) = \lambda P(y)$ w ith $\lambda$-polynomial boundary conditions; a major development in the spectral theory of block operator matrices concerning the localisation of the spectrum by means of the new concept of quadratic numerical range; and the existence of spectral invariant subspaces and solutions of Riccati equations, with applications to Dirac operators with a potential. It also includes a complete characterisation of the Friedrichs boundary conditions for higher order self-adjoint differential operators, as well as, with Cardiff, a general analysis of spectral inclusion and spectral exactness when non-self-adjoint singular differential operators are regularized.

EPSRC-funded work in collaboration with the University of Maryland has resulted in the first library quality software for the computation of eigenvalues of higher-order differential operators. Recent extensions to non-self-adjoint problems allow, e.g., the automatic treatment of the Orr-Sommerfeld equation with $\lamb da$-nonlinear boundary conditions. In collaboration with Cardiff they have also developed the world's first algorithms for computing eigenvalues of singular problems with guaranteed error bounds.

     
  Last changed: 18/07/01