CMP913
Emerging Distributed Computing Technologies

David W. Walker

Department of Computer Science

Cardiff University

PO Box 916

Cardiff CF24 3XF

http://www.cs.cf.ac.uk/User/David.W.Walker
Abstract: This module is given as part of the MSc in Information Systems Engineering in the Department of Computer Science at Cardiff University. It is designed for study via the web, supplemented by a couple of lab sessions, some tutorial style lectures, and an investigative study topic. This document is also available in HTML format. Any comments on it should be sent to david@cs.cf.ac.uk.

1. An Introduction to The Grid

When we turn on an electric light with the flick of a switch we usually give no thought to where the power that illuminates the room comes from – generally, we don’t care if the ultimate source of the energy is coal, oil, nuclear, or an alternative source such as the sun, the wind, or the tide. We regard the electricity as coming from the “National Grid” which is an abstraction allowing users of electrical energy to gain access to power from a range of different generating sources via a distribution network. A large number of different appliances can be driven by energy from the National Grid – table lamps, vacuum cleaners, washing machines, etc. – but they all have a simple interface to the National Grid. Typically this is an electrical socket. Another aspect of the National Grid is that energy can be traded as a commodity, and its price fluctuates as supply and demand change.

Now imagine a world in which computer power is as easily accessible as electrical power. In this scenario computer tasks are run on the resources best suited to perform them. A numerically intensive task might be run on a remote supercomputer, while a less-demanding task might run on a smaller, local machine. The assignment of computing tasks to computing resources is determined by a scheduler, and ideally this process is hidden from the end user. This type of transparent access to remote distributed computing resources fits in well with the way in which many people use computers. Generally they don’t care where their computing job runs – they are only concerned with running the job and having the results returned to them reasonably quickly. Transparency is a desirable attribute not only of processing power; it can also be applied to data repositories where the user is unaware of the geographical location of the data they are accessing. These types of transparency are analogous to our indifference to how and where the electrical power we use is generated. It is also desirable that remote computing resources be readily accessible from a number of different platforms, including not only desktop and laptop computers, but also a range of emerging network-enabled mobile devices such as Personal Digital Assistants (PDAs) and mobile phones. This is termed pervasive access, and in our analogy with the National Grid corresponds to the widespread availability on demand of electrical power via standard wall sockets.

The Grid is an abstraction allowing transparent and pervasive access to distributed computing resources. Other desirable features of the Grid are that the access provided should be secure, dependable, efficient, and inexpensive, and enable a high degree of portability for computing applications. Today’s Internet can be regarded as a precursor to the Grid, but the Grid is much more than just a faster version of the Internet – a key feature of the Grid is that it provides access to a rich set of computing and information services. Many of these services are feasible only if network bandwidths increase significantly. Thus, improved network hardware and protocols, together with the provision of distributed services, are both important in establishing the Grid as an essential part the infrastructure of society in the 21st century.

A Word of Warning

The analogy between the supply of electrical power through the National Grid and the supply of computing power through the Grid is intuitively appealing. However, as with all analogies, the correspondence breaks down if carried too far. An important point to note is that all electrical power is essentially the same – a flow of electrons. Moreover, the demand made by an appliance on the supply of electrical power is always the same – provide a flow of electrons with a certain phase, voltage, and current until told to stop. When we speak of electrical power this has a precisely defined meaning, in the sense that it is the product of the voltage and the current and is measured in units of the Watt. There is no corresponding simple definition of computing power. The nearest equivalent, perhaps, would be a list of requirements that a computing task makes on the Grid in terms of compute cycles, memory, and storage, for example. The requirements of an electrical appliance can usually be satisfied by the domestic electricity supply through a wall socket. In a similar way, we would like the requirements of a computing task to be satisfied by the Grid through a simple local interface. This requires that computing tasks should describe their own requirements, and that the Grid be transparent and pervasive. Thus, the analogy between computing grids and electrical grids is valid only to the extent to which these criteria are met. Currently, the Grid is not transparent or pervasive, and computing tasks do not routinely describe their requirements, so the analogy with the National Grid is correspondingly weak. However, as a vision of the future, the analogy between computing and electrical grids is both sound and useful at a certain level of abstraction. At the implementation level the analogy will always be poor. When a computing task is submitted to the Grid one or more resource brokers and schedulers decide on which physical resources the task should be executed, possibly breaking it down into subtasks that are satisfied by a number of distributed resources. However, an electrical appliance does not need to have its specific request for power relayed through brokers to a particular power station which then generates the power and relays it back to the appliance.

For a more detailed discussion of the analogy between electrical and computing grids visit http://www.csse.monash.edu.au/~rajkumar/papers/gridanalogy.pdf and read the paper “Weaving Electrical and Computational Grids: How Analogous Are They?” by Madhu Chetty and Rajkumar Buyya .

1.1. The Grid and Virtual Organisations

The original motivation for the Grid was the need for a distributed computing infrastructure for advanced science and engineering, with a pronounced emphasis on collaborative and multi-disciplinary applications. It is now recognized that similar types of application are also found in numerous other fields, such as entertainment, commerce, finance, industrial design, and government. Consequently, the Grid has the potential for impacting many aspects of society. All these areas require the coordinated sharing of resources between dynamically changing collections of individuals and organizations. This has led to the concept of a virtual organization (VO) which represents an important mode of use of the Grid. The individuals, institutions, and organizations in a VO want to share the resources that they own in a controlled, secure, and flexible way, usually for a limited period of time. This sharing of resources involves direct access to computers, software, and data. Examples of VOs include:

· A consortium of companies collaborating to design a new jet fighter. Among the resources shared in this case would be digital blueprints of the design (data), supercomputers for performing multi-disciplinary simulations (computers), and the computer code that performs those simulations (software).

· A crisis management team put together to control and eradicate a virulent strain of disease spreading through the population. Such a team might be drawn from government, the emergency and health services, and academia. Here the shared resources would include information on the individuals who have caught the disease (data), information on the resources available to tackle the infection (data), and epidemiological simulations for predicting the spread of the infection under different assumptions (computers and software).

· Physicists collaborating in an international experiment to detect and analyse gravitational waves. The shared resources include the experimental data and the resources for storing it, and the computers and software for extracting gravitational wave information from this data, and interpreting it using simulations of large-scale gravitational phenomena.

These VOs all involve a high degree of collaborative resource sharing, but security is clearly also an important feature. Not only is it necessary to prevent people outside of the VO from accessing data, software, and hardware resources, but the members of the VO in general are mutually distrustful. Thus, authentication (is the person who they say they are), authorization (is the person allowed to use the resource), and specification and enforcement of access policies are important issues in managing VOs effectively. For example, a member of a VO may be allowed to run certain codes on a particular machine but not others, or they may be permitted access only to certain elements of an XML database. In a VO, the owners of a resource set its access policies so they always retain control over it.

For a more detailed discussion of The Grid and VOs read the paper “The Anatomy of the Grid: Enabling Scalable Virtual Organizations,” Ian Foster, Carl Kesselman, and Steven Tuecke, The International Journal of High Performance Computing Applications, volume 15, number 3, pages 200–222, Fall 2001. It is also available online as a PDF file from http://www.globus.org/research/papers/anatomy.pdf
1.2. The Consumer Grid

Support for VOs allows computing and information resources to be shared across multiple organizations. Within a VO sophisticated authorization and access control policies may be applied at various levels (individual, group, institution, etc) to maintain the level of control and security required by the owners of the shared resources. In addition, the members of a VO are working together to achieve a common aim, although they may also have different subsidiary objectives. The consumer grid represents another mode of use of the Grid in which resources are shared on a commercial basis, rather than on basis the basis of mutual self-interest. Thus, in the consumer grid paradigm of network-centric computing, users rent distributed resources, and although many users may use the same resources, in general, they do not have common collaborative aims. In the consumer grid, authentication and security are still important issues since it is essential to prevent a user’s information, code, and data being accessible to others. But authorization to access a resource derives from the user’s ability to pay for it, rather than from membership of a particular VO.

Resource discovery is an important issue in the consumer grid – how does a user find the resources needed to solve their particular problem? From the point of view of the resource supplier the flip side of this is resource advertising – how does a supplier make potential users aware of the computing resources they have to offer? One approach to these issues is the use software agents to discover and advertise resources through resource brokers. The role of a resource broker is to match up potential users and suppliers. The user’s agent would then interact with the supplier’s agent to check in detail if the resource is capable of performing the required service, to agree a price for the use of the resource, and to arrange payment. It is possible that a user agent would bargain with agents from several different suppliers capable of providing the same resource to obtain the lowest possible price. In a similar way, if the demand for a resource is high a supplier’s agent might negotiate with agents from several different users to sell access to the resource to the highest bidder. The auction model provides a good framework for inter-agent negotiation. Agents are well-suited to these types of online negotiation because they can be designed to act autonomously in the pursuit of certain goals.

Within a VO, tasks are scheduled to make efficient use of the resources, and the scheduling algorithm should reflect the aims and priorities of the VO. Thus, the scheduler might try to balance the workload over the resources while minimizing turn-around time for individual user tasks. Tasks may have differing priorities and this would also need to be factored into the scheduling algorithm. In the consumer grid, scheduling is done "automatically" by the invisible hand of economics. Supply and demand determines where jobs run through the agent negotiation process – no other form of scheduling is required. The users seek to minimize their costs subject to constraints, such as obtaining results within a certain time, and the suppliers seek to maximize their profits.

For the concept of the consumer grid to become a reality the development of secure and effective computational economies is essential. In the consumer grid all resources are economic commodities. Thus, users should pay for the use of hardware for computation and storage. If large amounts of data are to be moved from one place to another a charge may be made for the network bandwidth used. Similarly, a user should also pay for the use of third-party software and for access to data repositories. In general, the hardware, information, and application software involved in running a user task may have several different “owners” each of whom would need to be paid.

In the future it seems likely that Grid computing will be based on a hybrid of the virtual organization and consumer grid models. In this scenario hardware, software, and data repository owners will form VOs to supply resources. Collaborating end-user organizations and individuals will also form VOs that will share resources, but also “rent” resources outside the VO when the need arises. The consumer grid model applies to the interaction between supplier VOs and user VOs.

A number of legal issues stem from the idea of a consumer grid. For example, suppose a user agent and a supplier agent negotiate a contract in which the supplier agrees to perform a service for an agreed fee within a certain amount of time, but subsequently fails to honour that contact. In such a case would the user be able to claim compensation from the supplier? More specifically, how would the user demonstrate that the contract had actually been made? Even if the technical difficulties of making binding and verifiable contracts between agents are overcome, it seems unlikely that the legal system is well prepared to deal with these or other e-business issues.

There are a number of sources of further information about the consumer grid:

· For an early discussion of the consumer grid concept see “Free-Market Computing and the Global Economic Infrastructure,” D. W. Walker, IEEE Parallel and Distributed Technology, volume 4, number 3, pages 60–62, Fall 1996. See http://www.cs.cf.ac.uk/User/David.W.Walker/MISCELLANEOUS/freemarket.html to view this paper online.

· The Grid Architecture for Computational Economy (GRACE) project focuses on the development of a market-based resource management and scheduling system for computing on the Grid: http://www.csse.monash.edu.au/~rajkumar/ecogrid. The GRACE web site leads to many useful and informative articles about computational economies.
· The same research group is also developing the Compute Power Market (CPM) project that uses an economics approach in managing computational resource consumers and provides global access in a peer-to-peer computing style. The CPM web site is at http://www.computepower.com. The central ideas behind CPM are set forth in the paper “Compute Power Market: Towards a Market-Oriented Grid,” Rajkumar Buyya and Sudharshan Vazhkudai, presented at the First IEEE/ACM International Symposium on Cluster Computing and the Grid, Brisbane, Australia, May 16-18, 2001. See http://www.buyya.com/papers/cpm.pdf to view this paper online.

· Finally, for a detailed analysis of different computational economy models see “Analyzing Market-Based Resource Allocation Strategies for the Computational Grid,” Rich Wolski, James S. Plank, John Brevik, and Todd Bryan, The International Journal of High Performance Computing Applications, volume 15, number 3, pages 258–281, Fall 2001. It is also available online as a PDF file from

1.3. Application Service Providers

An Application Service Provider (ASP) provides commercial rental-based access to computational resources, and hence forms an important part of the infrastructure of the consumer grid
. An ASP provides the hardware and software resources for performing a particular computational service (or set of services). For example, an ASP might perform a statistical analysis on an input data set provided by a user, or evaluate for eigenvalues of a matrix. In this latter case the user would supply the input matrix, and the ASP would return the list of eigenvalues. The services provided by an ASP might be individual tasks or complete applications. Indeed, an ASP makes no distinction between what a user might refer to as a subroutine and an application – to an ASP they are both software components, and given valid inputs the ASP will return valid outputs. The ASP model provides a server-based thin client computing environment that is often accessible via a web browser interface.

From a user’s point of view the ASP model has several benefits: the user doesn’t have to install the software; the user doesn’t have to worry whether their system is powerful enough to run the ASP software as this runs on the server and not on the client; the user doesn’t need to supply any support staff to maintain the software installation; and, the ASP services is available at all times. The service provider also benefits from the ASP model: there are no software distribution costs; user support costs are reduced since the user doesn’t need to install the software; there is less risk of piracy since users cannot copy the software; software upgrades can be done immediately on the server; only one version of each application has to be maintained; and, a steady stream of rental income removes the need to release yearly updates to software to generate income.

Some ASPs may seek to provide all aspects of a complete solution to the end user. This type a vertically integrated ASP contrasts with a variant of the ASP model in which certain parts of the solution might be outsourced to different specialist ASPs. An example of this latter case would be an e-commerce web site that uses a third-party for financial services such as online credit card payments.

NetSolve is a client-server system for the remote solution of complex scientific problems, and illustrates the ASP concept. NetSolve is accessible as a research prototype and no charge is made for its use, so currently it doesn’t incorporate the rental aspects of the ASP model. The NetSolve system is capable of performing a pre-defined set of computational tasks on a set of pre-defined servers. When a user requests one of these tasks to be performed the client-side NetSolve daemon passes the request to a remote NetSolve agent. The agent decides which server to run the task on, and informs the client-side daemon. The client-side daemon then contacts the NetSolve daemon on this server and passes it the request together with the input data. The server-side daemon then performs the task, and on completion sends the results to the client-side daemon, which returns them to the user. It should be noted that NetSolve agents play the role of resource brokers. The user must install the client-side daemon software on their machine. In the future, once ASP interfaces and protocols become standardized, it should be possible to replace this NetSolve-specific daemon with generic client-side software allowing interaction with any ASP that conforms to the standard. Another interesting aspect of the NetSolve system is the peer-to-peer style of interaction between the client and the server. This approach clearly separates the task of finding a resource (through the NetSolve agent) from the client-server interaction, and avoids excessive centralization.

NetSolve provides application programming interfaces (APIs) to a number of languages, including C, Fortran, MatLab, and Mathematica. This allows requests to be made to the NetSolve system from within a program, and this style of usage is well-suited for scientific computation. Furthermore, NetSolve requests can be blocking or non-blocking. In the blocking case program execution is suspended until the results of the NetSolve request are returned to the application. In the non-blocking case, program execution can continue after a NetSolve request is made but the results are not available to the application until later. This allows other useful computation to be performed on the client while waiting for the NetSolve request to complete. The user application must subsequently check for completion of the request, or wait until it has completed.

NetSolve is an example of a type of ASP that provides access to remote resources through a programming API. Gedcom2XML is an example of the ASP model that provides access to remote resources through a web-based interface. This interface allows a user to upload a file of genealogical data in the standard GEDCOM format. The data is then converted to an XML file by a Perl program on the server, and returned to the user via the browser. The user can then save the XML file to their own filespace. In addition, an XSLT stylesheet
 displays the XML file as a hypertext document to allow the data to be navigated within the browser
. The use of Perl programs on the server is a common way of hosting web-based applications, particularly for data processing. Web-hosted query interfaces to databases are also a common type of ASP.

There are a number of resources related to the ASP model on the web.

· A good discussion of the ASP model is given in the article “Shifting Paradigms with the Application Service Provider Model,” Lixin Tao, IEEE Computer, volume 34, number 10, pages 32–39, October 2001. This article can be accessed online at http://www.computer.org/computer/co2001/rx032abs.htm by subscribers to the IEEE Computer Society Digital Library service.

· Further information on NetSolve can be obtained from the NetSolve web site at http://icl.cs.utk.edu/netsolve. The publications link provides access to numerous articles, including the NetSolve User Manual.

· http://www.cs.cf.ac.uk/User/David.W.Walker/GEDCONV/Gedcom2XML.html is the location of the Gedcom2XML web site. For an example of what it does try keying in http://www.cs.cf.ac.uk/User/David.W.Walker/ftree.ged to the URI field of the browser interface.

· The ASP Industry Consortium web site provides a wealth of news and information about the commercial application of the ASP model. The web site is at http://www.allaboutasp.org/.

· Other ASP web sites worth looking at include http://www.aspisland.com/, http://www.aspstreet.com/, and http://www.aspnews.com/.

1.4. Problem-Solving Environments

A problem-solving environment (PSE) is a complete, integrated software environment for the computational solution of a particular problem, or class of related problems. A goal of a PSE is to provide high-quality, reliable problem-solving power to the end user without the need for them to pay attention to details of the hardware and software environment not immediately relevant to the problem to be solved. PSEs correspond quite closely to the idea of a vertically integrated ASP. PSEs can be regarded from the commercial angle as rental-based suppliers of computer problem-solving power, or they can be viewed as frameworks for the collaborative sharing of resources within a VO.

The concept of a PSE has been around for many years, and PSEs of varying degrees of sophistication have been developed. MatLab and Mathematica are examples of early PSEs for mathematical computations. These, however, were designed for use on local standalone computers, whereas the trend has now advanced from providing graphical interfaces to statically scheduled applications on uniprocessor machines to the current goal of integrating modeling, analysis, and visualisation within an intelligent resource-aware computational environment that provides transparent access to distributed computing resources, usually through a web browser interface.

PSEs are used in design optimization, parameter space studies, rapid prototyping, decision support, and industrial process control. However, an important initial motivation for their development was their support for large-scale collaborative simulation and modeling in science and engineering, for which the ability to use and manage heterogeneous distributed high performance computing resources is a key requirement. A second important requirement of such a PSE is that it should provide to the end user easy-to-use problem solving power based on state-of-the-art algorithms, tools, and software infrastructure. These types of PSE can reduce software development costs, improve software quality, and lead to greater research productivity. These effects in turn result in better science, and in the commercial sector better, cheaper products that are brought more rapidly to market. PSEs have the potential for profoundly changing the way high performance computing resources are used to solve problems – in the future it is expected that web-accessible PSEs will become the primary gateway through which high performance computing resources are used.

A well-designed PSE must provide the following software infrastructure:

· Support for problem specification. In general, this involves specifying what the problem input data is and how it is to be processed. In many cases the input data may consist of just a few parameters, however, in other cases the specification of the input data may be a complex task. For example, specifying a computational mesh for a complex geometry as input to a finite element solver might involve designing a mesh that is well-conditioned and which obeys certain geometrical constraints. Thus, determining a valid input data set may require interaction with an expert system within the PSE. Specifying how the data is to be processed may be done in several ways. In the simplest case a user may want to run just a pre-determined “canned” application. Alternatively a user may want to compose an application of their own by linking together existing software components using a visual editor. This option is considered in more detail below. In some cases it may be possible to specify the problem using a high-level language. Examples include languages for specifying partial differential equations and cellular automata. PSEs may also incorporate recommender systems for suggesting the best solution methods to the user.

· Support for resource discovery and scheduling. These are generic Grid services and as such would usually be outsourced to system external to the PSE. However, the PSE would need to have interfaces to these services. Because of their generic nature resource discovery and scheduling will not be considered in any more detail here. However, it should be noted that efficient scheduling requires a means to predict a component’s runtime, and the ability to monitor the performance of the computer and networking hardware.

· Support for execution services. This involves initiating execution of a component on a computer platform, monitoring its execution, support for checkpointing and fault tolerance, and returning results to user-designated locations.

Often a PSE will also provide mechanisms for interpreting and analyzing results from a computation. This may involve the exploration and navigation of complex high-dimensional data sets produced by a computation in an immersive visualization environment. This may be done after completion of the computation, or by interacting with the computation as it is running – this is known as “computational steering.”

Application composition within a visual programming environment will now be considered. This provides support to a user who wishes to construct (or compose) their own application from existing software components. The components are stored in a component repository that is portrayed to the user as an hierarchical file system with each folder containing related components. Thus, there might be a folder containing numerical linear algebra components, and another folder containing image processing components, and so on. All users with access to the PSE can see all the components in the repository, unless the owner of a component sets its permissions to hide it. Users are able to navigate the component repository in the usual way by expanding and collapsing folders. A user composes an application by dragging components from the repository to a canvas area and connecting the output from one component to the input of another. In this way a graph representing the flow of data within the application is produced. An example is shown in Fig. 1, which shows the convolution of two waveforms and displays the results. Each box in Fig. 1 represents a different component. In the lefthand side of the figure we start with two sine waves, each parameterized by the numbers shown in their upper left and right corners. Thus, one of the sine waves has amplitude 100 and frequency 5, and the other has amplitude 50 and frequency 15. The Fourier transform of each wave is found, the results are multiplied in a pointwise manner, and the inverse Fourier transform of the output is determined. These steps compute the convolution of the two sine waves.

[image: image1.jpg]VAVIE D

PROC

Sluing
NEVER AL elel]
“Active Server

DETEL
DEITEL, DEITEL,

NIETO, LIN &
SADHU

hapters Introduci
Per/CG, VBScrip
‘Sorver Pagos (ASF

Components can be hierarchical, that is, they may be built from other components. Thus, the four components in the dashed rectangle in Fig. 1 could be grouped together to form a new component labeled “CONVOLUTION.” The dataflow diagram would then be as shown on the righthand side of Fig. 1. The convolution component can be placed in the component repository for subsequent use.

At the user level, components are defined only by their input and output interfaces. If a user attempts to connect the output of one component to the input of another component and the two interfaces are incompatible, then an error message will appear and the visual programming tool will not permit the connection. Component interfaces and other attributes are described according to a well-defined component model. The component model states how all the component attributes are to be specified. It is common for the component model to be expressed in terms of XML
. The component model must describe the hierarchical structure of a component and its input and output interfaces. In addition, the component model may also include information about a component’s authorship and provenance, its performance characteristics, and a URL where further information about the component may be found.

A component in the repository does not necessarily correspond to an actual implementation or executable code. Instead a component should be regarded as a contract that says that given the appropriate inputs the corresponding output will be generated. Once an application has been composed and it ready to be run it is passed (in the form of its XML dataflow graph) to the resource discovery and scheduling services. The resource discovery service finds computer resources that can execute the components and passes this information on to the scheduler. The scheduler then decides where each component making up an application should be run. In general each component can be run on a different distributed resource.

The PSE architecture outlined above follows that developed at Cardiff University’s Department of Computer Science. In particular, the visual programming environment for composing applications corresponds to the Visual Component Composition Environment (VCCE) developed by the Cardiff University PSE group.

· For a detailed description of the PSE architecture described in this section read the paper “The Software Architecture of a Distributed Problem-Solving Environment,” D. W. Walker, M. Li, O. F. Rana, M. S. Shields, and Y. Huang, Concurrency: Practice and Experience, volume 12, number 15, pages 1455–1480, December 2000. This paper is available online at the following location: http://www.cs.cf.ac.uk/User/David.W.Walker/PSES/psearch01.html. For further information see: http://www.cs.cf.ac.uk/User/David.W.Walker/pses.html.

· Purdue University has been prominent in PSE-related research, particularly in the areas of recommender systems for applied mathematics computations and PSEs for the solution of partial differential equations. Their web site also has links to other PSE sites: http://www.cs.purdue.edu/research/cse/pses.
2. Examples of Computational and Information Grids and their Uses

Science, in common with many other areas of human endeavour, often involves the collaboration of multi-disciplinary teams accessing a range of heterogeneous resources. Until recently these types of large collaborative project have been limited to areas such as high energy physics experiments and satellite astronomical observatories where high data volumes and data management issues are the main challenges. However, as science tackles increasingly complex problems, the computing resources required often go beyond those available to a single person, group, or institution. In many cases the resources are intrinsically distributed – this is particularly true of large experimental apparatus and sensors. In general, the data sources and repositories, the computational resources for analyzing the data, and the people interested in the collaborative interpretation of the analysis are at different geographic locations. Similar challenges arise in industrial contexts were the resources of a national or international company are distributed across a country or round the globe. Grid infrastructure allows distributed computers, information repositories, sensors, instruments, and people to work effectively together to solve problems that are often large-scale and collaborative. In this section some examples of virtual organizations based on grid infrastructure will be examined, together with some innovative examples of their use.

2.1. NASA’s Information Power Grid

NASA’s Information Power Grid (IPG) has been under development for the past couple of years, and is intended to give NASA and related organizations access to large-scale computing resources, large databases, and high-end instruments. IPG will use the Grid model of service delivery to integrate widely distributed resources across NASA. The IPG approach underlines that, not only is support for virtual organizations an essential element in building persistent networked collections of resources owned by multiple stakeholders, but also organisational structures may need to change. For example, a traditional supercomputing center mainly operates in a batch processing mode and is controlled by a single management and access policy. In a Grid-based environment multiple resources may need to be dynamically co-allocated
. In addition end-users increasingly want to interact with simulations which is difficult or impossible when running in batch mode.

The IPG is designed to provide services to support the following key areas of functionality:

· On-demand assembling of application defined virtual systems such as large, multi-disciplinary simulations that have components running on several different computing systems.

· Managing the collection and processing of data from on-line scientific instruments in real time in order to provide human “steering” of the experiment or to make changes in the experiment strategy based on the experiment results of the immediate past.

· Building collaboration environments where distributed collaborators can interact with experiments and simulations that are in progress, or even couple different experiments for coordinated studies.

Common Grid services for IPG, such as for characterizing and locating resources, initiating and monitoring jobs, and providing secure authenication of users, are provided by the Globus software system. The integration of CORBA with Globus, and the Condor job management system also form part of the IPG infrastructure. Uniform access to archival and published data is provided by the San Diego Computing Centre’s Metadata Catalogue (MCAT) and the Storage Resource Broker (SRB)
. The IPG security model is based on Globus security services and an IPG X.509 certification authority integrated with the user account management system

Currently IPG integrates resources at three NASA sites – the Ames, Glenn, and Langley Research Centres – with plans to incorporate JPL and Goddard in the near future. These sites are connected by a high-speed wide-area network. The computing resources currently available through IPG include over 600 processors distributed among the participating sites on SGI Origin 2000 systems, and several workstation clusters. A condor pool of nearly 300 workstations is also available. Approximately 100TB of archival information/data storage is uniformly and securely accessible from all IPG systems.

IPG will be developed into a production Grid environment, however, several applications have demonstrated the use of the current IPG prototype.

· One application, aimed at improving aviation safety, analyses large volumes of flight data collected continuously by airport flight-tracking telemetry facilities. This data set consists of the radar tracks of all incoming and departing aircraft and is processed to evaluate and monitor the engine performance of the aircraft. The engine data are used to model engine performance using the Numerical Propulsion System Simulation (NPSS). The engine simulations are distributed over IPG compute servers using a Grid job dispatching service based on CORBA and Globus.

· IPG has been used to perform multiple unsteady flow simulations to study the behaviour of Harrier jets close to the ground. An important aspect of this work was the ability to interact with the results of the simulations through an advanced visualization interface.

· IPG has been used to perform parameter space studies for aerospace simulations. In this case each simulation corresponds to an independent task and IPG locates and manages a computing resource for it to run on.

This overview of IPG is mainly based on the IPG website at http://www.ipg.nasa.gov, and on the paper “Using Computing and Data Grids for Large-Scale Science and Engineering,” by William E. Johnston, International Journal of High Performance Computing Applications, Vol. 15, No. 3, Fall 2001. A slightly differently formatted version is at http://www-itg.lbl.gov/Grids/papers/Science_Grids+Scaling_issues.pdf.

2.2. AstroGrid

AstroGrid is one of several Grid projects that have been funded, but are currently at an early stage of implementation. One of the central concepts of the AstroGrid is the idea of a “virtual observatory” that allows astronomers to remotely access astronomical observatories and the enormous volumes of data that they generate. The European Astrophysical Virtual Observatory and the US National Virtual Observatory are related virtual observatory projects.

The AstroGrid project is mainly concerned with the management of and access to large volumes of astronomical data. Access to remote numerical computing power for large-scale simulation is not a focus of the project. Astronomical facilities that will come online in the next few years will lead to an explosion in data volume. Examples include the Wide Field Infrared Camera (WFCAM) that will be the most capable infrared imaging survey instrument in the world when it is commissioned in 2003, and the Visible and Infrared Telescope for Astronomy (VISTA) that will be in use by 2006. These types of instrument are capable of generating hundreds of gigabytes of data every night that will soon result in petabyte-scale databases
. AstroGrid is motivated by the need to develop tools, techniques, and infrastructure to address the data handling problems that arise in the use of these very large astronomical databases. To this end the AstroGrid project will develop a data grid linking key astronomical databases and end users, and a suite of data mining and analysis tools for accessing, exploring, and interpreting the data. An important goal of the project is to make the databases interoperable, in the sense that it will be possible to access them simultaneously and seamlessly, ideally through a single, easy-to-use interface.

The collaborative and communal aspects of the project are also important. Reduced data sets and discoveries made in the data could be made accessible to other astronomers through meta-data catalogues. In this scenario a meta-database is developed that contains information on what is known about the data is a particular database. This provides a mechanism for astronomers to benefit from each others work. Over time this approach helps a “knowledge grid” evolve from the original data grid. This transition from original data to derived knowledge applies to other large data repositories. In general, the term “knowledge” may refer to scientific knowledge, knowledge about the hardware, software, and data resources available in the environment, or other forms of information conveying high-level semantic content. In an abstract sense, knowledge is considered to be inferred (with or without human intervention) from pieces of information (or facts), which in turn are based on raw input data. Thus, there is an hierarchical relationship between data, information, and knowledge, in which a large volume of data is filtered to produce a smaller amount of information, from which are gleaned a few items of knowledge. This is a process of abstracting meaningful, high-level content from unstructured and partially structured data, and is a more general form of data mining. In some sense, abstracting knowledge is the fundamental objective of the process of scientific discovery. In the AstroGrid context the original data, for example, from an astronomical sky survey, forms the data layer and is stored in a large database. This might be processed to extract individual sources with specified characteristics – this represents the information layer and would be stored in another data repository. Finally, the information stored in a number of databases might be cross-correlated to extract pertinent new pieces of knowledge. The interoperability and interconnectedness of the repositories allows the construction of a semantically rich information environment that facilitates the transformation from data to knowledge.

Figure 1: Schematic representation of the transition from data to information to knowledge.

The AstroGrid web site at http://www.astrogrid.ac.uk/ forms the main basis of this overview. Further information on the Astrophysical Virtual Observatory and the US National Virtual Observatory can be found at http://www.eso.org/projects/avo and http://www.us-vo.org/, respectively.

2.3. NEESgrid

NEESgrid
 is a distributed virtual laboratory for advanced earthquake experimentation and simulation currently under development by a consortium of institutions led by the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign. The aim is to develop a national resource for research and education supporting simulation, collaborative experimentation, and modeling for the earthquake engineering community. NEESgrid will shift the emphasis of earthquake engineering research from reliance on physical testing to integrated experimentation, computation, theory, and databases.

The proposed architecture of NEESgrid consists of five main layers.

· The lowest layer consists of the geographically distributed hardware such as computers, storage systems, networks, and experimental facilities.

· Low-level access to this hardware is mediated by a set of core Grid services that provides security, information management, and resource management functions.

· Various service packages are layered on top of the core Grid services to provide more specialized collections of services, such as data management, teleobservation and teleoperation, computation, and collaboration services.

· The user services layer provides APIs
 and protocols for accessing the service packages.

· The top layer consists of (1) tools for visualization, data access, collaboration, teleobservation, and teleoperation; (2) end user applications; (3) simulation and experimental portals
.

The core Grid services will mostly be based on extensions of the Globus system. The teleobservation and teleoperation environment will provide web browser access to multiple video streams that supports the visualization of experimental sensor data, and integrates data capture to electronic notebooks with analysis tools in the collaboration and visualization environments.

This overview of NEESgrid is based on the web site at http://www.neesgrid.org/.

2.4. The European DataGrid

The DataGrid project involves researchers from several European countries. Its main aim is to design, implement, and exploit a large-scale data and computational Grid to allow distributed processing of the huge amounts of data arising in three scientific disciplines: high energy physics, biology, and Earth observation. These disciplines all have a common need for distributed, large-scale, data-intensive computing. The DataGrid project has an application bias focusing on the rapid development of testbeds, trans-national data distribution, and the demonstration of applications under production operation. The GriPhyN
 project in the United States tackles a similar problem area, but over a longer time and with more emphasis on computer science research.

The Large Hadron Collider (LHC) at CERN will become operational in 2005. The computational and data processing requirements of LHC experiments will be the main focus of the high energy physics component of the DataGrid project. The LHC will generate many petabytes of data that will require very large computational capacity to analyse. The LHC experiments will typically involve hundreds or thousands of individuals in Europe, North America, and Japan. The data volumes are so large that the data cannot be replicated at all the sites involved, nor can the data be distributed statically. Thus, collaborative access to dynamically distributed data is a key aspect of the DataGrid project. The long-term aim is to do the LHC data processing in a number of large regional centers and the DataGrid will serve as a prototype implementation of this distributed computing environment.

Bio-informatics constitutes the biology component of the DataGrid project. Automatic gene sequencing has led to a rapid increase in data volume in this area and a proliferation of databases of genomic and molecular data. Researchers need to be able to access these data in a transparent and uniform manner. Two important aims are the determination of three-dimensional macromolecular structure, and gene profiling through micro-array techniques.

The third main application component of the DataGrid project is Earth observation. Earth observation satellite missions managed by the European Space Agency download about 100GB of data every day, and this is expected to grow substantially with the launch of the ENVISAT satellite in March 2002. As in the other application areas of the DataGrid project, the challenge is to collaboratively explore, analyse, and interpret these very large distributed datasets.

The DataGrid project will develop Grid infrastructure in five main areas:

1. An architecture for distributed workload scheduling and resource management. This involves the ability to decompose and distribute jobs over distributed resources based on the availability and proximity of computational power and the required data.

2. Secure access to massive amounts of distributed data in a single global namespace. This involves data management issues such as caching, file replication, and file migration between heterogeneous storage systems.

3. Grid monitoring services. Tools and application program interfaces will be developed for monitoring the status and performance of computers, storage systems, and networks in a grid environment.

4. System management. The deployment of large distributed systems involving hundreds of computing systems constructed with commodity components and accessed by thousands of users presents significant system administration challenges. The aim is to reduce the cost of operating such a Grid fabric and to automate system administration tasks wherever possible.

5. Mass storage management. Standards for handling LHC data will be developed, including user APIs and data import/export interfaces to mass storage systems. In addition, the availability of mass storage systems will be advertised through Grid information services.

The DataGrid project will adopt a commodity-based approach to build a coherent data intensive Grid environment from clusters of inexpensive mass market components. This concept will be demonstrated using production quality testbeds.

This description of the DataGrid project is mainly based on information at the DataGrid web site http://www.eu-datagrid.org/ and the paper “Grid Computing: The European Data Grid Project,” Ben Segal, in proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, 15-20 October 2000. This paper and others can be found at http://web.datagrid.cnr.it/pls/portal30/GRID.RPT_DATAGRID_PAPERS.show.

There are a number of other projects that are linked to the DataGrid project or that have similar aims:

· GridPP will deliver software and hardware infrastructure to enable testing of a Grid prototype for LHC the project, and to develop Grid-aware particle physics applications for running experiments in the USA and at CERN. GridPP is part of the European DataGrid project. Further details are available at the project web site at http://www.gridpp.ac.uk.
· GriPhyN (Grid Physics Network) is a project funded by the US National Science Foundation to develop tools and software infrastructure for petabyte-scale data intensive science. The project is based around the data requirements of four key experiments: CMS and ATLAS experiments at the LHC that will search for the origins of mass and probe matter at the smallest length scales; LIGO (Laser Interferometer Gravitational-wave Observatory) that will detect the gravitational waves of pulsars, supernovae, and in-spiraling binary stars; and SDSS (Sloan Digital Sky Survey) that will carry out an automated sky survey enabling systematic studies of stars, galaxies, nebulae, and large-scale structure. Further information can be found at the GriPhyN web site at http://www.griphyn.org/.

· The China Clipper project is funded by the US Department of Energy and focuses on linking scientific instruments, such as electron microscopes and accelerators, to data storage caches and computers. An introduction to the project is available at http://www.lbl.gov/Science-Articles/Archive/china-clipper.html, and further useful information can be found at the project web site at http://www-itg.lbl.gov/Clipper/.

· Particle Physics Data Grid (PPDG), funded by the US Department of Energy, will develop, acquire, and deliver Grid-enabled tools for data-intensive particle and nuclear physics. Further details can be found at the web site at http://www.ppdg.net/.

2.5. TeraGrid

The TeraGrid project, funded by the US National Science Foundation, will create the world’s largest resource for scientific computing, with nearly half a petabyte of storage and over 13 Tflop/s
 of compute power, distributed over four initial participating sites
 and connected by a 40Gbps optical network. The compute power will come from clusters of Linux-based P Cs, such as the Titan cluster at NCSA. Titan consists of 160 dual-processor IBM IntelliStation machines based on the Itanium architecture, and has a peak performance of about 1Tflop/s.

The main purpose of the TeraGrid is to enable scientific discovery by allowing scientists to work collaboratively using distributed computers and resources through a seamless environment accessible from their own desktops. The TeraGrid will have the size and scope to address a broad range of compute intensive and data intensive problems. Examples include the MIMD Lattice Computation (MILC) collaboration that both tests QCD theory and helps interpret experiments in high energy-accelerators. Another compute-intensive application is NAMD, a parallel, object-oriented, molecular dynamics code designed for high-performance simulation of large biomolecular systems. Other areas that are expected to benefit from the TeraGrid infrastructure are the study of cosmological dark matter; real-time weather forecasting down to one kilometre length scales; studies of the assembly and function of microtubule and ribosomal complexes and other biomolecular electrostatics problems; and, studies of the electric and magnetic properties of molecules.

The TeraGrid will also be used for data intensive applications that help researchers synthesize knowledge from data through mining, inference, and other techniques. This approach couples data collection from scientific instruments with data analysis to create new knowledge and digital libraries. Targeted data intensive applications will be similar to those mentioned above in the AstroGrid and European DataGrid sections, for example the LIGO (Laser Interferometer Gravitational-wave Observatory) and NVO (National Virtual Observatory) projects.

This brief overview of the TeraGrid project is adapted from material at the project web site at http://www.teragrid.org/ and the paper “From TeraGrid to Knowledge Grid,” Fran Berman, Communications of the ACM, Vol. 44, No. 11, pages 27-28, November 2001.

2.6. U.S. Department of Energy Science Grid

The DOE Science Grid project is similar in its broad aims to the TeraGrid project in that it seeks to create a scalable, robust, distributed computing and data infrastructure for large-scale science. The project is a coordinated effort involving several US national laboratories. These laboratories operate a wide range of unique resources, such as, synchrotron light sources, high field NMR machines, and the spallation neutron source, as well as supercomputers, petabyte storage systems, and specialized visualisation hardware. All these resources are intended to be used collaboratively by a large distributed user community. The Science Grid will enable geographically separated scientists to work effectively together as a team and to facilitate remote access to both facilities and data.

The DOE Science Grid is a persistent Grid infrastructure that will:

· Provide advanced services such as authentication, resource discovery, resource scheduling, and data staging, based on Globus.

· Provide secure, uniform access to advanced resources at multiple resource sites.

· Provide management infrastructure that allows monitoring of various aspects of DOE Science Grid operation.

A global directory service and certificate authority will be used to enable resource discovery and authentication services across all Science Grid applications, users, and resources. Users will be able to gain access to any Science Grid resource that they are authorized to use through an “authenticate once” login process based on public key technology, and then access any other Science Grid resource without further authentication. Mechanisms for secure verification of user and resource identity will also be provided. The directory service will address naming and indexing issues that arise when multiple virtual organizations must be supported concurrently, performance and reliability scaling issues, support for general cataloging services such as data replica catalogues, and maintenance of the directory service.

The Science Grid project will create a Grid prototype to support DOE’s near-term goals for collaborative science. This will be done by Grid-enabling key computational and storage facilities at DOE national laboratories mainly using Globus software, thereby providing uniform remote access to mass storage devices, uniform mechanisms for reservation, allocation, and submission to compute resources, and job monitoring and auditing services.

Further information on the DOE Science Grid project can be found at the web site at http://www.doesciencegrid.org/.

2.7. EuroGrid

The EuroGrid project is funded by the European Commission to establish a Grid linking high performance computing centers in a variety of countries across Europe, and will demonstrate the use of Grids in selected scientific and industrial communities.

Unlike most other Grid projects, that are heavily reliant on the Globus software, the EuroGrid software infrastructure will be based on Unicore
. Unicore hides the differences between platforms from the user thus creating a seamless high performance computing portal for accessing supercomputers, compiling and running applications,
and transferring input/output data. In addition, strong authentication is performed in a consistent and transparent manner making Grid infrastructure built using Unicore secure.

Software technologies in five main will be developed in the EuroGrid project:

1. The fast and secure transfer of data over the Internet for both bursty and bulk transfers. The trade-off between factors such as bandwidth, latency, and cost will be investigated. Fail-safe techniques and encryption will be used to transfer data reliably and securely. If a network link goes down the data transfer should be re-routed to avoid corrupting the data at the destination. Techniques for overlapping data transfers with processing in an application will also be investigated. The idea here is to avoid having processors idle while waiting for remote data.

2. Resource brokering. In a distributed environment decisions must be made on how to utilize resources efficiently. These decisions are based on static information, such as the computer architecture and software environment of a machine, and dynamic information, such as a machine’s current work load and memory usage. A resource broker must balance a user’s desire for a fast turnaround at low cost with the aim of using the Grid as a whole efficiently and fairly. The concept of a resource economy will be used to achieve this.

3. Application Service Provider (ASP) infrastructure. In the ASP model software at a remote site is made accessible on a pay-per-use basis, usually through a browser interface.

4. Application coupling. Large multi-disciplinary applications are often composed of software components that can, or must, be run on different machines. This type of application coupling requires the co-allocation of resources and the transfer of data between components.

5. Interactive access. Many high performance computing resources are currently operated in batch mode. However, there are many instances in which interactive access is required. For example, when the results of a simulation need to be visualized as it is running. The UNICORE model will be extended to permit the interactive use of computational and visualization facilities.

In addition to the development of Grid software infrastructure, the EuroGrid project will also focus on three application areas: bio-molecular modeling, weather forecasting, and industrial computer-aided engineering. In these areas portals will be developed that allow scientists and engineers to make use of the Grid infrastructure in a uniform and user-friendly way to solve problems, and at the same time will test the software infrastructure.

Further information on the EuroGrid project is available at http://www.eurogrid.org/. The paper “From UNICORE to EuroGrid: A Software Infrastructure for Grid Computing,” by Dietmar Erwin is also of interest and is available at the following web page http://2000.istevent.cec.eu.int/sessiondata/Summary_163_sumeng_pdf.PDF.

2.8. Further Examples of the Use of the Grid and Related Publications

There are a number of other projects that make use of or support Grid computing and that have not been mentioned in the preceding sections. These include:

· MyGrid, http://www.mygrid.org.uk/.

· RealityGrid, http://www.realitygrid.org/.

· Geodise, http://www.geodise.org/.

· GridOneD, http://www.gridoned.org/.

· GridLab, http://www.gridlab.org/.

· The International Virtual Data Grid Laboratory (IVDGL), http://www.ivdgl.org/.

The web page at http://www.aei-potsdam.mpg.de/~manuela/GridWeb/info/examples.html gives links to several interesting uses of the Grid. The following papers are also relevant:

· “Computational Grids,” Geoffrey Fox and Dennis Gannon, IEEE Computing in Science and Engineering, Vol. 3, No, 4, pages 74-77, July/August 2001.

· “The Grid: A New Infrastructure for 21st Century Science,” Ian Foster, Physics Today, Vol. 55, No. 2, February 2002. This paper is also available online at the following URL: http://www.aip.org/pt/vol-55/iss-2/p42.html.

· “Internet Computing and the Emerging Grid,” Ian Foster, Nature, December 7, 2000. This is also available at http://www.nature.com/nature/webmatters/grid/grid.html.

· “Web Access to Supercomputing,” Giovanni Aloisio, Massimo Cafaro, Carl Kesselman, and Roy Williams, IEEE Computing in Science and Engineering, Vol. 3, No. 6, pages 66-72, November/December 2001.

· “Collaborative Surgical Simulation over the Internet,” Y. Kim, J-H Choi, J Lee, MK Kim, NK Kim, JS Yeom, and YO Kim, IEEE Internet Computing, Vol. 5, No. 3, pages 65-73, May/June 2001.

· “Data Mining on NASA’s Information Power Grid,” Thomas H. Hinke and Jason Novotny, Proceedings Ninth IEEE International Symposium on High Performance Distributed Computing, Pittsburgh, PA, Aug. 2000. This paper is also available at http://www.ipg.nasa.gov/research/papers/21-Hinke.pdf.

The Global Grid Forum (GGF) is a community-initiated forum of individual researchers and practitioners working on distributed computing, or Grid technologies. It serves as a focus in the Grid community for coordinating research, developing standards, and fosters interaction between researchers. Its web site is at http://www.gridforum.org/.

3. Software Technologies for the Grid

This section of the module will examine key software technologies that are being used to construct Grid environments. There are many such technologies, as well as both academic and commercial research projects, so only the most important will be considered in detail. These are:

1. Globus. The Globus software environment has grown out of a research project headed by Ian Foster (Argonne National Laboratory and University of Chicago) and Carl Kesselman (USC/Information Sciences Institute). Globus is open-source, and widely used in a number of Grid projects. You will be asked to write a report on aspects of Globus for the Investigative Study portion of the module, as discussed in Section 3.1 below.

2. The Common Object Request Broker Architecture (CORBA). CORBA was developed by a consortium of computer industry companies known as the Object Management Group (OMG). CORBA is an open, vendor-independent architecture and infrastructure that computer applications use to work together over networks, and is based on the standard Internet Inter-ORB
 Protocol (IIOP).

3. The XML
 family of software technologies, including XML Schema and XPath. XML can be used to create markup languages to describe data in a structured way, and is a widely-used platform-neutral data representation standard.

4. The Java family of software technologies, including the Java programming language, Jini, and JXTA. These technologies support platform-neutral distributed computing.

Other relevant types of software infrastructure will also be examined in less detail, including Condor, Legion, DCOM
, DOM
, JAXP
, RDF
, and the Semantic Web.

Many excellent books and online tutorials are available that cover these topics, and these will be used extensively in this section of the module.

3.1. Globus

As the Investigative Study portion of the module you are asked to examine and critique the Globus software system, and to write a report on it of approximately 4,000 to 7,000 words. You should include in your study the Globus Toolkit and the Open Grid Services Architecture. In addition to analysing Globus, you might also like to compare and contrast it with other approaches to computing in heterogeneous distributed environments such as Legion, Unicore, Sun Grid Engine, DCE
, and CORBA (you don’t have to consider all of these – just choose a couple). You might also like to comment on the prospects for commercial support of the Globus system. You will gain more marks for critical analysis rather than just giving a description of what Globus can do.

There are a number of resources available to help you in your study:

· The Globus project web page at http://www.globus.org/.

· “The Anatomy of the Grid: Enabling Scalable Virtual Organizations,” Ian Foster, Carl Kesselman, and Steven Tuecke, The International Journal of High Performance Computing Applications, volume 15, number 3, pages 200–222, Fall 2001. It is also available online from http://www.globus.org/research/papers/anatomy.pdf.

· “The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration,” I. Foster, C. Kesselman, J. Nick, S. Tuecke, January, 2002. This is available online at http://www.globus.org/research/papers/ogsa.pdf.

· IBM’s involvement with Globus is introduced at the following location: http://www.globus.org/about/news/IBM-index.html.

· The Legion web site at http://legion.virginia.edu/.

· The Unicore web site at http://www.unicore.de/.

· The Sun Grid Engine web site at http://www.sun.com/software/gridware/.

· The DCE portal at http://www.opengroup.org/dce/ and the overview of DCE at http://www.transarc.ibm.com/Product/DCE/DCEOverview/dceoverview.html.

· CORBA resources available at http://www.omg.org/gettingstarted/corbafaq.htm.

3.2. CORBA

CORBA is a standard infrastructure for distributed computing, and is widely-used in industrial and commercial applications. It is also used in a few academic research projects such as PARDIS
 and the TAO ORB
 project. The OMG web site is a good place to find introductory information about CORBA – especially useful is the CORBA FAQ at http://www.omg.org/gettingstarted/corbafaq.htm. Other introductory material can be found at:

· http://www.cs.indiana.edu/hyplan/kksiazek/tuto.html ,“A Brief CORBA Tutorial” by Kate Keahey.

· http://www.cs.wustl.edu/~schmidt/corba-overview.html, “Overview of CORBA” by Douglas C. Schmidt.

More detailed CORBA tutorials can also be found from Professor Schmidt’s CORBA page at http://www.cs.wustl.edu/~schmidt/corba.html.

There are also a number of useful papers about CORBA:

· “CORBA: Integrating Diverse Applications within Distributed Heterogeneous Environments,” S. Vinoski, IEEE Communications, Vol. 35, No. 2, pages 46-55, February 1997. This paper is also available online at the following URL: http://www.cs.wustl.edu/~schmidt/PDF/vinoski.pdf. Several other papers in the same issue are also about CORBA.

· “Distributed Object Computing With CORBA,” S. Vinoski, This is an early paper but it is still useful. It is available at http://www.cs.wustl.edu/~schmidt/PDF/docwc.pdf.

· “New Features for CORBA 3.0,” S. Vinoski, Communications of the ACM, Vol. 41, No. 10, pages 44-52, October 1998. This paper is also available at the following location: http://www.iona.com/hyplan/vinoski/cacm.pdf. Several other papers in the same issue are also about CORBA.

3.3. The XML Family

XML and related topics such as XPath and XSLT are rapidly becoming key software technologies in Grid computing. XML provides a standard platform-neutral way of presenting structured data, and hence is an ideal way to manage information and to share data between different software systems. The textbook for this part of the course is “XML How To Program” by HM Dietel, PJ Dietel, TR Nieto, TM Lin, and P Sadhu, published by Prentice-Hall, 2001, ISBN 0-13-028417-3. Chapters 5, 6, and 7 of this book are of particular importance as these cover the motivation for XML, XML syntax, Document Type Definitions (DTDs), and XML Schemas. DTDs and schema are two ways of specifying the structure of an XML document.

Chapters 11 and 12 covering XPath and XSLT are also worth studying. XPath provides a syntax for locating specific parts of a document, for example, all the elements with a particular attribute value. XSLT
 is used to transform one XML document into a different document and is makes extensive use of XPath. Also of interest are chapters 14 and 22. Chapter 14 introduces the XML Linking Language (XLink) for linking to resources external to an XML document, as well as the XPointer, XInclude, and XBase facilities. Chapter 22 discusses the Resource Description Framework (RDF) for describing information contained in a resource. RDF and the related topic of ontologies form the basis of the semantic web, which is a web environment in which computers are able to find the meaning of semantic data and to make decisions based on this meaning. RDF, ontologies, and the semantic web are not discussed in detail in this module, but some references are given below.

Internet Explorer 5 and higher can apply the transformations in an XSLT stylesheet to a given XML document and display the resulting document. This requires the MSXML 3.0 (or higher) parser. MSXML 3.0 is the standard parser for IE6, but not for IE5. Alternatively you can also install the newer MSXML 4.0 parser. For details of how to do this you should visit the Microsoft XML web page. Once you have done this you can test that everything works by clicking on this address book demo. You should see the nicely formatted contact details of three individuals, resulting from applying the XSLT stylesheet http://www.cs.cf.ac.uk/User/David.W.Walker/XSLT/addresses.xsl to the XML file http://www.cs.cf.ac.uk/User/David.W.Walker/XSLT/addresses_demo.xml.

In addition to the textbook there are plenty of other XML resources available.

· XML Journal is journal devoted to XML, http://www.sys-con.com/xml/.

· http://www.xml.org has information related to the use of XML in industry.

· http://www.xml.com/ is useful for topical information and much more.

· The World-Wide Web Consortium (W3C), who developed the XML specification, has an XML web site at http://www.w3.org/XML/ that is full of useful links.

· The XML Frequently Asked Questions (FAQ) at http://www.ucc.ie/xml/.

There are also a large number of journal articles about XML and its uses. Here are some of them:

· XML special issue of the World Wide Web Journal, Volume 2, Number 4, Autumn 1997. The table of contents is available at http://www.w3journal.com/xml/.

· “The Challenges That XML Faces,” M-A Grado-Caffaro and M Grado-Caffaro, IEEE Computer, Vol. 34, No. 10, pages 15-18, October 2001.

· “Managing Scientific Metadata, MB Jones, C Berkley, J Bojilova, and M Schildhauer, IEEE Internet Computing, Vol. 5, No. 5, pages 59-68, September/October 2001.

· “XML’s Impact on Databases and Data Sharing,” L Seligman and A Rosenthal, IEEE Computer, Vol. 34, No. 6, pages 59-67, June 2001.

· “Integrating XML and Databases,” E Bertino and B Catania, IEEE Internet Computing, Vol. 5, No. 4, pages 84-88, July/August 2001.

The following references give more information on RDF, ontologies, and the semantic web:

· RDF tutorial: http://www.zvon.org/xxl/RDFTutorial/General/book.html.

· “Ontological Computing,” Felipe Castel, Communications of the ACM, Vol. 45, No. 2, pages 29-30, February 2002.

· “Framework for the Semantic Web: An RDF Tutorial,” S Decker, P Mitra, and S Melnik, IEEE Internet Computing, Vol. 4, No. 6, pages 68-73, November/December 2000.

· “The Semantic Web: The Roles of XML and RDF,” S Decker, S Melnik, F van Harmelen, D Fensel, M Klein, J Broekstra, M Erdmann, and I Horrocks, IEEE Internet Computing, Vol. 4, No. 5, pages 63-73, September/October 2000.

· “Predicting How Ontologies for the Semantic Web Will Evolve,” H Kim, Communications of the ACM, Vol. 45, No. 2, pages 48-54, February 2002.

· “The Semantic Web,” T Berners-Lee, J Hendler, and O Lassila, Scientific American, May 2001. Also at http://www.sciam.com/2001/0501issue/0501berners-lee.html.

· The web site http://www.semanticweb.org/.

3.4. Java, Jini, and JXTA

Since its inception a few years ago, the Java programming language has become increasingly popular. Foremost among its attractive features is the promise of platform independent programming – a Java code should run on any machine with a Java Virtual Machine (JVM) resident. Other attractive features stem from Java's object oriented programming model, such as modularity, maintainability, and the ability to reuse software components. Furthermore Java's automatic memory management, operating system abstractions, and C-like syntax make it easy to learn and use. Java's “write-once, run anywhere” paradigm, and Java's RMI
 and Jini support for network computing, potentially make Java a powerful language for developing a network-based distributed system.

It is not essential that you are a Java programmer for you to tackle this section of the module, however, some knowledge of Java would be an advantage. An introduction to Java 2 programming is given in chapter 27 of the textbook “XML How To Program” referred to in section 3.3.

The Sun Microsystems web site
 defines Jini as a “…network technology [that] provides a simple infrastructure for delivering services in a network and for creating spontaneous interaction between programs that use these services regardless of their hardware/software implementation.” Within the Jini framework a service provider registers its service with a lookup service. When a client requires a service one or more lookup services are searched to find a service provider for the service requested.

Jan Newmarch’s “Guide to Jini Technologies” gives a good introduction to Jini and may be found at http://jan.netcomp.monash.edu.au/java/jini/tutorial/Jini.xml. For the purposes of the this module you should be aware of the different discovery processes used by Jini, how services are registered, the leasing concept, and how a client obtains a reference to a service. These are covered in the first 8 sections of the Guide.

The Jini community web site at http://www.jini.org/ is an excellent place to look for further information about Jini. The Jini FAQ at http://www.artima.com/jini/faq.html is a good way of finding out the essentials of Jini quickly. Useful articles about Jini include the following:

· “The Jini Architecture for Network-Centric Computing,” Jim Waldo, Communications of the ACM, Vol. 42, No. 7, pages 76-82, July 1999.

· “When the Network is Everything,” Jim Waldo, Communications of the ACM, Vol. 44, No, 3, pages 68-69, March 2001. This article is not specifically about Jini, but discusses the coming revolution in network services in general.

· “Jini Technology Architectural Overview.” This is a Sun Microsystems white paper and is available online at http://www.sun.com/jini/whitepapers/architecture.pdf.

· “Service Advertisement and Discovery: Enabling Universal Device Cooperation” GG Richard, IEEE Internet Computing, Vol. 4. No. 5, pages 18-26, September/October 2000. This article discusses a number of network service technologies including Bluetooth and Jini.

· “One Huge Computer,” K Kelly and S Reiss, Wired magazine, August 1998. This article, available online at http://www.wired.com/wired/archive/6.08/jini.html, gives an early perspective on the vision behind Jini.

· “Jini: The Universal Network?” A Williams, Web Techniques magazine, March 1999. This article is available at http://www.webtechniques.com/archives/1999/03/williams/
· “Three Years On, Can Sun's Jini Mesh with Web Services?” J Niccolai, InfoWorld, February 2002. This article looks at Sun’s attempt to re-focus Jini from a technology for network devices to a technology for network services. It is available online at http://www.infoworld.com/articles/hn/xml/02/02/04/020204hnsunjini.xml.

JXTA is a technology developed by Sun Microsystems for peer-to-peer (P2P) network computing. The JXTA community web site at http://www.jxta.org is the best place to start to find introductory information. The Sun web site at http://www.sun.com/jxta is also worth looking at. Useful articles about Jini and P2P computing include:

· “Joy Poses JXTA Initiative,” K Kayl. This article is available online at http://java.sun.com/features/2001/02/peer.html.

· “Project JXTA: An Open, Innovative Collaboration,” this white paper is available at http://gecko.cs.purdue.edu/gnet/papers/jxta_whitepaper.pdf.

· “Project JXTA,” RV Dragan, PC Magazine, January 2002. This is available online at http://www.pcmag.com/print_article/0,3048,a=20102,00.asp.

· The IEEE Internet Computing special issue on P2P computing, Vol. 6, No. 1, January/February 2002.

· “Programming the Grid: Distributed Software Components, P2P and Grid Web Services for Scientific Applications,” D Gannon et al. This article describes work by Gannon’s group at Indiana University into Grid programming and its relation to web services and P2P computing. It is available online from the following location: http://www.extreme.indiana.edu/~gannon/ProgGrid/ProgGridsword.PDF.

Data

Information

Knowledge

X-Y PLOT

CONVOLUTION

SINE WAVE

15

50

SINE WAVE

5

100

POINTWISE MULTIPLY

X-Y PLOT

INVERSE FFT

FFT

SINE WAVE

15

50

SINE WAVE

5

100

FFT

Figure 1: An example of a dataflow representation of an application.

� ASP is also used as the abbreviation for Active Server Pages which is an unrelated concept.

� XML and XSLT will be discussed in more detail later in the course.

� This requires MS Internet Explorer 5.5 or later, and the MSXML3 parser or later.

� XML and its use in defining the component model will be discussed later in the course.

� Co-allocation refers to the coordinating scheduling of related tasks on multiple computing resources.

� These software systems will be discussed in section 3.

� A gigabyte is 109 bytes; a terabyte is 1012 bytes; and, a petabyte is 1015 bytes.

� NEES = Network for Earthquake Engineering Simulation

� API means Application Program Interface.

� In this context a portal usually means a web-based interface.

� GriPhyN = Grid Physics Network

� Tflop stands for “teraflop.” 1Tflop/s is 1012 floating point operations per second.

� These are the National Center for Supercomputer Applications (NCSA), San Diego Supercomputer Center (SDSC), Argonne National Laboratory, and the California Institute of Technology.

� UNICORE = UNiform Interface to COmputing REsources

� ORB = Object Request Broker.

� XML = eXtensible Markup Language.

� DCOM = Distributed Computing Object Model.

� DOM = Document Object Model.

� JAXP = Java API for XML Processing.

� RDF = Resource Description Framework.

� DCE = Distributed Computing Environment.

� � HYPERLINK "http://www.cs.indiana.edu/hyplan/kksiazek/pardis.html" ��http://www.cs.indiana.edu/hyplan/kksiazek/pardis.html�

� � HYPERLINK "http://www.cs.wustl.edu/~schmidt/corba.html" ��http://www.cs.wustl.edu/~schmidt/corba.html�

� XSL = extensible Stylesheet Language, and XSLT = XSL Transformation language.

� RMI = Remote Method Invocation.

� � HYPERLINK "http://www.sun.com/jini/" ��http://www.sun.com/jini/�.

PAGE
1

