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Abstract

This paper describes an indexing system for use in Content Based

Image Retrieval. The standard colour histogram approach is simple,

eÆcient, and robust. However, it does not include shape information,

which leads to problems (e.g. many-to-many mappings). To remedy

this we use additional features in an attempt to incorporate shape and

textual information to the index key. Our experiments showed that

the combination of colour, texture, distance and orientation histograms

gave approximately 10% improvement of recall over the standard colour

histogram.

1 Introduction

Computer technology faced a tremendous growth during the last decade, both

in terms of computing speed and storage capabilities. Nowadays many people

have access to large amounts of electronic data, much of which consists of images.

Their storage has led to enormous image databases that are intrinsically harder

to access and search than their textual counterparts. Explicitly identifying and

entering descriptive keywords for each image by hand is impractical due to the

overhead involved. Moreover, given the varied types of queries possible it is not

usually possible to generate a complete set of keywords for each image. This

implies that automated Content-Based Image Retrieval (CBIR) systems need to

be developed.

Since Swain and Ballard's seminal paper [20] there has been considerable re-

search carried out in the area of CBIR [3, 8]. Given the enormous diÆculties in

reliably identifying objects in images the majority of work has been constrained to

perform retrieval at a fairly primitive level. Rather than search for images based

on their semantic content (e.g. \�nd all pictures of young, smiling, faces") au-

tomated indexing of the database images is usually based on colour or geometric

features extracted from the image. The indexing process takes place in both the

phases of creating/updating and searching the database, as shown in �gure 1.
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Figure 1: Overall view of a CBIR system

Swain & Ballard matched images based solely on their colour. The distri-

bution of colour was represented by colour histograms, and formed the images'

feature vectors. The similarity betw een a pair of images was then calculated using

a similarity measure betw eentheir histograms called the \normalised histogram

intersection". This approach became very popular due to its advantages:

� R obustness. The colour histogram is invariant to rotation of the image on the

view axis, and changes in small steps when rotated otherwise or scaled [20]. It is

also insensitive to changes in image and histogram resolution and occlusion.

� E�ectiveness. There is high percentage of relev ance between the query image

and the extracted matching images.

� Implementation simplicity. The construction of the colour histogram is a simple

scanning of the image, to get the colour values, discretisation of the colour values

to the resolution of the histogram, and building the histogram using colour com-

ponents as indices.

� Computational simplicity. The histogram computation has O(M2) complexity

for images of sizeM�M . The complexity for a single image match is linear, O(n),

where n represents the n umber of di�erent colours, or resolution of the histogram.

� L ow storage r equirements. The colour histogram size is signi�cantly smaller than

the image itself, assuming colour quantisation.

There do remain some problems with the colour histogram though, namely:

� Di�erent images may have similar or identical colour histograms. F or instance,

as an extreme case, randomly scrambling the positions of pixels in an image leaves

its histogram una�ected despite massive changes in the image content.

� Images taken under di�erent ambient lighting may produce di�erent histograms.

This has been partly addressed by applying colour constancy normalisation [4].

In the interv ening years many more sophisticated methods ha vebeen devel-

oped. A ttempts have been made to identify objects (e.g. people, horses, trees) to

driv e the matching process [5]. How ev er, this is extremely diÆcult, requiring large

systems that have specialized algorithms for identifying each type of object (e.g.

tree iden ti�erswith sub-algorithms necessary for di�erent types of trees). Thus

with the current state of the art such an approach is not general purpose or easily

extensible without signi�cant scaling problems.

More practical approaches are stillrooted in lo w level feature extraction and

description. Shape is potentially an extremely useful and pow erfulfeature, but

shape-based image systems generally run into tw o problems. First, they mostly

require the image to be partitioned into regions from which shape descriptors can
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then be extracted. Unless the segmentation is directed by the user (e.g. [14])

segmentation algorithms are prone to fail, especially when new situations due to

di�erent imaging modality or object type are present [6]. Second, determining

e�ective shape descriptors for complex natural objects is still an activ earea of

research [12].

Given the inherent diÆculties of methods requiring segmentation some authors

ha ve built in a spatial component into CBIR by splitting the image up based on a

�xed grid or non-regular cells (e.g. Stric ker and Dimai's fuzzy oval [19]). Standard

analysis techniques (e.g. colour histograms) can then be performed in each cells.

How ev er, this approach is still static and does not adapt to the image content. T o

this e�ect our paper revisits and extends the traditional colour histogram based

approach in a more dynamic manner. Our approach is to capitalise on the bene-

�ts of histogram matching and to overcome its limitations by incorporating some

aspects of shape into the matching process.

2 Techniques for Incorporating Shape

Since both extracting shapes and describing them is problematic several methods

for indirectly incorporating shape will be considered. Whereas it is considered

extremely diÆcult to perform semantically meaningful segmentation many rea-

sonably reliable algorithms for low-level feature extraction have been dev eloped.

These will be used to provide the spatial information that is lacking in colour his-

tograms. Rather than attempt to directly measure shape we will calculate some

simpler properties that are indirectly related to shape and avoid the requirement

for good segmentation, providing a more practical solution.

Previous work in this vein is given b y Jain and Vailaya [9] who in combination

with colour histograms they use edge orientation histograms, which encode some

aspects of shape information, enabling querying to be more responsive to the

shape con ten tof the images. Moreover to extract the shape information only

standard edge detection is required (e.g. Canny's algorithm [2]), and minor errors

in the edge map ha velittle e�ect on the edge orientation histograms. Unlike

colour histograms the orien tationhistograms are not rotationally invariant, and

so the histogram matching process has to iteratively shift the histogram to �nd the

best correspondence. A more important consideration is that the edge maps were

thresholded by some unspeci�ed means. F or robustness an adaptive thresholding

scheme should be used [16]. How ev er, an alternative is to entirely dispense with

thresholding and include all edges, weighting their contribution to the histogram

by their magnitudes so as to reduce the contribution from spurious edges. This is

the approach we take in the reported experiments.

2.1 Multi-resolution Salience Distance Transform

Another approach to including shape information is based on the distance trans-

form (DT). The DT is a method for taking a binary image of feature and non-

feature pixels and calculating at every pixel in the image the distance to the clos-

est feature. Although this is a potentially expensive operation eÆcient algorithms

ha ve been developed that only require tw o passes through the image [1]. Just as
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a limitation of Jain and Vailaya's approach was its application of thresholding,

this also causes problems for distance transforms. To improve the stability of the

distance transform Rosin and West [17] developed a weigh tedversion calledthe

salience distance transform (SDT). Rather than propagating out Euclidean (or

quasi- Euclidean) distances from edges the distances are weighted by the salience

of the edge. V arious forms of salience were demonstrated, incorporating features

such as edge magnitude, curve length, and local curvature. The e�ect of including

salience w asto do wnplay the e�ect of spurious edges by soft assignment while

avoiding the sensitivity problems of thresholding.

T o furtherimprove performance the edge detection w as applied over a range

of scales. Rosin and West performed the SDT on the edges at each scale and

then combined them. Instead we �rst combine the gradient maps over the scales

(eigh t scales are used in the experiments), apply maximal suppression produce a

single edge map which is then used to generate the distance map. The advantage

of this modi�cation is that similar results are obtained with considerably less

computation.

Once the SDT has been performed the distance values are histogrammed. It

can be seen that the histograms will respond di�erently to di�erent types of shapes.

First there is the crude distinction betw een cluttered, complex scenes and simple

sparse scenes, which will result in di�erent ends of the histogram being heavily

populated. In that respect the distance histograms area provide an indication of

image complexity, along the lines of Kawaguchi and T aniguchi's [11]. How ever,

rather than return a single complexity measurement the shape of the histogram

will indicate more subtle distinctions betw een shapes.
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Figure 2: Distance histograms for simple geometric shapes

As a simple example �gure 2 shows distance histograms calculated for 128�128

images eac h containing one geometric shape: a square, its inscribed circle, its

circumscribed circle, and a noisy version of the circumscribed circle. The jaggy

nature of the graphs is due to the e�ects of spatial discretisation of the image. It

can be seen that the square and regular circle histograms are somewhat di�erent

in appearance. Also, the addition of noise is reected by increased bin counts at

the low er end of the noisy circle histogram.

2.2 Segmentation b yThesholding

The next approach to incorporating shape information is based on a form of seg-

mentation. We previously stated that reliable segmentation is currently not pos-

sible. Therefore we do not attempt to perform true segmentation into meaningful

regions. Instead the simplest possible sort of segmentation is carried out, namely
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binary thresholding. While binarisation can produce meaningful regions for well-

de�ned bimodal images it is unlikely to do so for less constrained, more naturalistic

images. How ever, this is not our goal. All that is required is that a reliable spatial

partitioning of the image is provided; the regions formed may be purely arbitrary

in terms of their correspondence with objects in the scene.

The segmentation performs the same function as the partitioning based ap-

proaches b y Dimaiand Stric ker and others. The partitioning injects the spatial

information in to the analysis so that standard feature based (e.g. non-spatial)

methods can then be applied within each region. In fact we only consider the tw o

classes blac kand white eac h as single composite regions rather than treat each

individual region separately. Not only does this avoid the need for component

labelling but it also reduces sensitivity to variations in the thresholding process.

The advan tage of using of thresholding to provide the image partitioning is that

it is adaptive to the image content unlike the rigid grid methods used by others.

There has been considerable w orkcarried out on thresholding methods [18]

to ensure that the method used w as reliable. Tests were carried out to compare

several thresholding algorithms. Three representativ e types of algorithm were

used, based on entropy [10], statistics [15] and moments [21]. Sev eralimages

w ere used, and from each one several random windows were extracted. The whole

images and the selected windows were thresholded, and the results di�erenced

to determine errors, i.e. the percentage of thresholded pixels that di�ered. We

found that the average errors were not of signi�cant di�erence to classify a \best"

method; we used Kapur's method for all the future experiments.

2.3 Texture

A common extension to colour CBIR systems is to add textural information. There

are many texture analysis methods available, and thesecan be applied eitherto

perform segmentation of the image, or to extract texture properties from seg-

mented regions or the whole image. In k eeping with the histogram approach, we

used He and Wang's approach [7], which generates a histogram, called the texture

spectrum.

The �rst step is to analyse each pixel within its 3�3 neighbourhood. A vector

V = fV1; : : : ; V8g is constructed where Vc represents the intensit y of the central

pixel and Vi are the in tensities of its neighbours. V is then transformed to a

textur eunit TU = fE1; : : : ; E8g. Each texture is then mapped onto a unique

integer forming the textur e unit number NTU .

Ei =

8<
:

0 if Vi < Vc
1 if Vi = Vc
2 if Vi > Vc

:; NTU =

8X
i=1

3i�1Ei:

The frequencies of texture unit numbers are accumulated to form the texture

spectrum, which we then treat as a texture histogram. To improve eÆciency and

memory requirements we have modi�ed the texture unit and number to be

Ei =

�
0 if Vi < Vc
1 if Vi � Vc

; NTU =

8X
i=1

2i�1Ei:
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This reduces the number of unique texture unitn umbers from 6561 to 256 with

little loss in useful discriminative pow er.

T osummarise this section, w e areattempting to incorporateshape, in addi-

tion to the colour histogram, by means of, edge orientation and edge distances.

Additionally texture will add more spatial information.

2.4 Combining Similarity Measures

Having generated histograms based on the di�erent properties (colour, texture, and

shape) the histograms of the query images are compared against the corresponding

histograms of the database images using normalised histogram intersection. There

remains the issue of how the similarity measures from each property are combined

to achiev ea single similarity rating so that the database images can be easily

rank ed according to their closeness with the query image.

One approach is to use a weighted sum, as in [9]

St =
w1S1 + w2S2 + : : :+ wnSn+

w1 + w2 + : : :+ wn

where, St is the similarity of tw o images combined over the similarity indices, Si
is the ith type of similarity index betw een the tw o images andwi is the weighting

factor for each index. Its drawback is that it requires careful selection of the

w eigh tvalues to obtain good results. In general, colour-based queries are more

accurate than shape based ones, so one would use higher weight value for the

colour similarity [9]. How ev er, choosing appropriate weights will be dependent on

the conten ts of the database, and generally requires extensive experimentation.

The above diÆculties arise because the di�erent similarity measures are incom-

mensurate. We believe a better approach is to use the geometric mean rather than

the weigh ted sum

St =
n

p
S1S2 : : : Sn

which does not require any weighting factors.

3 Experimental Results

Our objective is to improve the e�ectiveness of the simple colour histogram by

incorporating shape, using simple methods, as an alternative to precise segmen-

tation. A tthis point w eexamine the performance of these potential methods.

There are tw o main aspects of interest in this context, namely, e�ectiveness and

eÆciency.

EÆciency is a measure closely related with the storage requirements and re-

sponsiveness of a CBIR system. At this point of our research we are not concerned

with all the aspects of eÆciency, such as the histogram size, apart from retaining

to some degree the simplicity of the simple colour histogram. Modi�cations of

histogram sizes are possible and able to increase eÆciency at certain trade-o�s,

depending on the case.

E�ectiveness is a measure of the relevance of retrieved images to a query , as

perceived b ythe user. T rying toaddress this, w e employed t wo values, namely,
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recall and precision. Recall represents the proportion of `correct' matches in the

top-ten list of the retrieved images. Precision represents the number of `correct'

images that are retriev ed among the top-ten hits. Alternatively w e represent

precision by the distance betw een the �rst and the last `correct' retrieved image;

the smaller the value the better the precision is.

Using the above measures, an experimental data-set, for which the ground-

truth classi�cation is available, is essen tial. It is not hard to create a collection

of still images that can be clustered into disjoint classes, as long as the content is

simple (such as faces, buildings, landscapes etc.). How ev er it becomes harder as

the number of classes increases and distinctions become more subtle to complete

the collection without the evaluation becoming very subjective.

To avoid the diÆculty (and impracticality) of manual groundtruthing we fol-

low ed a methodsimilar to Milanese et al. [13] wherestill images extracted from

video clips are used. A broadcast TV signal from a local Greek station (CRETA

Channel) w as capturedat a resolution of tw o frames-per-second. This w as then

resampled to obtain 9-11 still images representing each clip. As in [13] we assumed

that (a) the con tinuityof the visual conten t of a clip is implied by the uninter-

rupted recording of a video camera, (b) there is gradual change of conten t, from

frame to frame, due to camera operations and subject motion, object appearance

and disappearance.

Figure 3: Example of images extracted from a clip

F or the evaluation of the potential methods (histogram combinations), we cre-

ated 39 queries. The query images were randomly selected from the data set, so

all the video clips are represented.

By combining all the techniques mentioned above we came up with 48 di�erent

types of indexing. We run the queries and from the responses we calculated the

e�ectiveness measures for each one. In table 2, the measure averages of some

methods are illustrated, sorted by computational complexity, while in table 1 the

acronym of each histogram is described.

Our analysis of the results is focused on the e�ect of combining di�erent his-

tograms, against the simple colour histogram (SCH). We have, roughly, classi�ed

the indexing methods of table 2, into four disjoint classes.

T extur eand/or Shape (TS). This type of indexing combines the TS feature

histograms only, without the colour histogram. The results show ed that, some TS

combinations (5 and 17) outperform the SCH, in both recall and precision. In

�gure 4a, this is illustrated graphically.

Colour, T extur eand/or Shape (CTS). The histogram combinations are ex-
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tended to include colour. Generally, the performance is again better, as expected,

than the SCH. Taking the averages of the methods (TS and CTS) show that CTS

indexing has better average recall but slightly low er precision.The best performing

combination is 25.

Including Sp atial Partitioning (ISP). As mentioned, w eused a thresholding

algorithm to perform a partitioning of the images. In this type of indexing w e

combine the texture and colour histograms of the tw o image partitions, with the

orien tation and distance histogram.The performance in average is improved again,

in some cases, against the SCH, while the best combination 44, performs worse

in all terms than method 25. A graphical illustration of the ISP performance is

shown in �gure 4c.

Colour, T extur e,Shape and/or Partitioning (CTSP). In this category we use

the Colour and Texture histograms of the whole image as well as the histograms

included in ISP. As �gure 5 shows, on average it is close to the SCH , but rarely

improves it, and is outperformed by combination 25 (CTS).
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Figure 4: P erformance graphs of (a) TS, (b) CTS and (c) ISP indexing
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Figure 5: P erformance graph of CTSP indexing

4 Conclusions

A number of di�erent histogram combinations have been presented in this paper,

o�ering an improved means of image indexing to the traditional colour histogram.

A multi-resolution salience distance transform and an edge magnitude weigh ted

orien tationhistograms w ere used as a means to incorporate shape along with

textual information. Additionally, we used Kapur's entropy thresholding as a way
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to include some spatial information that could then be employed by standard

indexing schemes (e.g., colour histogramming).

In many cases the spatial partitioning improved indexing so as to outperform

the simple colour histogram. However, the best performance in terms of recall

and precision was achiev ed by combining colour, texture, distance and orientation

alone without spatial partitioning. F uture work will concentrate on verifying these

results by extending the evaluation to test larger datasets. Since most of the

groundtruthing is automated the test methodology scales well.
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Label Method

cd Simple colour histogram
cd0 / cd1 Colour histograms of the masked and unmasked areas
Td Simple texture histogram
td0 / td1 T exture histogram of the masked and unmasked areas
Dd Histogram of the multi-scale salience distance map
Dird Edge magnitude weighted orien tation histogram

T able 1:Associations betw een labels and histogram.

Label Methods Used Recall (%) Precision

1 cd 77.77778 63.64103

2 cd + td 79.20228 45.69231

3 cd0 + cd1 + dird 79.48718 42.02564

4 cd + dird 85.47009 36.58974

5 td + dird 80.05698 26.02564

6 cd0 + cd1 + td 75.49858 41.87179

7 cd + td0 + td1 75.21368 52.74359

8 cd + td + dird 84.04558 28.84615

10 cd + dd 78.91738 60.20513

14 cd0 + cd1 + td0 + td1 76.35328 68.02564

15 cd + dd + dird 86.32479 31.66667

16 cd + td + dd 82.05128 39.10256

17 td + dd + dird 80.34188 23.46154

18 td + td0 + td1 + dird 78.91738 36.46154

19 cd0 + cd1 + td + dird 80.05698 29.30769

20 cd + cd0 + cd1 + dird 78.63248 40.35897

21 cd + td0 + td1 + dird 81.48148 41.10256

22 cd + cd0 + cd1 + td0 + td1 76.92308 56.23077

25 cd + td + dd + dird 86.60969 24.69231

26 cd + cd0 + cd1 + td + dird 83.76068 31.15385

27 cd + cd0 + cd1 + td + td0 + td1 78.63248 44.43590

30 td0 + cd1 + dd + dird 79.77208 42.15385

31 cd0 + cd1 + td + dd 78.91738 38.53846

34 cd0 + cd1 + td0 + td1 + dird 78.91738 56.56410

35 td + td0 + td1 + dd + dird 77.49288 36.64103

36 cd0 + cd1 + td + dd + dird 82.90598 27.97436

37 cd + cd0 + cd1 + dd + dird 80.62678 38.46154

38 cd + cd0 + cd1 + td + dd 79.20228 37.20513

39 d + td0 + td1 + dd + dird 80.62678 42.43590

40 cd + cd0 + cd1 + td + dd + dird 84.61539 28.74359

41 cd + cd0 + cd1 + td0 + td1 + dird 80.62678 44.97436

42 cd0 + cd1 + td0 + td1 + dd 76.92308 66.74359

43 cd + cd0 + cd1 + td + td0 + td1 + dird 81.48148 38.33333

44 cd0 + cd1 + td0 + td1 + dd + dird 80.05698 55.43590

45 cd + cd0 + cd1 + td0 + td1 + dd 77.20798 55.74359

46 cd + cd0 + cd1 + td0 + td1 + dd + dird 80.34188 45.58974

47 cd + cd0 + cd1 + td + td0 + td1 + dd 79.48718 44.07692

48 cd + cd0 + cd1 + td + td0 + td1 + dd + dird 82.05128 37.61538

T able2: P erformanceof histogram combinations, sorted by computational and

storage requirements.
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