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Abstract

This paperexaminesthe problemof automaticallygroupingimagecurves.
In contrast,most previous work hasbeenrestrictedto points and straight
lines. Someof the computationalaspectsof the groupingsof continuation,
parallelism,andproximity areanalysed,andthe issuesof neighbourhoods,
combinatorix,andmultiple scalesarediscussed.

1 Introduction

A commonprocess,both in humanandcomputervision, is thegroupingof featuresex-
tractedfrom thescene.Themajorityof previoustechniquesdevelopedfor groupinghave
beenbasedon dot patterns[1] or straightlines [7], althoughtherehasbeensomerecent
interestin ellipsegrouping[15] andcurvegrouping[3, 11, 16]. Rulesfor groupingcurves
needto bemorecomplex thanrulesfor groupingsimplerfeaturessincearbitrarycurves
havemoredegreesof freedomthandots,straightlines,etc.

Early this centurythe Gestaltschoolof psychologystudiedthe groupingof sensory
phenomena,andidentifiedanumberof classesof grouping:proximity, similarity, closure,
good continuation,and symmetry. Researchin computervision hasusually restricted
itself to usingoneor severalof thesetypesof groupings.In thispaperweshallconcentrate
on curvilinearity(goodcontinuation),parallelism,andproximity.

2 Issues in automating curve grouping

We first discussseveralgeneralissuesthatapply to all the typesof groupingoperations:
theappropriatescale(s)of analysis;methodsfor segmentingandcompletingcurves;and
theselectionof which subsetsof curvesarecandidatesfor groupingtogether.

2.1 Multi-Scale vs. Natural Scale vs. Single Scale

Sincerealimagecurvescontainnoise,irrelevantdetail,anddifferentlysizedstructures,it
is necessaryto takescaleinto account.Whentacklingtheproblemof scaletherearethree
mainapproachesthatcanbetaken. Themoststraightforward is to representthecurves
over a fixed rangeof scales[8]. Although this is a robust approachit producesa vast
amountof data.A secondapproachis to representeachcurve at only a smallnumberof
interestingor significantscaleswhich we have calledtheir naturalscales[13]. Between



eachnaturalscalethereis somequalitativechange,e.g. they containdifferentstructures.
Finally, the curve can be representedby a single smoothedversion. Either the whole
curve is smootheduniformly at a single scaleor by different amountsover individual
sections[14]. Thereis a trade-off betweencompletenessandconcisenessthatis balanced
differentlyby thethreeapproaches.

2.2 Segmentation and Completion

In thispaperweonly considerbottom-upgrouping,andsoextendingacurveis alocalop-
eration(althoughseeElder& Zucker [4] who arguethatcompletionis a globalprocess).
Ratherthandeterminetheextensionfrom just theendpointsandtheir tangentswe usea
sectionof thecurvedelimitedby theendpointto thefirst singularpoint (i.e. eithera cur-
vaturemaximumor minimum,or a zero-crossingof curvature).Singularpointsarecom-
monly usedto representcurvessincethey arethe mostsalientlocations[5]. Moreover,
theirpositionvarieslittle (andis invariantin thecaseof zero-crossings)underperspective
projection.A similar approachis takenby Mohan& Nevatia[11] who segmentcurvesat
extremaof curvatureprior to performinggrouping. Anotherreasonfor segmentationis
thatunlikepointsor straightlines,somecurvescanbegroupedwith themselves.

Thegapbetweentwo curvesis interpolatedby fitting asmoothcurvethroughthepairs
of endpointsandsingularpoints. Many techniqueshave beensuggested,althoughmost
givesimilar lookingresults.Wedonotconsidertheexactshapeof thecurveto becrucial,
anduseasimpletechnique[10] whichfits asmoothcurvesuchthatthecurvatureataknot
point is equalto thatof thecircle throughtheknotandits two adjacentknots.A curvecan
alsobeextrapolatedby thesamemethodusingtheendpointandthreesingularpoints.

2.3 Grouping Selection

Althoughit is possibleto considerall pairwise(or higher-order)combinationsof curves
for grouping,this leadsto a proliferationof groupings. Instead,it is commonto select
pairs of candidatecurves which are suitablefor grouping togetherby applying a dis-
tancethreshold,discardingpairsof curvesseparatedbeyondthis distance.Thethreshold
is somefactor(usuallybetween1.5 and5) of the lengthsof the curves. An alternative
methodfor selectingpotentialsetsof curvesfor groupingwith the advantageof not re-
quiring anarbitrarythresholdis to determinetheneighbourhoodof eachcurve basedon
local constraints.This procedureis oftendonefor points[1] or straightlines [6] by tri-
angulatingthedata.Theresultingtriangleedgesdefinetheneighbourhoodrelationships.
In our case,we triangulatethe endpointsof the curves. In addition,the triangulationis
constrainedsothatthetriangleedgesdonot crossany curves.

The greedytriangulationalgorithm was used. Although it is possibleto designa
greedytriangulationalgorithmwith complexity
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thesimplerversionwe have

implementedis
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[12]. Thetriangulationis determinedby generatingall ��� ��� poten-
tial edgesbetweenpairwisecombinationsof curve endpoints.Any edgesthat intersect
thecurvesareremoved.Theremainderarethenconsideredin orderof increasinglength.
An edgeis retainedif it doesnot intersectany of thepreviouslyretainededges,otherwise
it is discarded.The final setof retainededgesmakesup the constrainedtriangulation.
Testingfor intersectionbetweenpotentialedgesandcurvesis anexpensiveprocesssince
eachedgehasto betestedfor intersectionwith all theshortline segmentsformedby all



pairsof adjacentpointswithin eachcurve. However, the processis speededup by first
checkingtheMBR of thecurve. Only if theedgeintersectstheMBR aretheline segments
thatform thecurvetestedfor intersection.

3 Grouping operations

3.1 Continuation

Several techniqueshave beendescribedfor detectingthe continuationof straightlines,
i.e. colinearity[7]. Sincetheshapeof straightlines is morerestrictedthancurvedlines
thegroupingrulescanbemuchsimpler. In contrast,detectingthecontinuationof curved
lines needsto take into accountthe amountof bendingandthe possibility of structures
existing at multiple scales. To somedegreethis hasbeenaddressedby the following
methods.

Meer et al. [9] approximatecurves in a pyramid by straight lines, and their rules
for groupingcurvesinvolve the lengthof thestraightline separatingtheir endpoints,the
differencein orientationbetweenthetwo line segmentsto begrouped,andthesimilarity
of curvatureof the two curves. The curvatureis basedon the changein orientationof
thelast threeline segmentsat theendof eachcurve. Mohan& Nevatia[11] alsousethe
Euclideandistancebetweenthe endsof the curves. Their other factor is the difference
in anglesbetweenthe connectingstraightline and the tangentsto the endpointsof the
curves.Dolan& Riseman[3] representall curvesby conicsplines.Colinearitybetween
pairsof curvesis basedon the distancebetweentheir endpoints,the angulardifference
betweentheendpointtangents,andthepercentageoverlapof thecurves.

In a similar vein to theabove techniqueswe evaluatecurvilinearitybasedon thegap
distancerelative to the lengthsof thecurves,andtheamountof bendingof thecomplet-
ing curve. Ratherthancompletethe curveswith a straightline they areinterpolatedas
describedpreviously. It is the lengthof this interpolatedsectionthat is usedratherthan
theEuclideandistancebetweenthecurveendpoints.Thecurvilinearitymeasuretakesthe
form ���
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where
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������� is the lengthof the interpolatedcurve bridging the gap,and
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and

� � are
the lengthsof the two curvesbeing grouped,and $%&('*) is the maximumcurvatureof
the interpolatingcurve. Perfectcurvilinearity producesa responseof 0. Non-perfect
groupingsproduceslargerpositive values.Advantagesof this measurearethat it allows
long curvesto bridgelarger gaps,andthat it is scaleindependent.However, it hasthe
disadvantagethatall collinearcurves(i.e. perfectlyalignedstraightlines)producea zero
responseirrespectiveof their gap.

3.2 Parallelism

Determiningparallelismfor straightlinesmainlyinvolvestheiroverlapandorientation[7].
Sincetheshapesof arbitrarycurvesaremorevariablethegroupingrulesneedto bemore
complex. Bergevin & Levine [2] approximatecurvesectionsby circulararcs.Parallelism
canthenbebasedonoverlap,radii, andcirclecentres.However, arbitrarycurvesmaynot
bereadilydecomposedinto circulararcs.



More generally, Mohan& Nevatia [11] searchfor symmetricpairsof curves,which
area supersetof parallelpairs. Curvesaresegmentedat curvatureextremaandall com-
binationsof curvesectionsgenerateasymmetricaxis.This is prunedby eliminatingaxes
formedby pairsof curveswith dissimilarlengthsor little overlap. Themostsignificant
axesareselectedbasedon a weightedsumof the following measures:the lengthof the
contourscoveredby theaxis; theratio of theaxis lengthto thetwo curves;thesimilarity
of the lengthof the two curves;theamountof skew betweenthecurves;parallelismbe-
tweenthecurves;parallelismbetweentheendsof thecurves;andthe lengthof theaxis.
An advantageof this approachis thatsectionsof curvesaregroupedaswholes,thereby
reducingcomputationcomparedwith apoint by point analysis.

We substantiallyadoptMohan& Nevatia’s approach.Curvesaresegmentedat sin-
gular pointsasdescribedpreviously. The symmetryaxis betweentwo curve sectionsis
definedasthe locusof midpointsof the lines joining pointsat equallengthratiosalong
the curves. Figure1a shows two curves + !

and + � of length , ! and , � . A point - on
curve + !

is mappedto a point . on + � if andonly if

/
, !1032, �

where / is the lengthof the sectionof curve + !
up to - , and 2 is the lengthof + � up

to . . Sincewe aredetectingparallelismratherthanskew the symmetryaxis is not of
direct interest.Ratherit canbeusedto assessthepotentialparallelismby enablingtwo
measurementsto bemade,namelytheseparationbetweenthecurvesandtheamountof
overlapof thecurvesontothesymmetryaxis.

Sincethe curveshave beensegmentedinto simplesectionswith monotonicallyin-
creasingor decreasingcurvatureit is generallyadequateto testtheseparationat just the
endpointsandmidpoint. If theendpointsof thecurvesareskew thenthejoining linesthat
definethesymmetryaxiswill overestimatetheseparationof thecurves.Thetruesepara-
tion of thecurvesat a point on theaxisis foundmoreaccuratelyby startingon thecurve
at the point associatedwith the axis. The curve is trackedalonguntil a local minimum
distancefrom theaxispoint is found. Usuallythis is alsoa globalminimumandthenew
line is normalto thecurve (figure1b). For eachendpointthis processis appliedto both
curvesandthesmallerof thetwo minimumdistancesis taken.For themidpointonly one
curveneedbeexaminedandthesmallerof thelocalminimafoundwhentrackingin either
directionis kept. Theratio of theminimumandmaximumvaluesof thethreemeasured
separationdistancesareusedto definethedegreeof parallelismof thecurves.
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Figure1: Calculatingparallelism



Overlapof thecurvesis calculatedby detectingtheamountof overshootof eachcurve
whenmappedonto the other. At eachendof the symmetryaxis the point closestto the
endpointof thecurvewhichwasnot involvedin theminimumseparationdescribedin the
previousparagraphis determined.Wecall thesepointsthesecondaryendpoints.Overlap
is definedasthe ratio of the lengthof the axisbetweenthe secondaryendpointsto the
length of the completeaxis. This is approximatedby the straight line segmentsfrom
the axisendpointsto the secondaryendpoints,andfrom the secondaryendpointsto the
midpointof theaxisasshown in figure1c. Thustheoverlapratio is:
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The parallelismof curvesis sometimessplit into two categoriesin which two identical
curvesaresimply translated,or thecurvesalternatively shrinkandexpandwith respectto
eachothersothatsectionsof onearenestedwithin theother. Thefirst category areonly
approximatelyparallel.As thecurvesbecomecloserthevariationin theseparationalong
the axis becomesmore apparent. The techniquesfor measuringparallelismdescribed
abovedoesnot needto distinguishbetweenthetwo categories.

Theparallelismmeasureis calculatedin a similar mannerto curvilinearity, basedon
thegapdistancerelative to the lengthsof thecurves,andthedegreeof overlapbetween
thecurve: �98 ' �� ! "#� � � :(;=<�>@? ���@A ' � �
where

� 8 ' � is thedistancebetweenthecurves,
��!

and
� � arethelengthsof thetwo curves

beinggrouped,and
<�>@? ���@A ' � is the overlapratio calculatedasabove. A reasonableap-

proximationfor
� 8 ' � is thesumof theperpendicularsat eitherendof thecurves.Perfect

parallelismproducesa responseof 0, andnon-perfectgroupingsproducelargerpositive
values.As before,thismeasureallowslongcurvesto bridgelargergaps,is scaleindepen-
dent,but producesa zeroresponsefor all perfectlyalignedparallelcurvesirrespectiveof
their gap.

In a similar mannerto thecurvilineargrouping,analternativemechanismto distance
thresholdingfor selectingcurvesectionsfor potentialgroupingsis to triangulatethecurve
sections.A constrainedtriangulationcanbe formedasdescribedpreviously, whereall
curvatureextremaandcurve endpointsaretaken astrianglevertices. Sectionsareonly
consideredfor parallelgroupingif they areconnectedby a triangleedge.

3.3 Parallel Groupings

In addition to pairwiseparallelismit may be useful to find larger groupsof mutually
parallelcurves. This canbe doneby creatinga graphwhosenodesarethe curves,and
containsarcsbetweenpairsof nodesif thetwo curvessatisfytheparallelismrelationship.
Thebiggestsetof mutuallyparallelcurvesis givenby the largestmaximalclique in the
graph.A simpleexampleof this is demonstratedin figure2awhich shows anEhrenstein
sunfigurewith somedistortedandmissinglines.We havesettheconstraintonallowable
differencein orientationbetweenparallellines to be BDC�E . The largestmaximalcliquein
thegraphproducesthe linesshown in figure2b. This procedurecanbereappliedto find
lesssignificantparallelgroups.Deletingthenodescomprisingthelargestmaximalclique
from thegraph,thelinesforming thenext largestmaximalcliqueareshown in figure2c.



Figure2: Ehrensteinsunfigureandthetwo largestmutuallyparallelgroupings

3.4 Proximity

Curvesareconsideredproximal if they arenearto eachother. More specifically, we can
divide proximal groupingsinto threeclassesof increasingspecialisation:1) any part of
one curve is nearto any part of a secondcurve – this includesa curved versionof T
junctions;2) only their endpointsarenear;and3) theendpointsarecloseandthecurves
extendto a commonpoint – this is alsocalledcotermination.Whenthe endpointsare
close(classes2 and3) they canbegroupedto form a virtual line (a well known example
is theEhrensteinsunfigure).

We apply the following methodfor detectingvirtual lines usingtriangulation. The
problemis simplified by consideringthe triangulationof the curve endpointssincethe
virtual lines will be approximatelyoutlinedby the triangleedges.Oneway of hypoth-
esisingvirtual lines with specificshapesfrom amongstthe edgesis to apply the Hough
Transform.Edgesareaccumulated,andpeaksin accumulatorspacedefinetheparameters
of likely virtual lines. Votescanbemadeinverselyproportionalto the lengthsof edges.
This ensuresthatcloseendpointsareconsideredmoresignificantthandistantones.It is
advantageousto applytheHoughTransformto thetriangleedgesratherthanto thecurve
endpointssincetheedgescontainmoreinformation. First, theedgesprovide orientation
information,therebysimplifying andimproving the detectionof the virtual lines. Sec-
ond,they alsotake into theaccountlineswhich crossthevirtual line, therebyweakening
the illusion of thevirtual line. This effect cannotbeeasilyincludedif theendpointsare
groupeddirectly. In comparison,suchlines prevent sometriangleedgesforming, and
thereforetheHoughTransformwill produceaweakerpeakin theaccumulator.

Work is underway on detectingcoterminations.Currently, proximity is not incorpo-
rated,andall curvesareextrapolatedateachendusingtheendpointandthethreeadjacent
singularpoints. Usinga graphicsroutinetheextrapolatedcurvesarewritten into an im-
age.Coterminationsareidentifiedascurve intersections,andarefoundby searchingfor
peaksin the image. Sincethe confidencein the extrapolationdecreaseswith distance
from the original curve endpoint,the plottedvaluesaremadeinverselyproportionalto
the distance.To allow for inaccuraciesin the intersectionsthe imageis blurredbefore
searchingfor peaks.

4 Examples

Figure3ashowsatestsetof curveswhichwill beusedto demonstratethedifferentgroup-
ing operations.The naturalscalesof thesecurvesareshown in figures3b–f, wherethe



thicknessof thecurvesis proportionalto theamountof smoothing(for moredetailssee
Rosin[13]). For displaypurposesthecurveshavebeenseparatedinto fivesets(themaxi-
mumnumberof naturalscalesfor any curve).

Figure3: (a)original curve; (b)–(f) naturalscales

Theconstrainedtriangulationof thecurvesto determinetheirneighbourhoodsisshown
in figure4. Themethodof extendingthecurvesprior to theirsmoothingensuresthattheir
endpointsarefixed [14]. Therefore,a curve at all its naturalscaleswill have identical
endpoints.Triangulationof thecurvesat differentscaleswill not necessarilybeidentical

Figure4: Constrainedtriangulationof curvesat original scale

since,in general,thecurveshiftslocally. This affectstheconstrainton thetriangleedges
not intersectingthe curves. However, the triangulationwill be similar, andany differ-



enceswill be local. Therefore,for simplicity we only performtriangulationat onescale
(theunsmootheddata)andapplytheneighbourhoodrelationshipsat all scales.

An exampleof curvilinearitygroupingfrom the endof onecurve is shown in figure
5a. Thecurve of interestis drawn bold, andtheendbeinggroupedis circled. Grouping
is restrictedto the endsof thosecurveswhich areconnectedby a triangleedgeto the
endpointof the curve of interest. The interpolatedcurvesareshown in figures5b–ein
decreasingorderof merit.

Figure5: (a)onecurve(bold) andits neigbours;(b)–(e)bestcontinuations

To detectparallel structureswe segmentthe curvesat curvatureextremawhich are
thentriangulated.This canbeexpensive if triangulationsareperformedfor all combina-
tions of curvesat differentnaturalscales.Herewe restrict the triangulationto a single
setof naturalscales.The triangulationof the coarsestnaturalscalesis shown in figure
6a. Maxima,minima,andzero-crossingsof curvaturearemarkedby boxes,circles,and
crossesrespectively. Figure6b shows a selectedcurve section(drawn bold) andthepo-
tentialparallelcurvesectionsconnectedby at leastonetriangleedge(drawn in grey). The
two curve sectionsproducingthebestparallelmeasureareshown in decreasingorderin
figures6c&d. Thethin linesarecalculatedby searchingfor thelocalminimumdistances
betweenthe curvesandindicatethe amountof overlap. The remainingpotentialcurve
sectionshadzerooverlap.

Figure6: Detectingparallelgroupings

To determinevirtual linesthetriangleedgesin figure4 areinput to theHoughTrans-
form (bin sizesare F 0HG , I 0KJ E ). Figures7 shows the virtual lines (drawn bold)
correspondingto thetwo largestpeaks.Theendpointsof thetriangleedges(andtherefore
alsothecurves)thatgaveriseto themarecircled.

Finally, thedetectionof coterminationsis shown for the imagein figure8a. Results
areonly shown at a singlenaturalscale;thecurvesat this scale(drawn bold) with their



Figure7: Virtual lines(bold) generatedby triangleedges(circled)

extrapolationsareshown in figure8b(thedistanceweightingis notshown). Theextrapo-
lation imageis averagedwith a CMLNC window andthe10 largestpeaks(shown by circles
with radii proportionalto peaksize)areoverlayedwith thecurvesin figure8c.

Figure8: Detectingcoterminations

5 Future work

We have describedmethodsfor performingvariouscurve groupingoperations.Future
work will concentrateonanalysingtheirperformancein termsof robustnessovera range
of data,andtheir relationshipwith humanvisualprocessing[4].
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