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Abstract

This paperexaminesthe problemof automaticallygroupingimagecurves.
In contrast,most previous work hasbeenrestrictedto points and straight
lines. Someof the computationabspectf the groupingsof continuation,
parallelism,and proximity are analysedandthe issuesof neighbourhoods,
combinatorixandmultiple scalesarediscussed.

1 Introduction

A commonprocesshothin humanandcomputervision, is the groupingof featuresex-
tractedfrom the scene . The majority of previoustechniqueslevelopedfor groupinghave
beenbasedon dot patternd1] or straightlines[7], althoughtherehasbeensomerecent
interestin ellipsegrouping[15] andcurvegrouping[3, 11, 16]. Rulesfor groupingcurves
needto be morecomplec thanrulesfor groupingsimplerfeaturessincearbitrarycurves
have moredeggreesof freedomthandots,straightlines, etc.

Early this centurythe Gestaltschoolof psychologystudiedthe groupingof sensory
phenomenagndidentifiedanumberof classe®f grouping:proximity, similarity, closure,
good continuation,and symmetry Researchin computervision hasusually restricted
itself to usingoneor severalof thesaypesof groupings.In this papemwe shallconcentrate
on curvilinearity (goodcontinuation) parallelism andproximity.

2 |ssuesin automating curve grouping

We first discussseveral generalissuesthatapply to all the typesof groupingoperations:
the appropriatescale(s)of analysismethodsor segmentingandcompletingcurves;and
the selectionof which subset®f curvesarecandidate$or groupingtogether

2.1 Multi-Scalevs. Natural Scalevs. Single Scale

Sincerealimagecurvescontainnoise,irrelevantdetail, anddifferently sizedstructuresit
is necessaryo take scaleinto accountWhentacklingthe problemof scaletherearethree
main approacheshatcanbetaken. The moststraightforwardis to representhe curves
over a fixed rangeof scales[8]. Although this is a robust approachit producesa vast
amountof data. A secondapproaclis to represeneachcurve at only a smallnumberof
interestingor significantscaleswhich we have calledtheir naturalscaleq13]. Between



eachnaturalscalethereis somequalitatve changeg.qg. they containdifferentstructures.
Finally, the curve can be representedy a single smoothedversion. Either the whole
curve is smootheduniformly at a single scaleor by differentamountsover individual
sectiong14]. Thereis atrade-of betweercompletenesandconcisenesthatis balanced
differently by thethreeapproaches.

2.2 Segmentation and Completion

In this papewe only considebottom-upgrouping,andsoextendinga curveis alocal op-
eration(althoughseeElder & Zucker[4] who arguethatcompletionis a globalprocess).
Ratherthandeterminethe extensionfrom just the endpointsandtheir tangentsve usea
sectionof the curve delimitedby the endpointto thefirst singularpoint (i.e. eithera cur
vaturemaximumor minimum, or a zero-crossin@f curvature).Singularpointsarecom-
monly usedto representurvessincethey arethe mostsalientlocations[5]. Moreover,
their positionvarieslittle (andis invariantin thecaseof zero-crossingsinderperspectie
projection.A similar approachs takenby Mohan& Nevatia[11] who sggmentcurvesat
extremaof curvatureprior to performinggrouping. Anotherreasonfor segmentationis
thatunlike pointsor straightlines,somecurvescanbe groupedwith themseles.
Thegapbetweertwo curvesis interpolatedy fitting asmoothcurve throughthepairs
of endpointsandsingularpoints. Many techniqueshave beensuggestedalthoughmost
give similarlooking results.We do not considetthe exactshapeof thecurveto becrucial,
andusea simpletechniqud10] whichfits asmoothcurve suchthatthe curvatureataknot
pointis equalto thatof thecircle throughtheknotandits two adjacenknots. A curvecan
alsobe extrapolatedby the samemethodusingthe endpointandthreesingularpoints.

2.3 Grouping Selection

Althoughit is possibleto considerall pairwise(or higherorder)combinationsof curves
for grouping,this leadsto a proliferation of groupings. Instead,it is commonto select
pairs of candidatecurves which are suitablefor groupingtogetherby applying a dis-
tancethreshold discardingpairsof curvesseparatedbeyondthis distance. Thethreshold
is somefactor (usually betweenl.5 and5) of the lengthsof the curves. An alternatve
methodfor selectingpotentialsetsof curvesfor groupingwith the advantageof not re-
quiring anarbitrarythresholdis to determinethe neighbourhooaf eachcurve basedon
local constraints.This procedurds often donefor points[1] or straightlines[6] by tri-
angulatingthe data. Theresultingtriangleedgesdefinethe neighbourhoodelationships.
In our casewe triangulatethe endpointsof the curves. In addition, the triangulationis
constrainedothatthetriangleedgesdo not crossary curves.

The greedytriangulationalgorithm was used. Although it is possibleto designa
greedytriangulationalgorithmwith compleity O(n? log n) the simplerversionwe have
implementeds O(r?) [12]. Thetriangulationis determinecy generatingll (%) poten-
tial edgesbetweenpairwisecombinationsof curve endpoints. Any edgesthat intersect
thecurvesareremoved. Theremainderarethenconsideredn orderof increasingength.
An edgeis retainedf it doesnotintersectary of the previously retainededgesptherwise
it is discarded.The final setof retainededgesmakes up the constrainedriangulation.
Testingfor intersectiorbetweerpotentialedgesandcurvesis anexpensve processince
eachedgehasto betestedfor intersectionwith all the shortline segmentsformedby all



pairsof adjacentpointswithin eachcurve. However, the processs speededip by first
checkingtheMBR of thecurve. Only if theedgeintersecttheMBR aretheline sggments
thatform the curve testedfor intersection.

3 Grouping operations

3.1 Continuation

Several techniqueshave beendescribedor detectingthe continuationof straightlines,

i.e. colinearity[7]. Sincethe shapeof straightlinesis morerestrictedthancurvedlines

thegroupingrulescanbe muchsimplet In contrastdetectingthe continuationof curved

lines needsto take into accountthe amountof bendingandthe possibility of structures
existing at multiple scales. To somedegreethis hasbeenaddressedby the following

methods.

Meer et al. [9] approximatecurvesin a pyramid by straightlines, and their rules
for groupingcurvesinvolve the lengthof the straightline separatingheir endpointsthe
differencen orientationbetweerthetwo line segmentsto be groupedandthe similarity
of curvatureof the two curves. The curvatureis basedon the changein orientationof
thelastthreeline segmentsat the endof eachcurve. Mohan& Nevatia[11] alsousethe
Euclideandistancebetweenthe endsof the curves. Their otherfactoris the difference
in anglesbetweenthe connectingstraightline and the tangentsto the endpointsof the
curnves. Dolan& Riseman3] representll curvesby conic splines.Colinearitybetween
pairsof curvesis basedon the distancebetweentheir endpoints the angulardifference
betweerthe endpointtangentsandthe percentageverlapof the curves.

In a similar vein to the above techniquesve evaluatecurvilinearity basedon the gap
distancerelative to the lengthsof the curves,andthe amountof bendingof the complet-
ing curve. Ratherthancompletethe curveswith a straightline they areinterpolatedas
describedpreviously. It is thelengthof this interpolatedsectionthatis usedratherthan
the Euclideandistancebetweerthe curve endpoints Thecurvilinearitymeasureakesthe

form
linterp
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wherel;,;. is the lengthof the interpolatedcurve bridging the gap,andi; andl, are
the lengthsof the two curves being grouped,and k4, iS the maximum curvature of

the interpolatingcurve. Perfectcurvilinearity producesa responseof 0. Non-perfect
groupingsproducedarger positive values. Advantage®f this measurerethatit allows

long curvesto bridgelarger gaps,andthatit is scaleindependent.However, it hasthe
disadwantagehatall collinearcurves(i.e. perfectlyalignedstraightlines) producea zero
responsérespectve of their gap.

3.2 Parallelism

Determiningparallelismfor straightinesmainly involvestheiroverlapandorientation7].
Sincethe shape®f arbitrarycurvesaremorevariablethe groupingrulesneedto be more
compl. Begevin & Levine [2] approximatecurve sectionsby circulararcs.Parallelism
canthenbebasedn overlap,radii, andcircle centres However, arbitrarycurvesmay not
bereadilydecomposeihto circulararcs.



More generally Mohan& Nevatia[11] searchfor symmetricpairsof curves,which
area supersebf parallelpairs. Curvesare seggmentedat curvatureextremaandall com-
binationsof curve sectionggenerate symmetricaxis. Thisis prunedby eliminatingaxes
formedby pairsof curveswith dissimilarlengthsor little overlap. The mostsignificant
axesareselectedbasedon a weightedsumof the following measuresthe lengthof the
contourscoveredby the axis; theratio of the axislengthto the two curves;the similarity
of thelengthof the two curves;the amountof skew betweerthe curves; parallelismbe-
tweenthe curves; parallelismbetweerthe endsof the curves;andthe lengthof the axis.
An adwantageof this approachis that sectionsof curvesaregroupedaswholes,thereby
reducingcomputatiorcomparedvith a point by pointanalysis.

We substantiallyadoptMohan& Nevatia's approach.Curvesare segmentedat sin-
gular pointsasdescribecdbreviously. The symmetryaxis betweentwo curve sectionss
definedasthe locusof midpointsof the lines joining pointsat equallengthratiosalong
the curves. Figure 1a shaws two curvesCy and C» of lengths; andsz. A pointz on
curve C; is mappedo apointy on C, if andonly if
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wherea is the length of the sectionof curve Cy up to z, andb is the lengthof Cs up
to y. Sincewe are detectingparallelismratherthan skew the symmetryaxis is not of
directinterest. Ratherit canbe usedto assesshe potentialparallelismby enablingtwo
measurement® be made,namelythe separatiorbetweerthe curvesandthe amountof
overlapof the curvesontothe symmetryaxis.

Sincethe curves have beensegmentedinto simple sectionswith monotonicallyin-
creasingor decreasingurvatureit is generallyadequatéo testthe separatiorat just the
endpointandmidpoint. If theendpointof thecurvesareskew thenthejoining linesthat
definethe symmetryaxiswill overestimatehe separatiorof the curves. Thetrue separa-
tion of the curvesat a point on the axisis found moreaccuratelyby startingon the curve
at the point associatedvith the axis. The curve is tracked alonguntil a local minimum
distancefrom the axis pointis found. Usuallythis is alsoa globalminimumandthe new
line is normalto the curve (figure 1b). For eachendpointthis procesds appliedto both
curvesandthe smallerof thetwo minimumdistancess taken. For themidpointonly one
curve needbeexaminedandthesmallerof thelocalminimafoundwhentrackingin either
directionis kept. Theratio of the minimum andmaximumvaluesof the threemeasured
separatiordistancesreusedto definethe degreeof parallelismof thecurves.

Figurel: Calculatingparallelism



Overlapof thecurvesis calculatedy detectingheamountof overshoobf eachcurve
whenmappedontothe other At eachendof the symmetryaxis the point closestto the
endpointof the curvewhichwasnotinvolvedin theminimumseparatiomescribedn the
previousparagraplis determinedWe call thesepointsthesecondargndpoints. Overlap
is definedasthe ratio of the length of the axis betweenthe secondaryendpointsto the
length of the completeaxis. This is approximatedoy the straightline segmentsfrom
the axis endpointgto the secondaryendpoints and from the secondaryendpointsto the
midpointof theaxisasshownn in figure 1c. Thustheoverlapratiois:

my1 + ms
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The parallelismof curvesis sometimessplit into two categoriesin which two identical
curvesaresimply translatedor the curvesalternatvely shrinkandexpandwith respecto
eachothersothatsectionsof onearenestedwithin the other Thefirst category areonly
approximatelyparallel. As the curvesbecomecloserthevariationin the separatioralong
the axis becomesnore apparent. The techniquedor measuringparallelismdescribed
above doesnot needto distinguishbetweerthetwo cateories.

The parallelismmeasuras calculatedn a similar mannerto curvilinearity, basedon
the gapdistancerelative to the lengthsof the curves,andthe degreeof overlapbetween
thecurve: ]

gap
L+
wherel,,, is the distancebetweerthe curves,l; andl, arethelengthsof thetwo curves
being grouped,andr,,er14p IS the overlapratio calculatedas above. A reasonablep-
proximationfor {,,,, is the sumof the perpendicularst eitherendof the curves. Perfect
parallelismproducesa responsef 0, andnon-perfecigroupingsproducelarger positive
values.As before this measureallows long curvesto bridgelargergaps,s scaleindepen-
dent,but producesa zeroresponsdor all perfectlyalignedparallelcurvesirrespectve of
their gap.

In asimilar mannetto the curvilineargrouping,analternatve mechanisnto distance
thresholdindor selectingcurve sectiondor potentialgroupingds to triangulatehecurve
sections. A constrainedriangulationcanbe formed as describedpreviously, whereall
cunvatureextremaand curve endpointsare taken astriangle vertices. Sectionsare only
consideredor parallelgroupingif they areconnectedy atriangleedge.

(]- - Touerlap)

3.3 Parallel Groupings

In additionto pairwise parallelismit may be useful to find larger groupsof mutually
parallelcurves. This canbe doneby creatinga graphwhosenodesare the curves,and
containsarcsbetweerpairsof nodesf thetwo curvessatisfytheparallelismrelationship.
The biggestsetof mutually parallelcurvesis given by the largestmaximalclique in the
graph.A simpleexampleof this is demonstrateth figure 2awhich shavs anEhrenstein
sunfigurewith somedistortedandmissinglines. We have setthe constrainton allowable
differencein orientationbetweerparallellinesto be 45°. Thelargestmaximalcliquein
thegraphproduceghelinesshowvn in figure 2b. This procedurecanbereappliedto find
lesssignificantparallelgroups.Deletingthe nodescomprisingthe largestmaximalclique
from thegraph,thelinesforming the next largestmaximalcliqueareshavn in figure 2c.
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Figure2: Ehrensteirsunfigure andthetwo largestmutually parallelgroupings

3.4 Proximity

Curvesareconsideregroximalif they arenearto eachother More specifically we can
divide proximal groupingsinto threeclassef increasingspecialisation:1) ary part of
one curve is nearto ary part of a secondcurve — this includesa curved versionof T
junctions;2) only their endpointsarenear;and3) the endpointsarecloseandthe curves
extendto a commonpoint — this is also called cotermination. Whenthe endpointsare
close(classe® and3) they canbe groupedto form avirtual line (awell known example
is the Ehrensteirsunfigure).

We apply the following methodfor detectingvirtual lines usingtriangulation. The
problemis simplified by consideringthe triangulationof the curve endpointssincethe
virtual lines will be approximatelyoutlinedby the triangle edges. Oneway of hypoth-
esisingvirtual lines with specificshapedrom amongsthe edgesis to apply the Hough
Transform.Edgesareaccumulatedandpeaksn accumulatospacedefinetheparameters
of likely virtual lines. Votescanbe madeinverselyproportionalto the lengthsof edges.
This ensureghat closeendpointsareconsiderednoresignificantthandistantones.lt is
adwantageouto applythe HoughTransformto thetriangleedgesatherthanto the curve
endpointssincethe edgescontainmoreinformation. First, the edgesprovide orientation
information, therebysimplifying andimproving the detectionof the virtual lines. Sec-
ond, they alsotake into the accountineswhich crossthe virtual line, therebywealening
theillusion of thevirtual line. This effect cannotbe easilyincludedif the endpointsare
groupeddirectly. In comparisonsuchlines prevent sometriangle edgesforming, and
thereforethe HoughTransformwill produceawealer peakin theaccumulatar

Work is undervay on detectingcoterminations.Currently proximity is notincorpo-
rated,andall curvesareextrapolatecateachendusingtheendpointandthethreeadjacent
singularpoints. Using a graphicsroutinethe extrapolatedcurvesarewritten into anim-
age. Coterminationsareidentifiedascurve intersectionsandarefound by searchingor
peaksin the image. Sincethe confidencen the extrapolationdecreasesvith distance
from the original curve endpoint,the plotted valuesare madeinverselyproportionalto
the distance. To allow for inaccuraciesn the intersectionghe imageis blurred before
searchindor peaks.

4 Examples

Figure3ashavsatestsetof curveswhichwill beusedto demonstrat¢éhedifferentgroup-
ing operations.The naturalscalesof thesecurvesare showvn in figures3b-f, wherethe



thicknessof the curvesis proportionalto the amountof smoothing(for moredetailssee
Rosin[13]). For displaypurposeshe curveshave beenseparateihto five sets(the maxi-
mum numberof naturalscaledor ary curve).

———

Figure3: (a) original curve; (b)—(f) naturalscales

Theconstrainedriangulationof thecurvesto determingheirneighbourhoods shovn
in figure4. Themethodof extendingthe curvesprior to their smoothingensureshattheir
endpointsarefixed [14]. Therefore,a curve at all its naturalscaleswill have identical
endpoints.Triangulationof the curvesat differentscaleswill not necessarilyoeidentical

Figure4: Constrainedriangulationof curvesatoriginal scale

since,in generalthe curve shiftslocally. This affectsthe constrainton thetriangleedges
not intersectingthe curves. However, the triangulationwill be similar, and ary differ-



enceswill belocal. Thereforefor simplicity we only performtriangulationat onescale
(theunsmoothediata)andapplythe neighbourhoodelationshipsatall scales.

An exampleof curvilinearity groupingfrom the endof onecurve is shovn in figure
5a. The curve of interestis drawn bold, andthe endbeinggroupedis circled. Grouping
is restrictedto the endsof thosecurveswhich are connectedy a triangle edgeto the
endpointof the curve of interest. The interpolatedcurvesare shovn in figures5b—ein
decreasingrderof merit.
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Figure5: (a) onecurve (bold) andits neigbours{b)—(e)bestcontinuations

To detectparallel structuresve segmentthe curvesat curvatureextremawhich are
thentriangulated.This canbeexpensveif triangulationsare performedfor all combina-
tions of curvesat differentnaturalscales.Herewe restrictthe triangulationto a single
setof naturalscales.The triangulationof the coarseshaturalscalesis shavn in figure
6a. Maxima, minima, andzero-crossingsf curvaturearemarked by boxes,circles,and
crossesespectiely. Figure6b showvs a selectecturve section(dravn bold) andthe po-
tentialparallelcurve sectiononnectedy atleastonetriangleedge(dravnin grey). The
two curve sectiongproducingthe bestparallelmeasureareshovn in decreasingrderin
figures6c&d. Thethin linesarecalculatedoy searchindgor thelocal minimumdistances
betweenthe curvesand indicatethe amountof overlap. The remainingpotentialcurve
sectionshadzerooverlap.
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Figure6: Detectingparallelgroupings

To determinevirtual linesthetriangleedgesn figure4 areinput to theHoughTrans-
form (bin sizesarep = 8, 8 = 9°). Figures7 shaws the virtual lines (drawn bold)
correspondingo thetwo largestpeaks.The endpointf thetriangleedgeqgandtherefore
alsothe curves)thatgave riseto themarecircled.

Finally, the detectionof coterminationss shown for theimagein figure 8a. Results
areonly shavn at a singlenaturalscale;the curvesat this scale(dravn bold) with their



Figure7: Virtual lines(bold) generatedby triangleedgedcircled)

extrapolationsareshawn in figure 8b (thedistanceneightingis not shavn). Theextrapo-
lationimageis averagedvith a5 x 5 window andthe 10 largestpeaks(shown by circles
with radii proportionalto peaksize)areoverlayedwith the curvesin figure8c.

SN\ B\

=0

\\

=

Figure8: Detectingcoterminations

5 Futurework

We have describedmethodsfor performingvariouscurve groupingoperations. Future
work will concentrat@n analysingtheir performancen termsof robustnes®overarange
of data,andtheir relationshipwith humanvisual processing4].
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