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Abstract

The least squares method is the most commonly used technique
for fitting an ellipse through a set of points. However, it has a low
breakdown point, which means that it performs poorly in the presence
of outliers. We describe various alternative methods for ellipse fitting
which are more robust: the Theil-Sen, least median of squares, Hilbert
curve, and minimum volume estimator approaches. Testing with syn-
thetic data demonstrates that the least median of squares is the most
suitable method in terms of accuracy and robustness.

1 Introduction

Ellipses commonly occur in man-made scenes, often being formed as the projection
of circular objects onto the image plane. They provide a useful representation of
parts of the image since 1/ they are more convenient to manipulate than the cor-
responding sequences of straight lines needed to represent the curve, and 2/ their
detection is reasonably simple and reliable. Thus they are often used by com-
puter vision systems for model matching [3, 5]. Over the years much attention has
been paid to fitting ellipses to data samples, and many variations of the standard
method for finding the least squares (LS) solution exist [4, 6]. However, computer
vision often requires more robust methods that can tolerate large amounts of out-
liers since there is the likelihood that the data will be substantially corrupted by
faulty feature extraction, segmentation errors, etc. While LS is optimal under
Gaussian noise it is very sensitive to severe non-Gaussian outliers, and is therefore
unsuitable for many vision applications.

Previously we described a robust method for fitting ellipses to curve data [11].
It uses the method of minimal subsets to accumulate ellipse hypotheses. A minimal
subset is the smallest number of points necessary to uniquely define a geometric
primitive (five for an ellipse). Many five-tuples of points are selected from the full
data set. Those that define non-elliptic conics are rejected, and the remainder
are considered as hypotheses of the ellipse that best fits all the data. Each of the
intrinsic parameters of the ellipse (i.e. centre co-ordinates, major and minor axes,
and orientation) is estimated as the median of the parameters of the hypothesised
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ellipses. In other words, if P q
s is the qth parameter estimated from minimal subset

s, then the final estimates are P̂ q = meds P q
s for q = 1 . . . 5. This is in fact an

application of the Theil-Sen estimator [19], which as already been used for fitting
lines [8] and circular arcs [10]. Other applications of the minimal subset method
to estimating geometric features are given in references [1, 15].

Unfortunately there are a number of inadequacies with the method just de-
scribed, involving 1/ the treatment of circular parameters (i.e. orientation), 2/
statistical efficiency, and 3/ correlation between the five parameters. This paper
presents several solutions to these problems and describes some variations on the
theme of robust ellipse fitting.

2 Improved Ellipse Fitting

2.1 Approximate circular median

The Theil-Sen method described above estimates each parameter by the median
of the set of hypothesised parameters produced from the minimum subsets. While
this is adequate if the ellipses are described by their conic coefficients, there is
a problem when the ellipses’ intrinsic parameters are used.1 Since the ellipse
orientation is directional data then the median will produce incorrect estimates if
the data is clustered around the ends of the range [0, 2π].

The natural solution would be to use the circular median in place of the linear
median [9, 18]. This is defined as the point P such that half of the data points lie
on either side of the diameter PQ of the unit circle (on which the data lies), and
that the majority of points are closer to P than Q. However, unless the values are
binned (which is undesirable since the results will then depend on an arbitrary bin
size) all pairs of points need to be considered, which is computationally expensive.
Instead, as a compromise between efficiency and robustness, we use a combination
of the circular mean and the circular median [9]. We rotate the data in order to
centre its circular mean at the orientation midrange, π, a linear median is then
performed, after which the rotation is undone. Since the median can be found in
linear time, calculating the approximate circular median is also O(n).

2.2 Repeated median

Although the Theil-Sen estimator is more robust than the LS method, for five
dimensions its breakdown point2 is only 12.9% since the fraction of outliers ε must
satisfy (1 − ε)5 ≥ 0.5, so that ε = 1 −

(
1
2

) 1
5 . Although the results published

in Rosin [11] appear to show better robustness this is possibly due to many of
the conics passing through the five-tuples being non-ellipses (i.e. hyperbolae or
parabolae) and are therefore rejected.

1Experiments showed that it was preferable to use the intrinsic parameters of the ellipse
rather than their corresponding conic coefficients [11]. Their values tend to lie in a smaller range
than the coefficients, and are invariant to translation and rotation of the data. Therefore all the
methods described in this paper use intrinsic parameters rather than conic coefficients.

2An estimator’s breakdown point is defined as the percentage of outliers that may force the
estimator to return a value arbitrarily larger than the correct result.
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More robust estimators than the Theil-Sen are available, For instance, the
repeated median (RM) [17] has a breakdown point of 50%, which is achieved by
calculating

P̂ q = med
i

med
j

med
k

med
l

med
m

P q
i,j,k,l,m

where P q
i,j,k,l,m is the qth parameter estimated from the five points {pi,pj ,pk,pl,pm}.

For n points this recursive application of the median results in n5 tuples being con-
sidered rather than the

(
n
5

)
tuples used by the Theil-Sen estimator, and is therefore

two orders of magnitude more costly in computation time. In any case, since both
n5 and

(
n
5

)
are O(n5), in practise evaluating all the tuples is too costly, and fitting

must be speeded up by only selecting a subset of the possible tuples. More details
on the selection of these tuples as will be described later, however, they are not
easily applicable to the repeated median estimator.

2.3 Least median of squares

Another robust estimator with a breakdown point of 50% is the Least Median of
Squares (LMedS) estimator [16], which was applied to ellipse fitting by Roth and
Levine [14]. For each of the minimal subsets s they calculated the errors εi from
each point pi to the ellipse defined by pi∈s. The LMedS ellipse has the parameters
defined by the subset with the least median error, namely

min
s

med
i

εi.

Unlike the Theil-Sen and RM estimators this application of the LMedS uses
the residuals of the full data set of each hypothesised ellipse. The ideal error
measure would be the Euclidean distance between the point and the ellipse, but
that is expensive to calculate, requiring solving a quartic equation and choosing the
smallest of the four solutions. In practice there are many simpler approximations
that are often used [12, 13]. The principle one (and both the simplest and most
efficient) is the algebraic distance.

Although the LMedS method is significantly more robust than the Least Squares
(LS) method it is less efficient as a statistical estimator (i.e. its asymptotic relative
efficiency) as well as being generally less efficient computationally. This can be
improved by “polishing” the fit returned by the best minimal subset. First the
noise is robustly estimated using the median absolute deviation (mad) which finds
the median of the errors and returns the median of the differences of the errors
from that median

mad =
n

med
i=1

|εi −
n

med
j=1

εj|.

The median is modified by f which is a Gaussian normalisation and finite-sample
correction factor [16]

f = 1.4826
(
1 +

5
n − 1

)

and can then enable outliers to be robustly detected by applying the following
indicator function

wi =
{

1 |εi| < 3× f mad
0 otherwise.
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The ellipse parameters are now reestimated by performing a standard LS fit,
weighting the data points pi by wi to eliminate the effect of (robustly detected)
outliers.

In addition to its robustness, a significant advantage of the LMedS approach
just described is that all the parameters are estimated simultaneously. A weak-
ness of the Theil-Sen and RM approaches is that each parameter is estimated
independently, thereby ignoring any potential correlations between them.

We also note that the LMedS could be applied directly to the parameters rather
than the residuals in a manner akin to the Theil-Sen estimator

P̂ q = min
x

med
s

(P q
s − x)2 .

2.4 Hilbert curve

A different approach to estimating the five ellipse parameters simultaneously is
to map the 5D parameter space onto 1D. This allows a simple 1D estimation
technique to be employed as before after which the result is mapped [2] back to
the full 5D parameter space. We use the Hilbert curve which has the property
that points close in 2D usually map into points close in 1D along the curve. Since
the ellipse orientation is circular it is treated separately using the circular median.
Therefore, in practice we analyse the remaining parameters using a 4D Hilbert
curve quantised so that each axis is divided into 256 bins. The four parameters
are all measured in the same units (pixels) obviating scaling problems. Since the
Hilbert curve only covers a subset of R4 we must specify the desired range of each
axis. In our experiments we have set all of them to be [0, 1000].

2.5 MVE

Another way to estimate the parameters simultaneously rather than performing
independent 1D medians is to use a multivariate generalisation of the median.
Since this is computationally expensive we use instead another robust technique:
the minimum volume ellipsoid estimator (MVE) [16]. The MVE is defined as the
ellipsoid with the smallest volume that contains half of the data points. It is affine
invariant and so it can be easily applied to multivariate data without need for
normalising the dimensions, although that is not an issue here. The centre of
the MVE is used as an estimate of the ellipse parameters. As usual, the ellipse
orientation is estimated separately by an approximate circular median.

To speed up calculation of the MVE it is approximated by a random resampling
algorithm similar to the minimal subset method we are using for ellipse fitting.
From the best estimate, robust distances are calculated for each point relative to
the MVE, and are used to compute a reweighted mean [16].

2.6 Sampling of tuples

All the estimators described in this paper use the minimal subsets generated from
the different combinations of data points. For the line fitting application in [8]
it was acceptable to use all the possible pairs of points as the complexity was
only O(n2). Since ellipse fitting requires five-tuples taking all the combinations
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would result in O(n5) complexity. Unless only very small data sets are used this
in not practically useful. However, reasonable results can still be obtained for
must less computational cost if only some of the minimal subsets are computed.
The simplest approach is just to randomly sample the data set with replacement to
generate the number of minimal subsets which is estimated as necessary to achieve
the desired likelihood of successful performance. For instance, for the LMedS just
one minimal subset containing no outliers is sufficient for its success. This implies
that if the proportion of outliers is ε, then the number of subsets N that must
be chosen to include with 100 × C% confidence one composed entirely of inliers
is [14, 16]

N =
ln(1− C)

ln(C − (1− ε)5)
.

Unfortunately, this analysis only considers type II noise – the outliers. But type
I noise – consisting of low level noise often modelled by additive Gaussian noise –
can also have considerable effect. In our earlier work on ellipse fitting [11] it was
noted that even for near perfect test cases made up from uncorrupted synthetic
data many of the minimal subsets generated ellipses providing poor estimates
of the full data set. Just the effects of quantising the data to the pixel grid was
sufficient to substantially distort these local ellipses, particularly if the points in the
minimal subset were close together. Closely spaced points have a high “leverage”,
and therefore small variations in their position have a large effect on the ellipse
through the minimal subset.

θd
e e

Figure 1: Orientation error of line
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Figure 2: Orientation error as a function of distance between points

The instability of the ellipse fit when points are closely spaced can more easily
be demonstrated by the example of the straight line passing through two points.
If the error of the points is bounded by e and the distance between the points is d
then from figure 1 the maximum orientation error can be seen to be approximately
θ = tan 2e

d . Plotting the error as a function of the distance between the two points
(figure 2) shows that the error increases exponentially as the distance decreases.
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Based on work carried out to analyse the distribution of spaces on lottery
tickets we can calculate the probability of smallest spacing S of r sequentially
ordered items selected from n as [7]

P (S ≤ k) = 1−
(

n − (r − 1)(k − 1)
r

)
/

(
n

r

)
.

Applying this to minimal subsets for ellipses figure 3a shows the probability of
choosing five points. Naturally, as we increase the number of potential points
that the subset is being drawn from the probability of two points in the subset
being adjacent decreases. Nevertheless, it may appear surprising that even with
33 points there is still a 50% chance of a minimum subset of five points containing
two directly adjacent members. Thus, random sampling will produce a number of
subsets with closely spaced elements which could reduce their effectiveness, and
therefore reduce the robustness of the estimator.

Let us take as an extreme example the situation in which minimal subsets
containing adjacent points always produce erroneous ellipses. Then for a set of
33 points half the sampled tuples are likely to contain adjacent points so that
even an estimator with a 50% breakdown point will be expected to have zero
resistance to outliers. In general, an estimator with a breakdown point b will have
its effective breakdown point reduced such that the fraction of outliers ε must
satisfy (1− ε) × P (S > 1) ≥ b. This is illustrated in figure 3b for an estimator
with an original breakdown point of 0.5. Although in practise the effects of closely
spaced points will not be as extreme as modelled here, they will have a definite
lesser effect, depending on the spatial distance between the points as well as the
amount of mislocalisation of the points.
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Figure 3: (a) Probability of choosing five points from n and getting a minimum
spacing of one; (b) Reduced breakdown point of estimator

Not only are closely spaced points a problem, but points spaced too far apart
can also lead to difficulties. In computer vision the data set for fitting the ellipse
to is likely to be structured. For instance, the points may be sampled from a
curve obtained by detecting edges in the image. This means that the outliers will
not be randomly distributed among the data set. Instead, if the curve is poorly
segmented then one end of the curve may be derived from the elliptical feature
of interest, while the other end arises from a separate outlying object such as
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Figure 4: (a) Probability of choosing five points from n and getting a overall range
R ≥ K; (b) Probability of range being larger than a fraction f of the number of
points

background clutter. When outliers are clustered like this it is better to prevent
the range of the minimal subsets being too large. Otherwise, at least one point
will lie on the outlying section of the curve.

If the points pj in a minimal subset are randomly selected then we can analyse
the joint distribution of the spacings Xj between them [7]

P (Xj ≥ kj ; j = 1 . . . r − 1) =
(

n −
∑r−1

j=1(kj − 1)
r

)
/

(
n

r

)
.

Thus, the distribution of that total range that the subset covers, i.e. R = 1 +∑r−1
j=1 kj , is

P (R ≥ K) =
(

n+ r − K

r

)
/

(
n

r

)
,

and is plotted for various values of K in figure 4a. The likelihood of a minimal
subset covering fixed a range increases as the number of available points increases.
Of more interest is when the range of the minimal subset is taken as a fraction
f of the full data set n. Replacing K by 	nf
 gives the graph in figure 4b. The
jagged outline is due to the non-linear 	•
 operation, necessary since there is only
a discrete number of points. We can see from the graph that for small numbers
of points there is a moderate probability that a large fraction will be covered by a
randomly selected minimal subset. For example 19% of five-tuples taken from 20
points will extend to cover at least half the range of the data.

3 Experimental Results

The different ellipse fitting methods were tested on synthetic data to assess their
performance. Four sets of test data were used, all based on 38 points sampled
from an elliptic arc (axis lengths 333 and 250, subtended angle 200◦) corrupted
by Gaussian noise in the direction of the normals:

1. a sine wave was superimposed on the arc, generating some confusing small
scale structure,
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(a) (b) (c)

Figure 5: Examples of test data; (a) Ellipse with superimposed sine wave and
Gaussian noise (σ = 5) (b) Ellipse with superimposed sine wave and Gaussian
noise (σ = 20) (c) Ellipse with added clutter (20%) and Gaussian noise (σ = 10)

2. some points were additionally corrupted by extremely large amounts of Gaus-
sian noise, producing outliers,

3. clutter was introduced (similar to structured outliers) by adding points along
two noisy line segments, and

4. different lengths of the noisy arc are sampled (fewer points are taken from
shorter lengths).

For each of the test types 500 samples were generated at each of a series of in-
creasing levels of noise, probability of outliers, and amount of clutter, making up
a total of 20,000 test cases. Some examples of the test data are shown in figure 5.
An instance of the elliptic arc with the superimposed sine wave is given in figure 5a
and figure 5b for two levels of noise, while figure 5c shows clutter added to the arc.

All the ellipse fitting methods were applied to the data, and the plots of the
alpha-trimmed means of the error in the estimated ellipse centres are displayed
in figure 6. The mean is trimmed since some incorrect ellipse fits produce ex-
tremely deviant parameter estimates that have a large influence on the mean.
Some of the methods occasionally failed to fit an ellipse (fitting a hyperbola or
parabola instead). In these cases the fit was ignored during the calculation of the
mean. The Theil-Sen method is labelled as median and LMedS params, while the
LMedS method applied to the residuals is labelled as LMedS residuals 1, 2, and 3
corresponding to the algebraic, weighted algebraic, and foci bisector distance ap-
proximations respectively. In figure 6a, despite the presence of the superimposed
sine wave, the LS method outperforms all the other methods. However, this is
explained by the fact that the noise is symmetric and uniformly distributed over
all the data. We can also see that the LMedS method applied to the residuals
gives better results than the remaining techniques.

Figure 6b shows how adding outliers (σ = 10 and 500 for types I and II noise)
causes the LS method to break down. The LMedS residual methods work best
now, particularly the weighted gradient and foci bisector distance approximations
which consistently produce good results so long as there is a majority of inliers.
The Theil-Sen, Hilbert curve, and MVE methods produce less accurate results,
and also break down earlier. However, we note that these experiments show the
Theil-Sen technique breaking down later than predicted.

The addition of clutter (figure 6c) also makes the LS estimator perform poorly,
while the same two LMedS residual methods perform well again, only breaking
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down drastically when more than 50% of the data is made up of the clutter
We also analyse the effect of changing the angle of the arc drawn from the

ellipse. The ellipse superimposed with the sinusoid was used, and the results are
shown in figure 6d. As expected reducing the angle of arc increases the error. The
spike in the graph for the LS fit for 131◦ arcs was surprising, but was confirmed
by testing an additional 1000 random samples with a finer sampling of the angles.
Many elongated ellipses tended to be fit, which may be an effect of the sinusoid.
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Figure 6: Alpha trimmed mean error of estimated centre location (α=0.1); (a)
Superimposed sine wave and Gaussian noise (b) Types I and II noise (c) Clutter
and Gaussian noise (d) Reducing arclength of ellipse

4 Conclusions

Various methods for fitting ellipses to data have been tested, although due to space
limitations not all the results have been shown. The experiments suggest that in
the presence of outliers the LMedS approach applied to either of the weighted
algebraic or foci bisector distance approximations produces the best results. Both
approximations result in robust and accurate fits. If the simpler but more biased
algebraic distance approximation is used then the accuracy degrades significantly,
and the robustness also suffers to a lesser extent. The LS method can produce ex-
cellent fits, but is not robust and therefore cannot be considered if the data may be
contaminated by clutter or other outliers. The Theil-Sen method is markedly infe-
rior to the LMedS residual method in terms of accuracy and robustness. Modifying
the median operation of the Theil-Sen method and finding the LMedS estimates of
the individual parameter values actually degrades the performance rather than im-
proving it. Finally, both the Hilbert curve and MVE approaches were reasonably
robust, but provided poor accuracy.

We discussed several issues concerning the sampling of points to form the min-
imal subsets. In order to avoid tuples with points separated by either too small or
too large a gap a regular sampling of the points appeared advantageous. However,
the experiments show that in fact no advantage for the LMedS method was gained
by regular sampling, and that it actually caused the performance of the Theil-Sen
method to deteriorate.

It should be noted that it is difficult to truly assess the performance of the
fitting techniques. We have measured deviation in the parameter estimates from
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the underlying parameter set used to generate the contaminated data sets. How-
ever, many of the fits which produced low scores according to this criterion still
represent the data quite adequately.
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