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Abstract 
 
This paper presents a set of methods for multi view 
image tracking using a set of calibrated cameras. We 
demonstrate how effective the approach is for resolving 
occlusions and tracking objects between overlapping 
and non-overlapping camera views. Moving objects are 
initially detected using background subtraction. 
Temporal alignment is then performed between each 
video sequence in order to compensate for the different 
processing rates of each camera. The Kalman filter is 
used to track each object in 3D world coordinates and 
2D image coordinates. Information is shared between 
the 2D/3D trackers of each camera view in order to 
improve the performance of object tracking and 
trajectory prediction. The system is shown to be robust 
in resolving dynamic and static object occlusions. 
Results are presented from a variety of outdoor 
surveillance video sequences 
 

1 Introduction 
 
This paper presents a method for multi view image 
tracking using widely separated camera views. Our main 
objective is to create a framework that can be used to 
integrate image-tracking information from multiple 
video sources. We assume the image surveillance 
network consists of a set of intelligent cameras, which 
use background subtraction [2] to detect moving objects 
of interest. The scene constraints are exploited to 
automatically recover the homography relations between 
each camera view. Once recovered, the homography 
relations provide a means of integrating the information 
from each camera view. We then employ 3D and 2D 
Kalman filters to simultaneously track objects within 
each camera view, resulting in robust dynamic and static 
occlusion reasoning. 

Related work includes [3] the Video and 
Surveillance Monitoring (VSAM) project at Carnegie 
Mellon University where they developed a system within 
the context of battlefield awareness. VSAM made use of 
model-based geolocation, which allowed detected objects 

to be mapped to a 3D scene based object with associated 
attributes. The most common technique for tracking and 
trajectory prediction is to use the Kalman filter, or the 
Extended Kalman filter (EKF) for non-linear tracking 
models. In [4] the EKF was used for maintaining object 
track data and occlusion reasoning. The output of the 
EKF was used to detect object collisions. An occlusion 
reasoning process was then used to resolve dynamic 
occlusions. In [5] they demonstrated a multiple 
perspective video (MPI) system that utilises an 
Environment Model (EM) to assimilate data from 
multiple sources and feed them to a number of client 
operators. They also tracked objects using an Extended 
Kalman Filter. Caspi [6] introduced a method for 
aligning two image sequences without any spatial 
overlap between their fields of view (FOV). The 
approach can be used where the cameras have the same 
perspective centre and move jointly in space. Stein [7] 
introduced a system for integrating information by using 
collaboration amongst sensors. The ground plane 
constraint is assumed, and based upon the trajectory of 
tracked objects a homography mapping between the pairs 
of cameras is evaluated, in order to determine a rough 
alignment. Given the rough planer alignment an image 
stabilisation technique is used to further align ground 
plane features in each camera view. An alternative 
method for self-calibration is to automatically identify 
the FOV limits of each camera by observation of motion 
tracks as described in [8]. It is then possible to hand over 
tracked objects within the FOV of overlapping camera 
viewpoints. 

In previous work completed [1] and this paper 
we use a similar approach as in [7] to recover the 
homography relations between each camera view. The 
homography mappings allow objects to be corresponded 
in each camera view. It is then possible to track objects 
in 2D/3D simultaneously across multiple viewpoints. In 
this paper we present the following extensions to our 
previous work. We first define a method of temporal 
alignment to track objects in a surveillance network of 
unsynchronised cameras. Secondly, we define a method 
for object tracking using a combined 2D/3D Kalman 
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filter. We use the 2D Kalman filter state to estimate the 
observation uncertainty of the 3D Kalman filter. This is 
achieved by mapping the uncertainty of a 2D tracked 
object state to 3D by using covariance propagation. The 
3D observation uncertainty is dependent on the position 
of the object with respect to the camera view. When an 
object moves away from the camera the 3D observation 
uncertainty increases, and this should be reflected in the 
tracking model. The final extension is that we 
demonstrate the effectiveness of the method for tracking 
objects between non-overlapping adjacent views. We use 
3D trajectory prediction to estimate when an object 
should appear in the FOV of one camera having left the 
FOV of the other. 
 The remainder of this paper is organised as 
follows: Section 2 describes the method used for 
temporal alignment of unsynchronised captured image 
frames. Section 3 describes how detected moving objects 
are corresponded between each overlapping camera view. 
In Section 4 we discuss how the system extracts 3D 
measurements from the scene to determine an objects 
location. Section 5 describes the approach used for object 
tracking and occlusion reasoning. We use collaboration 
between multiple views to resolve dynamic and static 
occlusions. Section 6 presents results generated using the 
multi view tracking system. Tracking results are shown 
for the PETS2001 datasets and our own captured video 
sequences. Section 7 summarises the main achievements 
of the approach and discusses how the system will be 
extended for future work. 
 

2 Temporal Alignment 
 
In a typical image surveillance network each intelligent 
camera acts as an independent process. Since there is no 
control over the capture of image frames there is a 
temporal drift between the data generated by each 
intelligent camera. Hence, before the information 
generated by each intelligent camera can be integrated it 
is necessary to synchronise the captured image frames. It 
is assumed that a timestamp is associated with each 
captured image frame. Given the time offset between the 
internal clocks of each camera it is possible to perform 
the frame synchronisation step. The time offset between 
each camera can be automatically determined by 
geometrically aligning the obect track data of each 
camera view for various frame offsets. A Least Median of 
Squares (LMS) score can be generated for different frame 
offsets between each pair of camera views. The minimum 
LMS score defines the frame offset where the object track 
data is best aligned between the pair of camera views, 
allowing the time offset to be determined. Once the time 

offset is known between each camera the following 
relation can be used for temporal alignment: 
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Where S

p
T  is the time stamp associated with the pth 

captured image frame of view S, AB
Off is the time offset 

between the first and second camera views. The image 
frames are synchronised to the camera with the slowest 
processing rate. An image frame is skipped if it is found 
that the timestamp associated with a camera has already 
been used. 
 

3 Viewpoint Integration 
 
Before we can jointly track objects between each camera 
view it is necessary to recover some calibration 
information. We assume that the camera views are 
widely separated and moving objects are constrained to 
move along a dominant ground plane. Using an LMS 
search it is possible to robustly recover a set of 
correspondence points, which can be used to compute the 
homography mapping between each overlapping camera 
view. The LMS method performs an iterative search of a 
solution space by selecting a minimal set of 
correspondence points to compute the homography 
mapping. The solution that is most consistent with the 
object track data is taken as the best solution. The LMS 
based search was used due to its robust performance in 
the presence of outliers.  
 

3.1 Homography Definition 
 
A homography mapping defines a planer mapping 
between two overlapping camera views: 
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Where ),( yx  and )','( yx  image coordinates for the first 

and second camera views, respectively. Hence, each 
image point correspondence between two camera 
viewpoints results in two equations in terms of the 
coefficients of the homography. Given at least four 
correspondence points allows the homography to be 
evaluated. It is most common to use Singular Value 
Decomposition (SVD) for computing the homography 
[9]. 
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3.2 Homography Based Matching 
 
Given a set of detected moving objects in each camera 
view we can define a match between a correspondence 
pair when the transfer error condition is satisfied: 
 

TE
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Where x  and 'x are projective image coordinates in the 
first and second camera views, respectively. The 
constraint is applied to determine correspondence 
between the moving objects detected in each camera 
view. 
 

4 Camera Calibration and Measurement 
Uncertainty 
 
Each camera in the surveillance network was calibrated 
using a set of landmark points [10]. The accuracy of the 
calibration is normally sufficient for extracting 3D 
measurements and tracking objects as long as the survey 
points are sensibly distributed on the ground plane. A 
survey of a typical surveillance region can be performed 
in less than one hour. 
 

4.1 3D Measurement 
 
Once moving objects have been corresponded in each 
camera view a 3D line intersection algorithm is used to 
determine the location of each tracked object. Using the 
calibrated camera parameters it is possible to project a 
3D line through the centroid of each detected object. A 
least squares based approach can be used to determine 
the optimal intersection point of all the 3D lines. 
 
Given a set of N 3D lines 
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Where ia  is a general point located on the line and ib is 

unit direction vector, a point Tz)y,(x,=p  must be 

evaluated which minimises the error measure: 
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Where i

d  is the perpendicular distance from the point p  

to the line ir . After applying least squares analysis and 

algebraic manipulation an equation can be derived for 
evaluating the intersection of all N lines: 
 

























⋅−

⋅−

⋅−

=








































−−−

−−−

−−−

∑
∑
∑

∑∑∑
∑∑∑
∑∑∑

=

=

=

===

===

===

N

i

iziz

N

i

iyiy

N

i

ixix

N

i

iz

N

i

iziy

N

i

izix

N

i

iziy

N

i

iy

N

i

iyix

N

i

izix

N

i

iyix

N

i

ix

ba

ba

ba

z

y

x

bbbbb

bbbbb

bbbbb

1

1

1

1

2

11

11

2

1

111

2

1

1

1

ii

ii

ii

ba

ba

ba

 

CK P

CKP
1-=⇒

=
 

 

4.2 Measurement Uncertainty 
 
It is important to have a mechanism for assessing the 
accuracy of the 3D measurements made by the system. 
This allows a degree of confidence to be determined for a 
given measurement. To determine the measurement 
uncertainty of the tracked 3D objects we used the output 
of the 2D Kalman filter from each camera view. A 
nominal image covariance can be propagated from the 
image plane to the 3D homography plane.  
 

TJJΛ=Σ  
 
Where Λ  a nominal image covariance on the 2D image 
plane, J is the Jacobian transformation from the image 
plane to the 3D homography plane, and ∑  is the 
propagated covariance. The projected covariance is used 
to indicate the observation uncertainty when the 3D 
Kalman filter object state is updated. Our justification for 
using this approach is to improve the estimate of 
observation uncertainty used for matching objects and 
updating the 3D Kalman filter. The uncertainty of a 3D 
measurement increases with distance from the camera. In 
these situations we want to use a larger measurement 
covariance when trying to match observations to a 
tracked object state, and updating the 3D state of a 
tracked object. We also combine each measurement 
covariance when a tracked object is visible from both 
camera views. 
 

5 Object Tracking and Trajectory Prediction 
 
The object state is simultaneously tracked in both 2D 
image coordinates, and 3D world coordinates using a 
Kalman filter. The object state for the 3D Kalman filter 
includes the object’s 3D location along with its estimated 
velocity. The object state for the 2D Kalman filter 
includes the object’s location in image coordinates along 
with its velocity in pixels.  

During periods of occlusion we use trajectory 
prediction to estimate the objects location until it 
becomes visible again. Observations are matched to 
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tracked objects by constructing a Mahalanobis distance 
table. These matches are then used to update the 
corresponding 2D states of tracked objects visible in each 
camera view. 
 
3D State Model 

[ ]TZYXZYX ���=3DtX  
 
where, 
 
[ ]ZYX  is the spatial location in world coordinates 

[ ]ZYX ��� is the spatial velocity in world coordinates 
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2D State Model 
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where, 
 
[ ]yx is the spatial location in image coordinates 

[ ]yx
��

is the spatial velocity in image coordinates 

  
W and H are the width and height of the objects 
bounding box in image coordinates 
 
State Transition Model        Observation Model 
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6 Results 
 
The methods discussed in this paper were tested on video 
sequences captured from live surveillance cameras. A 
short training sequence of a few minutes was used to 
recover the time offset, and the homography mapping, 
between each camera view. Figure 1 shows the LMS 
score for different frame offsets between the two cameras. 
The difference between the two camera clocks was 

manually determined to be 0.04 seconds, so the actual 
frame offset between the cameras was 0 frames as 
indicated by the minimum of the LMS plot. Figure 2 
shows the correspondence points that were used to 
evaluate the homography transformation. Since we are 
tracking each object in 3D the system is effective for 
handling dynamic occlusions. The system relies on 
trajectory prediction of the 3D Kalman filter to resolve 
occlusions as shown in Figure 3. 
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Figure 1: Plot of the LMS score for different frame 
offsets between each camera 
 

 
Figure 2: The correspondence points found by the 
LMS search algorithm 
 
In Figure 4 we illustrate how the 3D observation 
uncertainty varies as the tracked object moves through 
the FOV. The covariance of the second camera is larger 
than that of the first camera. The combined covariance 
is weighted towards the camera with the smaller 
uncertainty. The system has also been tested using the 
PETS2001 datasets, in order to evaluate the 
performance of the system with respect to its handling 
of dynamic and static occlusions. In Figure 5 a static 
occlusion is formed in the first camera view when an 
object passes in front of the tree, a dynamic occlusion 
occurred when the cyclist overtakes the two pedestrians. 
In Figure 6 the plotted trajectories show the tracked 
path of each object, which undergoes static and dynamic 
occlusion. It can be observed that the system maintains 
track of an object through both types of occlusion. Each 
FOV map was constructed by projecting the pixels in an 
image to the ground plane, based upon the calibration 
information. In the tracking error plot shown in 
Figure 7 the events S1 S2 S3 indicate when the tree 
occludes the first pedestrian, second pedestrian, and 
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cyclist, respectively. The two events D1 and D2 indicate 
when the cyclist overtakes the two pedestrians, thus 
forming a dynamic occlusion. It can be observed that the 
tracking error does not degrade significantly during 
each type of occlusion. 
 

 

 
Figure 3: Example of handling dynamic occlusion. 
The top, and bottom images show two objects before 
and after a dynamic occlusion. The correct labels are 
still assigned after the occlusion. 
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Figure 4: The plot of the measurement uncertainty of 
a selected object track.  
 

In a typical image surveillance network the 
cameras are organised so as to maximise the total field of 
coverage. As a consequence we could have two cameras 
in which the FOVs are separated spatially by a small 
distance. In these situations we are interested in tracking 
an object when it leaves one field of view and enters 
another. Once a tracked object has left the field of view 
we use trajectory prediction in 3D to determine when the 
object should reappear in the adjacent camera view. If 
the object does not appear when expected then it is 
deleted. Since the trajectory prediction between both 
cameras is active for several seconds we re-initialise the 

covariance of the tracked object to reflect the associated 
uncertainty. If the object maintains the same speed and 
trajectory then it is detected when it reappears in the 
adjacent camera view. The plotted trajectories in 
Figure 8 illustrate how effective trajectory prediction is 
for estimating the objects location during the transit 
period between the two camera views. The pedestrian 
changed direction during the transit period (from the top 
to bottom camera view) for the lower trajectory. 

 

 

 
Figure 5: objects during static occlusion (top image), 
and dynamic occlusion (bottom image). 
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Figure 6: An example of resolving both dynamic and 
static occlusions 
 

7 Conclusion and Future Work 
 
This paper has demonstrated a framework for multi view 
image tracking and surveillance. The system is able to 
automatically recover the homography relations between 
overlapping camera views by performing a LMS based 
search of object track data. The homomography mapping 
is a point transfer model, which is effective for matching 
moving objects on the ground plane. If moving objects 
violate the ground plane constraint then the matching 
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becomes less reliable. The uncertainty of the camera 
calibration is incorporated into the tracking model, 
which consists of a coupled 2D/3D Kalman filter. The 
system is robust in tracking objects between views and 
can robustly resolve both dynamic and static object 
occlusions. We also demonstrated a method that uses 
trajectory prediction for tracking an object, which is in 
transit between two adjacent non-overlapping camera 
views. The main weakness of this approach is that 
ambiguous matches will occur if an object significantly 
changes it trajectory during the transit period. 
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Figure 7: Tracking error during dynamic and static 
object occlusions. 

 

 

 
Figure 8: Tracking objects between non-overlapping 
views using 3D trajectory prediction.  
 

In future work we plan to perform experiments 
with a network of intelligent cameras consisting of N>2 
views. We also intend to incorporate normalised colour 
information into the 2D tracking model. This would 
facilitate handling dynamic occlusions between moving 
objects. In addition, colour information would also be 
useful for tracking objects between cameras without 

overlap. For un-calibrated camera views colour would be 
a useful cue for keeping track of an object, which exits 
and re-enters the camera network field of view. 
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