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Abstract

The objective of this paper is to develop an approach for efficiently and quantitatively evaluating thresholding al-

gorithms for change detection in a surveillance environment. Previous evaluation in the literature has either been

subjective or small scale, in part due to the difficulties and/or the time and effort involved in determining appropriate

ground truth. In comparison, our automated approach enables us to carry out a more thorough evaluation, and we test

the performance of eight different thresholding algorithms using more than 4000 images with two different texture

environments.
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1. Introduction

The rapid increase in use of video cameras for

remote surveillance has been a significant devel-

opment in the security industry. Unfortunately the

task of distinguishing abnormal events from ev-

eryday activity requires the continued vigilance of

security personnel. Since many video surveillance
installations employ a large number of cameras,

this task places a heavy burden on the operator

which inevitably results in loss of concentration

and therefore poor performance. One solution is

to automate change detection and object tracking.

This information can then be made available to

alert the operator in the event that an illegal or
* Corresponding author. Tel.: +44-2920875585; fax: +44-

2920874598.

E-mail address: paul.rosin@cs.cf.ac.uk (P.L. Rosin).

0167-8655/03/$ - see front matter � 2003 Elsevier B.V. All rights res

doi:10.1016/S0167-8655(03)00060-6
abnormal activity is detected. Change detection is

the very first step required towards a solution to

this problem. Frame differencing and/or back-

ground subtraction followed by thresholding is a

commonly used method for change detection if the

images are co-registered. A surveillance camera

that records at 30 frames per second does not have

to deal with rapid changes in the lighting and il-
lumination conditions. Therefore we can often

assume a nearly constant environment between

adjacent frames. Otherwise there are many algo-

rithms of varying sophistication in the literature

(Stauffer and Grimson, 1999; Ren et al., 2003) that

can be used to generate and maintain background

images, and so simple image differencing can be

still be employed.
Thresholding is a fundamental technique

applied in many image processing applications.

Many relatively simple and computationally
erved.
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effective algorithms have been developed and used

for change detection in video sequences. However

very little has been done on evaluating these al-

gorithms using long sequences of realistic data,

and unfortunately there is no widely accepted

evaluation test framework. Consequently, when
new thresholding algorithms are presented in the

literature they often lack the extensive testing that

is necessary to enable easy comparison with pre-

vious solutions.

The main problem of evaluation over a very

large sample space is that it takes up a lot of time,

which makes the process impractical in many

cases. As a rule of thumb one can use the time
relation (Forstner, 1996)

theory:implementation:testing ¼ 1:10:100:

This does not include the cost of getting the

ground truth which can be even more laborious. In

the last few years there has been considerable in-
terest in techniques for evaluation of computer

vision algorithms (Bowyer and Phillips, 1998;

MVA, 1997). Unfortunately, the majority require

ground truth, which makes large scale evaluation

impractical. Some alternatives exist; for instance,

Levine and Nazif (1985) suggested assessing the

quality of image segmentation without reference to

a ground truth image, but by measuring for each
region its internal homogeneity and its contrast

along its boundaries. In a similar vein, Kitchen

and Rosenfeld (1981) assessed the quality of

thresholded edge maps using edge continuity and

thinness. While appealing, the problem is that

these criteria do not always reflect good results

(Venkatesh and Rosin, 1995).

In most cases ground truth is essential for per-
forming a quantitative analysis of an algorithm�s
results. There are three main approaches to gen-

erating ground truth. The first uses synthetic data;

example applications are ellipse fitting (Fitzgibbon

et al., 1999), edge detection (Venkatesh and

Kitchen, 1992), corner detection (Zheng et al.,

1999), and optic flow (Barron et al., 1994). This

method enables ground truth to be easily pro-
vided––the problem is that the synthetic data will

probably not faithfully represent the full range of

real data. Alternatively, real image data can be

manually annotated, e.g. to mark edge and non-
edge pixels (Dougherty and Bowyer, 1998), or to

specify an ideal image segmentation (Hoover et al.,

1996). Now we have the opposite problem: the

image data is good, but the ground truth is dubi-

ous. Since manual mark-up is tedious and time

consuming large volumes of ground truthed data
are likely to have errors. In addition, the process

has become subjective, and different annotators

often give different ground truth (Kadonaga and

Abe, 1995). A third approach avoids explicitly

determining a ground truth dataset, and relies in-

stead on evaluating the algorithms� outputs by a
human panel (Heath et al., 1997). Two disadvan-

tages are the time consuming nature of the exercise
(more images need to be viewed), and the difficulty

in incorporating additional algorithms into the

evaluation results at a later date (unless the same

panel is reconvened).

The following give some examples of the eval-

uation of thresholding algorithms in the literature.

Zhao et al. (2000) experimented on applying seven

different thresholding algorithms to several blue-
print images. Their testing, although methodical,

was limited; they were subjective, the results were

produced only by observation of the resulting

images. Since no automatic method was used to

quantify the performance of the algorithms, the

evaluation is not easily repeatable.

Leung and Lam (1996) proposed a methodol-

ogy for evaluation of iterative thresholding algo-
rithms. Most of the measures relate to the stability

of the iterative process which restricts their gen-

erality and usefulness. Actual evaluation of the

correctness of the results required ground truth

which they obtained by restricting the majority of

the testing to synthetic data. Only a few real life

images were tested and the evaluation of the cor-

rectness of the thresholding algorithms applied to
them was subjective.

In (Sahoo et al., 1988) previous work done by

Weszka (1978) and Fu and Mui (1981) was up-

dated, providing a well-presented taxonomy of

different thresholding algorithms with limited

testing of results (only three images). In addition

to region uniformity they used a shape measure-

ment (based on the image gradient) to classify
the performance of the algorithms. It is interesting

to note that optimising thresholding according
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to these two measures produced very different

results.

In an extensive set of tests Sezgin and Sankur

(submitted for publication) compared 41 thres-

holding algorithms. In addition to measuring re-

gion uniformity and pixel misclassification they
measured shape distortion. The binarised image

was compared to a ground truth image or to an

edge map of the original image. Like Levine and

Kitchen�s work the latter approach avoids the need
for ground truth, but again its validity is ques-

tionable.

While the above approaches performed low

level evaluation of thresholding algorithms, the
work by Trier and Jain (1995) took a goal directed

approach, and assessed 11 thresholding algorithms

by their effectiveness for document image analysis.

As with so many evaluation techniques this re-

quired ground truth to be collected, which they

described as ‘‘extremely tedious’’, thus limiting its

wider application.

In this paper we propose a framework for
testing thresholding algorithms at a low level as

well as for use in a specific application, namely

change detection. The approach is scalable as it

can easily cope with a large number of threshold-

ing algorithms and, more importantly, many im-

ages. The importance of testing with large

amounts of data was recently highlighted by For-

bes and Draper (2000) who showed that otherwise
quite misleading evaluation results could be pro-

duced. In this case we obtained results on eight

different thresholding algorithms which were ap-

plied to seven different sequences totalling over

4000 images. The following section goes through

the thresholding algorithms that we put on test. In

Section 3 the proposed evaluation framework is

analysed, and Section 4 presents the results of the
experiments.
2. Image thresholding algorithms

There are many thresholding algorithms pub-

lished in the literature, and selecting an appropri-
ate one can be a difficult task. The problem is that

different algorithms typically produce different re-
sults since they make different assumptions about

the image content. For instance, some require the

two classes to have not too dissimilar sizes, others

model the class distributions as Normals, etc. Our

choice was based on algorithms that are widely

known or offer an alternative method of thres-
holding calculation. In addition, they did not re-

quire parameters, and were straightforward to

implement thereby ensuring that our coding was

likely to be accurate.

• The Ridler and Calvard (1978) algorithm uses

an iterative clustering approach. An initial esti-

mate of the threshold is made (e.g. mean image
intensity). Pixels above and below the threshold

are assigned to the white and black classes re-

spectively. The threshold is iteratively re-esti-

mated as the mean of the two class means.

• The Tsai (1985) algorithm determines the

threshold so that the first three moments of

the input image are preserved in the output

image.
• The Otsu (1979) algorithm is based on discrimi-

nant analysis and uses the zeroth- and the first-

order cumulative moments of the histogram for

calculating the value of the thresholding level.

• The Kapur et al. (1985) algorithm uses the en-

tropy of the image. It considers the thresholding

image as two classes of events with each class

characterised by a pdf. The method then maxi-
mises the sum of the entropy of the two pdfs

to converge to a single threshold value.

• Two approaches as described by Parker (1996)

were implemented that use the entropy of the

intensity histogram according to two definitions

(by Huang and Wang (1995) and Yager (1979))

of fuzziness.

• The Rosin (2001) algorithm fits a straight line
from the peak of the intensity histogram to

the last non-empty bin. The point of maximum

deviation between the line and the histogram

curve will usually be located at a corner which

is selected as the threshold value.

• The Normal fitting algorithm fits a Normal dis-

tribution to the intensity histogram. Since the

Normal is likely to be asymmetrically truncated
an iterative fitting method (Press et al., 1988)

was used.
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3. Evaluation methodology

To evaluate the thresholding algorithms for

change detection we need to set up an environment

that will enable us to obtain the necessary testing
sequences on which the algorithms will be applied.

Ground truth data is essential to provide a refer-

ence point to test the correctness of the thres-

holding results. Finally we will need to apply

analytical methods to quantify and classify the

results of the comparison.

3.1. Evaluation methodology

Our approach to evaluation is based on the

following principles. Performance will be evalu-

ated quantitatively by comparing the thresholded

result against a ground truth image which specifies

the true areas of change. Since we want to be able

to apply the approach to large amounts of data

this requires the ground truth data to be generated
automatically, since otherwise it becomes imprac-

tically slow and laborious. One solution is to use

synthetic data, but since this is rarely truly indi-

cative of real-life data the evaluation task would

become compromised. Our key idea is to keep with

real images––as realistic as possible––but to con-

trol the contents of the scene in some way without

substantially altering the nature of the image. The
idea then is to distinguish areas of change by some

properties such as number of regions, colour, size,

shape, position, etc. These properties need to be

sufficient to enable the moving object to be auto-

matically found, but will not be used by the

thresholding algorithms themselves (so that the

evaluation is not compromised).

Having generated a set of ground truthed data
this easily enables a larger secondary set of image

data which shares the same ground truth to be

generated. For instance, the images could be

modified by adding noise, changing contrast,

simulating occlusion, etc. Alternatively, once de-

tected, the moving object could be cut out and

pasted into new video sequences. Although the

resulting images would not be totally realistic (e.g.
shadows and illumination of the foreground object

would be wrong) the data could still be useful for

testing purposes.
3.2. Establishing the testing data and ground truth

As an example, in this paper we present the

results of tracking a single moving object of a

specific shape; namely a ball in a room. We used
the ball for convenience as its projection in the

image is constrained to a circle, allowing us to use

a simple circle detection algorithm to establish the

ground truth. Thus, the high level information that

specified that change corresponded to a single

round object enabled the ground truth to be

automatically generated. Thresholding was applied

to the difference image, and was therefore unbi-
ased by the set-up for ground truth collection.

Using two alternate floor textures (one of a single

colour and one multi-coloured) seven sequences

totalling over 4000 images (of size 768� 576) were
taken. Figs. 1 and 2 show a sample image, the

difference image, and the results of thresholding.

A large amount of noise and blockiness was

noticed in the initial experiments, causing diffi-
culties in establishing the ground truth. This arose

mainly from noise introduced during the digitisa-

tion process, and the high level of JPEG com-

pression applied to the original image sequences.

In particular, when background subtraction was

applied to reveal the moving ball, variations in the

compression in the pairs of images produced sig-

nificant responses in the difference images around
edges. Rather than improve the quality of the

images it was decided that although they provided

a greater challenge to the tracking algorithm the

variations in the difference image provided a more

demanding task to the thresholding algorithms.

This was preferable since most thresholding algo-

rithms work well on simple images, generally

producing similar results. It is only on more diffi-
cult images that the results really diverge. To

minimise the effects of noise and compression

artifacts during tracking (but not during the later

thresholding stage) a mask image was created from

a background image containing no moving ob-

jects. The edges were extracted (using the Sobel

detector), thresholded, and dilated to further

reduce side effects.
To track the ball, edge detection was applied to

the image sequence and artifacts removed by ap-

plying the mask. Circle detection was then



Fig. 2. Results of thresholding difference image with various algorithms.

Fig. 1. (a) Sample image showing room with background texture on floor and tracked ball and (b) difference image before thres-

holding.
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straightforward. After initialisation in the first
frame by hand, successive positions were found by

searching in a window centred on the position of

the ball for a new position and radius that maxi-

mised the mean edge magnitude over the circle�s
perimeter. The result of the circle detection was

then used to position a disk representing the ball
on a blank image thus producing the ground truth.
This new sequence of ground truth images was

visually inspected for discrepancies.

The resulting sequences were mostly very close

to the expected result. Occasionally the tracker

failed due to the multiple textures on the ball

and the strong shadows which cause significant
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distractions from the true boundaries of the ball. A

possible solution would be to use a more sophis-

ticated tracker, but given that the ball�s move-
ments were erratic (it was a toy that moved

autonomously) improving the tracking would not

be trivial and was not considered necessary; it was
sufficient to simply to re-initialise the circle detec-

tion algorithm at those specific frames.

3.3. Analysis protocol

There are many different ways of evaluating the

performance of algorithms, starting from analy-

sing individual pixels at the lowest level, to higher
levels which consider the overall effectiveness of

the application that the thresholding is embedded

within. Our initial approach is to measure the

correctness of the algorithms at the pixel level

which is independent of a specific application. At a

goal directed level we continued by evaluating the

effectiveness of the results for change detection.

3.3.1. Pixel based evaluation

The results of the low level pixel based com-

parison between the ground truth and the thres-

holded image for each frame of the sequence were

based on the following values:

• True positives (TP): i.e. number of change pix-

els correctly detected.
• False positives (FP): i.e. number of no-change

pixels incorrectly flagged as change by the algo-

rithm.

• True negatives (TN): i.e. number of no-change

pixels correct detected.

• False negatives (FN): i.e. number of change pix-

els incorrectly flagged as no-change by the algo-

rithm.

From these four quantities the following mea-

sures were used:

• The percentage correct classification: PCC ¼
ðTPþ TNÞ=ðTPþ FPþ TNþ FNÞ.

• The Jaccard coefficient (Sneath and Sokal,

1973): TP=ðTPþ FPþ FNÞ.
• The Yule coefficient (Sneath and Sokal, 1973):

jðTP=ðTPþ FPÞÞ þ ðTN=ðTNþ FNÞÞ � 1j.
The reason all three alternative measures

were considered is that the seemingly simple task

of quantifying the similarity between two binary

images is surprisingly tricky. The most obvious

approach is to combine all four values to form

the PCC, and this is the most widespread method
in computer vision for assessing a classifier�s per-
formance. However, it tends to give misleading

estimates when the amount of change is small

compared to the overall image. So, in our case

where the amount of change represents less

than 4% of the image, very high ratings (e.g. 96%)

can be achieved simply by thresholding out every-

thing and classifying the complete image as back-
ground. The error incurred by completely missing

the ball is relatively small. In the area of remote

sensing the limitations of PCC are well known

(Congalton, 1991; Yuan and Elvidge, 1998), and

alternatives such as the kappa coefficient (Cohen,

1960) and its various refinements are often used,

but they have their own problems (Stehman,

1997).
The discipline of taxonomy also considers a

range of assessment criteria. In particular, the Yule

and Jaccard coefficients overcome our problem

with the PCC to some degree by minimising or

eliminating the effect of the expected large volume

of true negatives. Note that the Yule coefficient

cannot be applied when the algorithm correctly

detected no change in the image (since one de-
nominator becomes zero).

Within the sequences there are frames in which

no change occurs. These were analysed separately

so that we monitor the effects of noise and com-

pression artifacts when no real activity exists in the

sequence.

3.3.2. Goal based evaluation

At a higher level of analysis the surveillance

system�s goals will be to detect and possibly track
moving objects. In this case small spurious blobs

of brief duration are relatively unimportant as they

can easily be filtered out. Thus, only the effective-

ness of the detection of the main regions in the

thresholded image should be considered in the

assessment. A direct approach would be to simply
determine the rate of success of the tracker. In-

stead, to avoid the rating being tied into the
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tracker�s mode of operation and settings we take
an intermediate tack. Since we have control over

the environment we can assume that there exists a

single moving object in the scene. Therefore the

automated goal directed testing took the form of

checking the validity of the largest blob in the
thresholding image. By filtering out all but this

single blob, the spatial aspects of the image are

taken into consideration. For instance, if thres-

holding produced many isolated small groups of

pixels detected in the ball region this would receive

a good TP score even though the results may be

useless for tracking. In addition, a conservative

size constraint was included to filter out tiny and
enormous blobs, the allowable range of areas

being ½20; 1000	 pixels, enabling empty frames to
be discarded.

Two aspects of the blob were measured––its

area and compactness. The first computes the ab-

solute area error which is given by subtracting the

blob�s area from the expected ground truth area.

The second uses the knowledge that the moving
object is round. Compactness is defined by the

square of the perimeter of a region divided by its

area, and is minimised in the case of the circle.

Small values for both measures indicate good

performance. Such an approach is similar to the

ultimate measurement accuracy of Zhang (1996) in

which image segmentation algorithms were as-

sessed according to region area in the thresholded
image, although in Zhang�s case only extremely
simple synthetic images were used.

In conclusion, we have described an evaluation

system that is scalable and can be easily used for

testing any thresholding algorithm. The results

produced can be configured for different forms of

evaluation, e.g. a variety of pixel based and/or goal

based tests.
4. Results analysis

In this section we present the results obtained

following the testing protocol. In Table 1, the test

results for the seven sequences are listed, separated

into the uniform and textured floor sequences. The
results showed that most of the algorithms operate

better under the less textured environment (no
floor texture)––which is to be expected as the ball

is then more distinct from the background.

Kapur was the best performing algorithm both

quantitatively and qualitatively. It received sub-

stantially higher scores than the others, and on

visual inspection we found it be the only one to
avoid most of the ball shadow while retaining most

of the ball. The Normal fitting, Tsai, and Rosin

algorithms seemed to suffer more from the shadow

and the compression/edge noise. In our opinion,

on a high quality sequence with no artifacts, any of

the top four algorithms would be suitable for

change detection. The Ridler and Calvard, and

Otsu algorithms performed significantly worse,
and in general did very badly.

The Yager fuzziness algorithm achieved the best

overall calculated performance according to the

numerical scores, though it was proved, through

visual inspection and analysis of the TP results, to

actually perform the worst. About 40% of the time

it would correctly detect less than 3% of the ball,

and for 55% it would not detect any ball pixels (e.g.
Fig. 2f). Furthermore, at best, it only detected 50%

of the ball pixels. The reason that the measures do

not sufficiently penalise this bad behaviour is due to

the very small size of the ball, and so over-thres-

holding is assigned high scores. This was the main

discrepancy regarding the evaluation measures,

and the numerical ratings of the other algorithms

match the visual judgements much better.
In Table 2, the results when no change occur-

red in the scene are shown. Thus, in this case the

threshold determination task degenerates to

ideally classifying all pixels as non-change. This

situation is potentially problematic for some

algorithms, but in fact causes little difference in the

relative rankings of the algorithms currently under

consideration.
We continued by performing evaluation at a

goal based level. In Table 3 the compactness re-

sults applied on the sequences are shown. We note

that the same four algorithms are in the top four

ranking with some change in the order: Tsai,

Rosin, Normal fitting, and Kapur. The reason for

this change lies on the fact that the ball is multi-

textured, therefore algorithms that have a less
conservative approach to the thresholding value

will be favoured over the others.



Table 1

Average and median scores for thresholding algorithms. Larger values indicate better performance

Algorithm Measure Uniform texture floor Multi-texture floor

Avg. (1–4) Med. (1–4) Avg. (5–7) Med. (5–7)

PCC 0.5527 0.5532 0.5799 0.5915

Ridler and Calvard Jaccard 0.0019 0.0017 0.0018 0.0015

Yule 0.0018 0.0017 0.0017 0.0015

PCC 0.9832 0.9839 0.9784 0.9770

Tsai Jaccard 0.0437 0.0381 0.0267 0.0209

Yule 0.0441 0.0384 0.0268 0.0209

PCC 0.9022 0.9040 0.9559 0.9540

Otsu Jaccard 0.0106 0.0063 0.0150 0.0112

Yule 0.0105 0.0063 0.0149 0.0111

PCC 0.9992 0.9992 0.9983 0.9983

Kapur Jaccard 0.3557 0.3432 0.1543 0.1274

Yule 0.5865 0.5645 0.2292 0.1664

PCC 0.2934 0.1348 0.5294 0.5860

Huang and Wang Jaccard 0.0013 0.0012 0.0016 0.0014

Yule 0.0013 0.0012 0.0015 0.0014

PCC 0.9992 0.9993 0.9992 0.9994

Yager Jaccard 0.1179 0.1008 0.0472 0.0257

Yule 0.8883 0.9779 0.5430 0.6214

PCC 0.9774 0.9775 0.9681 0.9684

Normal Jaccard 0.0317 0.0310 0.0182 0.0163

Yule 0.0318 0.0310 0.0181 0.0161

PCC 0.9891 0.9892 0.9814 0.9809

Rosin Jaccard 0.0592 0.0523 0.0282 0.0246

Yule 0.0604 0.0530 0.0283 0.0246

Table 2

PCC scores for sequences where no change occurs (larger values indicate better performance)

Algorithm Ridler Tsai Otsu Kapur Huang Yager Normal Rosin

Average 0.5452 0.9493 0.8264 0.9977 0.2041 0.9999 0.9721 0.9893

Median 0.5541 0.9368 0.8015 0.9984 0.1329 0.9999 0.9714 0.9894

Table 3

Compactness scores (smaller numbers represent better performance)

Algorithm Ridler Tsai Otsu Kapur Huang Yager Normal Rosin

Average 2144.49 175.90 1075.45 493.17 1019.72 616.86 220.09 212.90

Median 2074.00 187.00 952.00 522.00 562.00 628.00 172.00 235.00
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Table 4 gives the area error. Note again that the

Yager fuzziness method shows the best perfor-

mance, but that is because 65% of the frames were

not included in the analysis as no blob was de-
tected. From this test we can see that the ranking

of the best four algorithms is the same as at pixel

level testing. One thing to note, there is little dif-

ference between the average and median values for



Table 4

Absolute area error (smaller numbers represent better performance)

Algorithm Ridler Tsai Otsu Kapur Huang Yager Normal Rosin

Average 292.74 69.66 319.53 24.42 198.51 24.75 109.49 42.09

Median 253.60 30.50 327.30 22.20 100.90 22.90 31.70 30.40
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Kapur, but a more substantial difference for the
other three. This suggests that sometimes the latter

algorithms are unstable.

The experimental framework does not directly

provide a means to exactly pinpoint the con-

tributing factors to the ranking of the various

algorithms since each thresholding algorithm is

essentially treated as a black box. The closest we

could get would be to systematically vary the scene
and object parameters (e.g. illumination, back-

ground complexity, object size, colour, shape) and

infer the factors from the scores. We have not

carried out such experiments in this paper, but can

make the following more general comments. Many

traditional thresholding algorithms have difficulty

with images that have primarily unimodal inten-

sity distributions, such as encountered in this data-
set, although Rosin�s and Kapur�s algorithms were
shown to cope particularly well (Rosin, 2001). In
Fig. 3. Data from the intelligent room sequence. (a) Frame 218, (b) fo

before thresholding.
that same study Ridler and Calvard�s algorithm
was generally found to perform well, but had

occasional difficulty with images containing small

foreground objects. Although many fuzzy thres-

holding schemes exist and have been shown to be

successful in other contexts (Jawahar et al., 2000),

it seems that in this case the two fuzzy measures of

image similarity were not appropriate.
5. Further testing

To further test the thresholding algorithms we

applied them to the ground truthed data made

available by Prati et al. (2001). They provided 112

images from an indoor sequence containing a

moving person along with a manual segmentation
into foreground (human), shadow, and back-

ground. Although close examination of the ground
reground and background ground truth and (c) difference image



Fig. 4. Results of thresholding the difference image from frame 218 of the intelligent room sequence with various algorithms.
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truth shows some errors in delineation this still

provides a useful test set.
Fig. 3a and b shows an image from the sequence,

and its associated ground truth (we use only fore-

ground and background). Differencing with the

first frame in the sequence (Fig. 3c) shows that

there is considerable variation in contrast between
Table 5

Mean results of thresholding the intelligent room sequence with vario

Measure Algorithm

Ridler Tsai Otsu Kapur

PCC 0.9928 0.9932 0.9928 0.9940

Jaccard 0.6258 0.6430 0.6295 0.6731

Yule 0.9395 0.8539 0.9381 0.8423

Table 6

Standard deviation of results of thresholding the intelligent room seq

Measure Algorithm

Ridler Tsai Otsu Kapur

PCC 0.0069 0.0060 0.0070 0.0054

Jaccard 0.1291 0.1349 0.1294 0.1215

Yule 0.1460 0.1600 0.1473 0.0757
the foreground and background, which makes the

thresholding task rather harder. This is demon-
strated in Fig. 4, where both the Yager and Normal

algorithms have extracted the high contrast mid-

section of the person rather than the full body.

The results averaged over all images are listed in

Table 5. Rosin�s algorithm fared worse compared
us algorithms

Huang Yager Normal Rosin

0.9119 0.9896 0.9929 0.9643

0.1963 0.4489 0.6119 0.2626

0.2380 0.9638 0.9127 0.2751

uence

Huang Yager Normal Rosin

0.0419 0.0101 0.0068 0.0078

0.2170 0.2521 0.1814 0.1310

0.3031 0.0923 0.1236 0.1465
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to the previous test set. This is probably due to the

bulk of background pixels around edges that give

rise to higher differences than the remainder of

the background, so that the result appears under-

thresholded (e.g. Fig. 4g). Tsai and Kapur�s algo-
rithms performed well again, while the Ridler and
Calvard and Otsu algorithms performed at a

similar level. The standard deviations of the scores

(Table 6) highlights the variability (i.e. the unreli-

ability) of the fuzzy based methods (Huang and

Wang and Yager).
6. Conclusion

We have proposed an evaluation framework for

testing thresholding algorithms in the context of

surveillance applications. Its advantage over sche-

mes using synthetic data is that it provides more

realistic data, while compared to manual genera-

tion of ground truth it enables huge amounts

of ground truthed data to be automatically
generated in an efficient, simple, and objective

manner.

As an example of the application of the meth-

odology, tests were performed on a large scale

(over 4000 images) providing a quantitative and

thorough evaluation of eight different thresholding

algorithms. The results showed that four of the

algorithms had an acceptable performance, with
Kapur�s showing the best performance behav-

iour. A comparison with a different (manually)

ground truthed dataset containing only 112 images

showed a similar assessment for most of the al-

gorithms.

We used pixel based numerical methods to

capture the performance of the thresholding al-

gorithms, and found that they can give misleading
rankings. This led us to consider testing at a goal

based level, which enabled these effects to be

identified. In the remaining cases the algorithm

performances were similar with the results ob-

tained by pixel level testing. Furthermore, an

indication of an algorithm�s stability can be deter-
mined by looking at the standard deviation of its

scores over the dataset, or by comparing its mean
and median scores. Currently at the goal directed

level we use compactness and area error measures,
but we believe that more measures can be used to

expand the testing.

In additional future work we plan to experi-

ment under different or variable environments, e.g.

illumination change, variable noise levels, different

proportions of change (e.g. larger/smaller balls),
etc. and study the effects of image pre- and post-

filtering, e.g. median filtering after thresholding.
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