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Robust Pixel Unmixing
Paul L. Rosin

Abstract—Pixel unmixing is commonly performed by employing
a least squared (LS) error criterion, making it sensitive to outliers.
As an alternative, the least median of squares (LMedS) method
is proposed. Not only is it extremely robust, but it is efficient and
straightforward both to implement and use.

Index Terms—Image classification, least mean square methods,
robustness.

I. INTRODUCTION

A COMMON problem in remote sensing is that the lim-
ited spatial resolution of the scanner inevitably leads to

“mixed” pixels at class boundaries. That is, individual pixels
cover more than one ground cover type. This leads to the spec-
tral response at a pixel being a mixture of the underlying pure
classes—the so-called endmembers. If standard single class per
pixel classification is performed, then in the best case, accuracy
is compromised since a fraction of the pixel is incorrectly classi-
fied. In the worst case, mixing may produce a confusing spectral
combination such that the pixel’s classification is totally incor-
rect. A better solution which reduces these two sources of error
is to model the spectral mixture and classify at each pixel the
proportions of the endmember classes.

The simplest, and most widely used approach is the linear
mixture model [1], [6], which models the mixture as a linear
combination of the endmembers

where
measured reflectance in band;
fraction of the th endmember;
known reflectance of that endmember in that band;
number of endmembers.

In addition, the two constraints and should be
satisfied. Assuming that the endmembers are not linearly depen-
dent, the mixing fractions can be recovered from the data. For a
given number of spectral bandsif , then an exact
solution can be found for the mixture model for each pixel, while
if , then a least squares (LS) fitting procedure can
be applied to obtain the best fit. Alternatively, the measurements
from a set of pixels can be pooled together and the whole set clas-
sified. Combining data in this way potentially enables more ac-
curate classification. However, the danger lies in outliers, that is,
pixels with atypical values, being contained in the set.

More precisely, the sensitivity of an estimator to outliers can
be quantified by itsbreakdown point. This specifies the fraction
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of data that can be contaminated (i.e., become outliers) without
affecting the result of the estimator. The standard LS method
has a zero breakdown point since even a single data value can
have an enormous effect on the result. This has led to the field
of robust statistics[9], in which more reliable methods have
been developed. The following sections describe one such ap-
proach—the least median of squares (LMedS) estimator—and
show its application to pixel unmixing.

II. LMedS POSEESTIMATION

The LMedS [9] estimator is simple in essence. Instead of min-
imizing the usual squared residuals, it minimizes themedianof
the squared residuals. At the expense of accuracy the median op-
eration gains the LMedS substantial robustness as the high errors
incurred by outliers are ignored. In fact, it has a breakdown point
of 0.5, so that, as long as the outliers make up less than half the
dataset, the LMedS should return a reasonable estimate.

In one dimension, its implementation is simple and efficient.
The data samples are presorted, and the estimate
satisfying

is calculated as

such that

In other words, the window containing half the data elements is
found that minimizes the range in the values, and the mean of
the range is returned. It should be noted that the LMedS estimate
is not guaranteed to be unique (e.g., consider its application to
a uniform distribution), but in practice this is rarely a problem.

For higher dimensions, a different procedure is required. In
this paper, we use the minimal subset approach [8] to approxi-
mate the optimal LMedS solution. A minimal subset is the min-
imum number of data values sufficient to determine a unique
solution. Combinations of values are used to generate different
minimal subsets, each of which provides a possible estimate. For
each minimal subset, the median squared error over the com-
plete dataset is computed. The final result is the estimate which
produces the minimum median squared error.

An important practical issue is that larger minimal subsets
permit more combinations of data values, and therefore give rise
to more possible subsets. For instance, fitting ellipses to two-di-
mensional (2-D) data points requires minimal subsets of size
six [8]. This leads to possible subsets, but it is usually
too computationally expensive to analyze them all. The solu-
tion is to randomly select a smaller number of subsets while
maintaining a high probability that at least one of them will be
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Fig. 1. Plot of synthetic two-band reflectance data. The mixed values obtained from the LS estimate of the mixing proportions is shown by dotted-line cross hairs,
while the LMedS estimate is shown by the dashed-line cross hairs.

uncorrupted by outliers. Rousseeuw [9] showed that if there is
a proportion of outliers in a subset of size then the number
of subsets that must be chosen to include with %
confidence one composed entirely of inliers (which is necessary
for obtaining a correct estimate) is

(1)

Even for high levels of confidence and high dimensions, this re-
sults in a small workable number (e.g., only 59 for 95% confi-
dence, 50% outliers, and ), and ensures that the overall
complexity is linear.

As noted above, thestatistical efficiencyof the LMedS is in-
ferior to the LS estimator. Moreover, the minimal subset method
is still less accurate. The estimate is only calculated from a few
values which even if they are inliers are still prone to low levels
of noise, and so it is unlikely to provide a optimal minimum me-
dian squared error. To combine the benefits of both the LMedS
and LS approaches, a polishing stage can be applied. The esti-
mate produced by the LMedS is refined by a LS fit applied to
the inliers only. The unpolished estimate provides residuals
for each pixel. Outliers are then identified by testing if

where the median absolute deviation (mad) robustly estimates
the standard deviation and is calculated as

and 1.4826 is a normalizing factor to make the mad equivalent
to the standard deviation for Gaussian distributed data.

In summary, the algorithm is as follows:

1) Randomly sample pixel tuples.
2) Determine the mixing proportions from each tuple.
3) Select the mixing proportions that minimize the median

error over the complete dataset.
4) Identify outliers.
5) Polish the estimate, i.e., redetermine the mixing propor-

tions from the inliers.
Many approaches to mixture modeling are possible, e.g., sup-

port vector machines [3], neural networks [4], and the EM algo-
rithm [10] have all been applied to remote sensing data. These
techniques could be used to provide local estimates that are fed

Fig. 2. Blue band of the Glandorf data with superimposed boundaries.

into the LMedS method as described above. In most of the ex-
periments in this paper, the most straightforward approach has
been applied, namely, linear mixing with the endmember frac-
tions estimated by simple LS if the problem is overdetermined.
The fractions are not constrained to be positive; this requires
more sophisticated techniques such as convex quadratic pro-
gramming.1

The LMedS estimator is demonstrated on a simple two-band
synthetic example containing two endmembers at (50, 100) and
(200, 200) mixed with proportions 0.3 and 0.7, respectively.
Fifty samples with added Gaussian noise were generated and
are shown in Fig. 1(a) where the axes represent the two bands
and the small circles show the reflectances of the samples. The
endmembers are plotted as larger filled circles. The reflectances
obtained by applying the estimated mixing proportions are
shown by the cross hairs (dotted and dashed lines for LS
and LMedS, respectively). For such uncorrupted data, both
the LS and LMedS estimates are naturally good, giving very
similar estimates. However, when some outliers are added, as
in Fig. 1(b), the LS estimate is pulled toward them, degrading
the fit to the inliers. Fig. 1(c) shows that the more distance the

1In practice, a simpler approach is often carried out: unconstrained fitting is
applied, any negative fractions are set to zero, and the remaining fractions renor-
malized. However, this step was not performed in the experiments described in
this paper.
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TABLE I
MIXING PROPORTIONSESTIMATED BY THE LS AND LMedS ESTIMATORS ONMEDIUM SIZED DATASETS (150–200 PIXELS)

outliers lie from the inliers, the greater their effect. In contrast,
the LMedS estimate is essentially unaffected by the relatively
small group of outliers.

III. RELATED WORK

In previous work on pixel unmixing, there has been little
emphasis on ensuring robust performance. An exception is the
work by Bosdogianniet al. [2], who use the Hough Transform.
The approach is somewhat similar to the minimal subset one,
as tuples of pixels generate estimates. These are cast as votes
and accumulated in a parameter space. Peaks in parameter space
then correspond to the final estimates.

As with LMedS, the Hough Transform is robust since out-
liers do not greatly detract from the main peaks. It also has the
advantage that, if the outliers are coherent, then they can be de-
tected as subsidiary peaks. However, there are several disadvan-
tages. The first is that the volume of the parameter space scales
to the power of the number of parameters, which becomes pro-
hibitive for more than a few dimensions. Second, the parameter
space needs to be quantized. If the wrong bin size is selected
this can affect the likelihood of detecting the peak and the accu-
racy of the estimate. Third, peak detection is problematic, and
often requires some filtering (e.g., smoothing) of the parameter
space as well as thresholding to eliminate insignificant peaks.
In contrast, the LMedS approach is nonparametric, and its per-
formance does not depend on tuning to ensure that the various
stages work effectively.

There are also many other possible approaches found in the
robust statistics literature. However, not all have such high
breakdown points. For instance, the breakdown point of some,
such as the Theil–Sen Estimator [11], decreases as a function of
the dimensionality of the estimation problem. A problem with
others is that various parameters need to be set. For instance,
Huber’s M-estimators [5] use a redescending kernel to reduce
the effect of outliers, and the size and shape of the kernel need
to be specified. Thus, the LMedS remains competitive in terms
of its ease of use as well as its effectiveness.

IV. EXPERIMENTAL RESULTS

Like Bosdogianniet al. [2], we demonstrate the approach
on a three-class and three-band example. Fig. 2 shows the blue
band from the Glandorf dataset provided by the ISPRS Working

Group III/3. Overlaid are the three classes (streets, houses, and
fields). Although these are the endmembers, in practice, they
can be seen to be rather varied. The image was then averaged
over blocks to generate mixed pixels. The ground truth
for the mixing fraction values was taken as the proportions of
the three classes in their generating blocks. From these were
extracted ten sets that contained similar proportions of classes,
each containing between 150 and 200 pixels,2 and another ten
sets containing between 20 and 30 pixels.

Since for three classes only two bands are required to estimate
the mixing proportions, the exact solution is quite tractable

where for ease of notation we have written the spectral responses
for the pure endmembers classes in bandas ; the
pixel intensities in the two bands are denotedand . How-
ever, in practice all three bands per pixel are used to provide
some additional accuracy. In other words, each pixel is con-
sidered as a slightly expanded minimal subset. This means that
there is no combinatorial explosion of the minimal subsets (the
complexity remains linear), and it is possible to use every pixel
to generate an estimate.

The results of the LS and LMedS estimates of the mixing pro-
portions are given in Table I. In most cases, the LMedS method
performed better, and the overall accuracy of its estimates is
clearly superior. To gain a better understanding of the estimation
process, the red- and green band values are plotted for the data
points used to generate the results in rows 5 and 8 of Table I, and
are shown in Fig. 3(a) and (b). All pixels are plotted as small cir-
cles while detected inliers are also filled with a cross. The fields
and houses endmembers are represented by the large square and
circle, respectively. We note that there is a wide spread in values,
leading to the relatively low accuracies in the estimates.3 Never-

2The larger sets contain only two mixed classes as combinations of three
classes did not occur frequently with the same mixing proportions.

3Better results could be obtained by splitting classes into subcategories to
ensure that they are more homogeneous. However, the data and models have
been left in their raw state to show the effectiveness of the technique even under
such difficult circumstances.
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Fig. 3. Pixels from the medium sized datasets analyzed in row 5 and 8 of Table I. Inliers are crossed. Endmembers are shown as a large circle (houses) and a
rectangle (fields). (a) Row 5 endmember fractions: 40% house, 60% fields. (b) Row 8 endmember fractions: 70% house, 30% fields.

TABLE II
MIXING PROPORTIONSESTIMATED BY THE LMedS ESTIMATOR USING ONLY FOUR MINIMAL SUBSETS

theless, the values are fairly well clustered in Fig. 3(a) which is
why very few points have been marked as outliers. This explains
why the LS and LMedS gave similar results for this dataset.
Fig. 3(b) shows a more distinct group of outliers that are cor-
rectly flagged, leading to an improvement in the LMedS esti-
mate.

Equation (1) specifies that only four pixels are required to
obtain with 95% confidence a robust fit. The results of testing
this are given in Table II. Although the minimal subsets provide
noisy estimates, they are still able in most cases to identify out-
liers accurately enough that the polishing stage (applied to all
inliers) is able to recover estimates comparable with the esti-
mates obtained when all pixels are used as minimal subsets.

Working in the opposite direction, since larger subsets pro-
vide the LMedS algorithm with more accurate estimates (as long
as they are not contaminated by outliers) this could be used to
improve the unpolished estimate, leading to more accurate de-
tection of outliers, and thereby a more accurate overall polished
fit. As an example, from (1) we see that if ten tuples are used,
then 58 subsets are enough to probably choose one without out-
liers. As an experiment, the collection of single pixel estimates
used in Table I were augmented with 58 randomly selected sub-
sets of ten pixels before the LMedS solution was determined. In

Fig. 4. Average error rate for the ten test datasets when additional ten tuples
are used by the LMedS estimator in addition to the individual pixel minimal
subsets.

this case, it was found to improve the estimator’s performance.
However, there is no guarantee that this procedure will not lead
to a drop in performance in some instances. For instance, Fig. 4
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TABLE III
MIXING PROPORTIONSESTIMATED BY THE LS AND LMedS ESTIMATORS ONSMALL DATASETS (20–30 PIXELS)

Fig. 5. Pixels from the small datasets analyzed in rows 1 and 7 of Table III. Inliers are crossed. Endmembers are shown as a large circle (houses), a triangle
(streets), and a rectangle (fields). (a) Row 1 endmember fractions: 2% house, 15% road, 83% fields. (b) Row 7 endmember fractions: 25% house, 50% road,25%
fields.

TABLE IV
MIXING PROPORTIONSESTIMATED BY THE LS AND LMedS ESTIMATORS WITH ADDED CONSTRAINTS ONMEDIUM SIZED DATASETS(150–200 PIXELS)

shows the effect of adding a variable number of extra ten tuples.
In most but not all instances, the error rate is unaffected or re-
duced.

Table III lists the results of processing the small datasets. As
expected both the LS and LMedS methods are less accurate than
for the larger datasets, but the LMedS estimates are generally
better. Again, two rows (1 and 7) are visualized to aid under-
standing of the process. Fig. 5(a) shows all three endmembers

and it can be seen that they are almost linear, making unmixing
less reliable. Because of the sparsity of the data it is more diffi-
cult to reliably determine the outliers. This is especially difficult
in these examples since the data values are widely spread out.
A cluster about the fields endmember is correctly detected in
Fig. 5(a), leading to the top end of the spread of values being
rejected, and substantially improving the final estimate. Again,
Fig. 5(b) shows that the worst performance of the LMedS oc-
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curs when there is no distinct cluster so that outliers cannot be
identified and rejected.

Finally, results are shown in Table IV where the estimation of
the endmembers is constrained to ensure that they are nonneg-
ative and sum to one.4 As before, the LMedS method gives an
improved overall estimate although the difference is less marked
than appeared in the results of the unconstrained fitting pre-
sented in Table I.

V. CONCLUSION

This paper has proposed the LMedS estimator for pixel un-
mixing. Its advantages are that it iscomputationally efficient
(i.e., linear in the number of points),nonparametric (i.e., easy
to use without requiring user intervention and tuning), andro-
bust, (i.e., it can operate effectively as long as 50% of the data
remains uncorrupted). Experiments show its effectiveness com-
pared to standard nonrobust estimation techniques.
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