Argumentation with Preferences

Ways to account for preferences:

- Encode within existing components
- Discard attacks
- Compare extensions
1. Encode preferences within existing components

- Preferences as assumptions [Kowalski and Toni, 1996]
- (Sets of) sentences into assumptions and rules [Thang and Luong, 2014]
1. Encode preferences within existing components

- Preferences as assumptions [Kowalski and Toni, 1996]
- (Sets of) sentences into assumptions and rules [Thang and Luong, 2014]

Issues:
- concision
- modularity
- generalizability
2. Discard attacks

Given \((\text{Args}, \leadsto, \leq)\): if \(A \leadsto B\) and \(A < B\), then \(A \not\leadsto B\).
2. Discard attacks

Given \((\text{Args}, \rightsquigarrow, \leq)\): if \(A \rightsquigarrow B\) and \(A < B\), then \(A \not\rightsquigarrow B\).

- Abstract Argumentation

- Structured argumentation
2. Discard attacks

Given \((\text{Args}, \leadsto, \preceq)\): if \(A \leadsto B\) and \(A \prec B\), then \(A \not\leadsto B\).

- Abstract Argumentation

- Structured argumentation

Issues:
- conflict-freeness
- restrictions
3. Compare extensions

Lift preferences to the extension level from:
- the argument level [Amgoud and Vesic, 2011] (AA);
- the object level [Wakaki, 2014] (ABA).
3. Compare extensions

Lift preferences to the extension level from:
- the argument level [Amgoud and Vesic, 2011] (AA);
- the object level [Wakaki, 2014] (ABA).

Issues:
- absence of extensions
- ‘wrong’ extensions
- preference aggregation
Omissions

- Bipolar Argumentation Frameworks [Amgoud et al., 2004]
- [Villata et al., 2012]: AA with prioritized support
- [Dunne et al., 2011]: weighted attacks, inconsistency budget
- [Booth et al., 2013]: arguments with properties, motivational states, weighting relation
Attack Reversal in Abstract Argumentation

Proposed for AA: (Rich) PAFs [Amgoud and Vesic, 2014].

Given \((Args, \rightsquigarrow, \leq)\): if \(A \rightsquigarrow B\) and \(A < B\),
then \(A \not\rightarrow B\) and \(B \rightarrow A\).
Attack Reversal in Abstract Argumentation

Given \((Args, \leadsto, \leq)\): if \(A \leadsto B\) and \(A \prec B\),

then \(A \not\leftrightarrow B\) and \(B \leftrightarrow A\).

Example

\(Args = \{A, B\}, A \prec B\):

\((Args, \leadsto, \leq)\)

\(A \leadsto B\)

\((Args, \leftrightarrow)\)

\(A \not\leftrightarrow B\)

\(B \leftrightarrow A\)
Attack Reversal in Structured Argumentation

- Assumption-Based Argumentation (ABA) [Bondarenko et al., 1997, Dung et al., 2009, Toni, 2014]

- ABA$^+$ [Čyras and Toni, 2016a, Čyras and Toni, 2016b]: ABA with preferences over assumptions
ABA

- ABA framework \((\mathcal{L}, \mathcal{R}, \mathcal{A}, \neg)\):
 - deductive system \((\mathcal{L}, \mathcal{R})\);
 - assumptions \(\mathcal{A} \subseteq \mathcal{L}\);
 - contrary mapping \(\neg : \mathcal{A} \rightarrow \mathcal{L}\).
- Tree-like deductions \(S \vdash^R \varphi\)
- Attacks as deductions for contraries
- Semantics: extensions as sets of assumptions
ABA$^+$

- ABA$^+$ framework ($\mathcal{L}, \mathcal{R}, \mathcal{A}, \neg, \leq$):
 - ABA framework ($\mathcal{L}, \mathcal{R}, \mathcal{A}, \neg$);
 - transitive binary \leq on \mathcal{A}.

New attack relation $\Rightarrow <$:
- if $A \Rightarrow B$ (‘on $\beta \in B$’) and no $\alpha \in A$ with $\alpha < \beta$,
 then $A \Rightarrow < B$;
- if $A \Rightarrow B$ (‘on $\beta \in B$’) and some $\alpha \in A$ has $\alpha < \beta$,
 then $B \Rightarrow < A$.

Kristijonas Čyras
ABA$^+$: Assumption-Based Argumentation with Preferences
ABA$^+$

- ABA$^+$ framework $(\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{-}, \leq)$:
 - ABA framework $(\mathcal{L}, \mathcal{R}, \mathcal{A}, -)$;
 - transitive binary \leq on \mathcal{A}.

- New attack relation $\rightsquigarrow <$:
 - if $A \rightsquigarrow B$ (‘on $\beta \in B$’) and no $\alpha \in A$ with $\alpha < \beta$,
 then $A \rightsquigarrow < B$;
 - if $A \rightsquigarrow B$ (‘on $\beta \in B$’) and some $\alpha \in A$ has $\alpha < \beta$,
 then $B \rightsquigarrow < A$.

Kristijonas Ėyras
ABA$^+$: Assumption-Based Argumentation with Preferences
ABA vs. ABA^+

Formally

- $A \subseteq A$ attacks $B \subseteq A$ just in case:
 - $A' \vdash^R \beta$, for some $\beta \in B$ and $A' \subseteq A$, for some $\beta \in B$ and $A' \subseteq A$, or
 - $B' \vdash^R \alpha$, for some $\alpha \in A$ and $B' \subseteq B$, and $\exists \beta' \in B'$ with $\beta' < \alpha$.

Kristijonas Ėlynas
ABA$^+$: Assumption-Based Argumentation with Preferences
ABA vs. ABA$^+$

Formally

- $A \subseteq A \prec$-attacks $B \subseteq A$ just in case:
 - either $A' \vdash^R \beta$, for some $\beta \in B$ and $A' \subseteq A$, and $\forall \alpha' \in A'$ we have $\alpha' \not\prec \beta$;
ABA vs. ABA$^+$

Formally

- $A \subseteq A \prec-\text{attacks} \ B \subseteq A$ just in case:
 - either $A' \vdash^R_\beta$, for some $\beta \in B$ and $A' \subseteq A$, and $\forall \alpha' \in A'$ we have $\alpha' \nless \beta$;
 - or $B' \vdash^{R'}_\alpha$, for some $\alpha \in A$ and $B' \subseteq B$, and $\exists \beta' \in B'$ with $\beta' \prec \alpha$.
Simple Example

\[\mathcal{L} = \{\alpha, \beta, \overline{\alpha}, \overline{\beta}\}, \quad \mathcal{R} = \{\overline{\beta} \leftarrow \alpha\}, \quad \mathcal{A} = \{\alpha, \beta\} \]
Simple Example

\(\mathcal{L} = \{\alpha, \beta, \bar{\alpha}, \bar{\beta}\}, \ \mathcal{R} = \{\bar{\beta} \leftarrow \alpha\}, \ \mathcal{A} = \{\alpha, \beta\}, \ \alpha < \beta.\)
Cycle

\[\mathcal{R} = \{ \overline{\beta} \leftarrow \alpha; \; \overline{\gamma} \leftarrow \beta; \; \overline{\alpha} \leftarrow \gamma \}, \; \mathcal{A} = \{ \alpha, \beta, \gamma \}, \]

ABA

\[
\begin{aligned}
\{ \alpha \} & \quad \quad \{ \beta \} \\
\{ \gamma \} & \quad \quad \{ \gamma \} \\
\{ \beta \} & \quad \quad \{ \beta \}
\end{aligned}
\]
\[
\mathcal{R} = \{\overline{\beta} \leftarrow \alpha; \; \overline{\gamma} \leftarrow \beta; \; \overline{\alpha} \leftarrow \gamma\}, \; \mathcal{A} = \{\alpha, \beta, \gamma\}, \; \gamma < \beta < \alpha.
\]
ABA$^+$ generalizes PAFs [Amgoud and Vesic, 2014]
Comparison

- ABA$^+$ generalizes PAFs [Amgoud and Vesic, 2014]
- p_ABA [Wakaki, 2014] does not generate new extensions
Comparison

- ABA\(^+\) generalizes PAFs [Amgoud and Vesic, 2014]
- p\(_-\)ABA [Wakaki, 2014] does not generate new extensions
- ASPIC\(^+\) [Modgil and Prakken, 2014]:
 - contraries vs. contradictories, c-classicality, contraposition
 - different if no contraposition
 - . . . in between . . .
 - conjecture: instance if flat, contraposition, with elitist
ABA with \leq over assumptions:
reverses attacks by incorporating $<$ directly into \leadsto.

- conservative extension of ABA
- conflict preservation
- preference handling properties
- rationality postulates [Caminada and Amgoud, 2007]
- Fundamental Lemma holds with a weaker form of contraposition
Ongoing Work

- Relaxing contraposition
- Further comparison
 - contraposition: flat ABA^+ as an instance of ASPIC^+ with the elitist comparison?
 - likewise for Deductive Argumentation
 [Besnard and Hunter, 2014]?
 - map to PAFs with arguments as sets of assumptions
References I

References III

References IV

