
On Stable Labellings and Odd-Length Cycles in Abstract Argumentation
Frameworks

Claudia Schulz
Imperial College London

Introduction
The semantics of abstract argumentation frameworks (AFs)
(Dung 1995) can be expressed in terms of argument la-
bellings (Caminada and Gabbay 2009), which assign one of
the labels in (accepted), out (rejected), or undec (unde-
cided) to each argument. Most labelling semantics are based
on complete labellings, which fulfill the conditions that an
argument is labelled in if and only if it is only attacked by
arguments labelled out and an argument is labelled out if
and only if it is attacked by some argument labelled in.

The most decisive complete labellings are those which
label all arguments as in or out, and no arguments as
undec. Such labellings are called stable labellings (Cami-
nada and Gabbay 2009). Unfortunately, stable labellings are
not guaranteed to exist for all AFs, which is undesirable
when using stable labellings as the semantics of choice in
an application. Two questions thus arise:

1. Which part of the AF is responsible that no stable la-
belling exists?

2. What revision to the structure of the AF is necessary to
obtain a stable labelling?

Odd-length cycles
Regarding the first question, it has been shown that AFs
which have no stable labellings comprise an odd-length cy-
cle of attacking arguments (Dung 1995). However, it is not
the case that every AF comprising an odd-length cycle (of
attacking arguments) has no stable labellings, as shown in
Figure 1.

a b

out in

Figure 1: An AF comprising an odd-length cycle and its only
stable labelling.

Similarly, an AF which has no stable labelling may com-
prise various odd-length cycles, but not all of them are “re-
sponsible” that no stable labelling exists, as demonstrated in
Figure 2. The odd-length cycle of argument a attacking itself

is not responsible that no stable labelling exists since it is la-
belled out in any complete (and thus in a stable) labelling.
In contrast, the only label argument c can have in a com-
plete labelling is undec, thus causing the non-existence of
a stable labelling for this AF.

a b c

out in undec

Figure 2: An AF comprising two odd-length cycles and its
only complete/semi-stable labelling.

The first question can thus be further refined to: Which
odd-length cycle of the AF is responsible that no stable la-
belling exists?

Responsible odd-length cycles
To answer this question, we make use of the labelling se-
mantics which is closest to stable labellings, namely semi-
stable labellings, i.e. complete labellings with a minimal
(w.r.t. set-inclusion) set of undec arguments (Caminada
2006; Baroni, Caminada, and Giacomin 2011). We first note
that in every semi-stable labelling of an AF without stable
labellings there exists an odd-length cycle whose arguments
are all labelled undec, for example the odd-length cycle of
the self-attacking argument c in Figure 2, which we intu-
itively identified as the “responsible odd-length cycle.

However, in general there may be various odd-length cy-
cles of undec labelled arguments with respect to a semi-
stable labelling, but not all of them are “responsible”. We
say that an odd-length cycle is “responsible” if its structure
necessarily has to be changed to obtain a stable labelling.
In other words, if the cycle’s structure is not changed, the
AF will not have a stable labelling no matter which other
structural changes are made to the rest of the AF. Consider
for example the AF in Figure 3, whose only semi-stable la-
belling labels all arguments as undec. There are thus two
odd-length cycles whose arguments are all labelled undec,
a−b−c and d−e−f , but only the first one is a “responsible”
odd-length cycle: No matter how the structure of the AF is
changed, if the cycle a−b−c is left untouched (not deleting



attacks/arguments in it or adding attacks/arguments to it),
the resulting AF will not have a stable labelling. In contrast,
the structure of the cycle d−e−f does not necessarily have
to be changed to yield an AF with a stable labelling: deleting
for example the attack from argument b to argument c yields
an AF which has a stable labelling.

a b

c

d e

f

undec undec

undec

undec undec

undec

Figure 3: An AF comprising two odd-length cycles and its
only semi-stable labelling.

Strongly connected undec parts (SCUPs)
The “responsible” odd-length cycles can be formally char-
acterised as odd-length cycles which are part of a strongly
connected undec part (SCUP). A SCUP with respect to a
semi-stable (or more generally a complete) labelling is a part
of an AF such that:

• all arguments are strongly connected, i.e. there is a path
(of attacks) from each argument to every other argument
in the part,

• all arguments are labelled undec, and

• no argument is attacked by an undec argument which is
not comprised in the part.

The AF in Figure 3 has only one SCUP, namely the odd-
length cycle a− b− c which we previously identified as the
“responsible” cycle.

An important property of SCUPs is that starting from any
undec argument in a semi-stable labelling and iteratively
following an attack backwards to another undec argument
will lead to a SCUP. For example, starting from the undec
argument e in the AF in Figure 3, the “backwards path” e←
d← b leads to a SCUP.

Revising SCUPs
Using the characterisation of responsible parts of an AF as
odd-length cycles contained in SCUPs, we can also answer
the second question, i.e. what revision to the structure of the
AF is necessary to obtain a stable labelling. Note that since
an AF encodes some underlying knowledge, it is desirable to
use a “minimal” revision which changes only what is neces-
sary to yield a stable labelling.

A naive revision of an AF without stable labellings would
be to “break” every odd-length cycle since AFs without odd-
length cycles are guaranteed to have a stable labelling (Dung
1995). However, as previously shown it can be sufficient to
revise only “responsible” odd-length cycles, i.e. those com-
prised in a SCUP, to yield an AF that has a stable labelling.

Note that revising an odd-length cycle in a SCUP may re-
sult in new SCUPs, thus rendering more odd-length cycles
“responsible”.

In the worst case, iteratively revising odd-length cycles in
SCUPs amounts to revising all odd-length cycles in an AF,
as shown in Figure 4: Initially a1 is the only SCUP. Revising
the SCUP by breaking the odd-length cycle, e.g. by delet-
ing the self-attack, changes the label of a1 to in in the new
semi-stable labelling of the revised AF, and the label of b1
to out. All other arguments remain undec. In the revised
AF with respect to the new semi-stable labelling, a2 is now
a SCUP. Revising it in the same way as a1 leads to a3 be-
ing the SCUP, and so on, until reaching an which is the last
SCUP to be revised. Thus, after revising all n odd-length cy-
cles, the revised AF has a stable labelling which labels all ai
as in and all bj as out.

a1 b1 a2 b2 a3 . . . bn−1 an

Figure 4: An AF comprising n odd-length cycles, illustrating
the worst case for revising SCUPs.

In contrast, in the best case revising odd-length cycles in
SCUPs amounts to revising only one odd-length cycle, as
demonstrated in Figure 5: The only SCUP is c1. Revising
it by deleting the self-attack of c1 directly yields a stable
labelling where c1, c3, and all bj are labelled in and c2 and
all ai are labelled out.

a1 b1 a2 b2 a3 . . . bn−1 an

c3 c2 c1

Figure 5: An AF comprising n+ 1 odd-length cycles, illus-
trating the best case of revising SCUPs.

Thus, revising SCUPs minimises the amount of changes
necessary to yield a stable labelling as the revision is focused
on “responsible” odd-length cycles.

References
Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An
Introduction to Argumentation Semantics. The Knowledge
Engineering Review 26(04):365–410.
Caminada, M., and Gabbay, D. M. 2009. A Logical Account
of Formal Argumentation. Studia Logica 93(2-3):109–145.
Caminada, M. 2006. Semi-Stable Semantics. In
COMMA’06, 121–130.
Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artificial Intelligence
77(2):321–357.


