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Abstract
We have created a new benchmarking dataset for testing non-rigid 3D shape retrieval algorithms, one that is
much more challenging than existing datasets. Our dataset features exclusively human models, in a variety of
body shapes and poses. 3D models of humans are commonly used within computer graphics and vision, and so
the ability to distinguish between body shapes is an important shape retrieval problem. In this track nine groups
have submitted the results of a total of 22 different methodswhich have been tested on our new dataset.

1. Introduction

The ability to recognise a deformable object’s shape, regard-
less of the pose of the object, is an important requirement
for modern shape retrieval methods. Many state-of-the-art
methods achieve extremely high accuracy when evaluated on
the most recent benchmark [LGB∗11]. It is therefore hard to
distinguish between good methods, and there is little room
to demonstrate improvement in approaches. There is thus a
need for a more challenging benchmark for non-rigid 3D
shape retrieval. Many novel apporaches have been published
since the previous benchmark, and therefore a new compar-
ison of state-of-the-art methods is also beneficial.

We have created a new, more challenging, benchmarking
dataset for testing non-rigid 3D shape retrieval algorithms.

Our dataset features exclusively human models, in a vari-
ety of body shapes and poses. 3D models of humans are
commonly used within computer graphics and vision, there-
fore the ability to distinguish between body shapes is an im-
portant shape retrieval problem. The shape differences be-
tween humans are much more subtle than the differences
between the shape classes used in current benchmarks (e.g.
ants and birds), yet humans are able to visually recognise
specific individuals. Successfully performing shape retrieval
on a dataset of human models is therefore a far more chal-
lenging, but relevant task. We use our dataset to evaluate the
retrieval performance of 22 different methods, submitted by
nine different research groups. The track’s website is avail-
able at [Tra].
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Figure 1: A selection of models included in our datasets.
Above: Real dataset, below: Synthetic dataset.

2. Datasets

Our track uses two datasets, aRealdataset, obtained by scan-
ning real human participants, and aSyntheticdataset, created
using 3D modelling software. The latter may be useful for
testing algorithms intended to retrieve synthetic data, with
well sculpted local details, while the former may be more
useful to test algorithms that are designed to work even in
the presence of noisy coarsely captured data lacking in local
detail.

2.1. Real Dataset

The Real dataset was built from point-clouds contained
within the Civilian American and European Surface Anthro-
pometry Resource (CAESAR) [cae]. This dataset comprises
400 meshes, representing 40 human subjects (20 male, 20
female) in 10 different poses. The point-cloud models were
manually selected from CAESAR to be models with signif-
icant visual differences. We employed SCAPE (shape com-
pletion and animation of people) [ASK∗05] to build articu-
lated 3D meshes, by fitting a template mesh to each subject.
Realistic deformed poses of each subject were built using a
data-driven deformation technique [CLC∗13]. We remeshed
the models using freely available software [VC04,VCP08].
The resulting models have approximately 15,000 vertices.

2.2. Synthetic Dataset

We also used the DAZ Studio [DAZ13] 3D mod-
elling/animation software to create a dataset of synthetichu-
man models. The software includes a parametrized human

model, where parameters control body shape. We used this
to produce a dataset consisting of 15 different human mod-
els (5 male, 5 female, 5 child), each with its own unique
body shape. We generated 20 different poses for each mode,
resulting in a dataset of 300 models. The same poses were
used for each body shape, and models are considered to be-
long to the same class if they share the same body shape.
All models were remeshed using the same method as for
the Realdataset. The resulting models have approximately
60,000 vertices. A selection of both real and synthetic mod-
els is shown in Figure1.

3. Evaluation

We assessed two different retrieval tasks:

1. Returning a list of all models, ranked by shape similarity
to a query model.

2. Returning a list of models that all share the same shape
as the query model.

For both tasks, every model in the database was used as
a separate query model. In the first task, for each query we
asked the participants to order all other models in the dataset
in terms of similarity to the query model. In the second task,
for each query the participants were asked to submit a list
of arbitrary length of all models which they classify as ‘the
same shape’ as the query model. Both tasks were evaluated
separately.

The evaluation procedure for Task 1 is identical to that
used in several previous SHREC tracks [LGB∗11]. We eval-
uated the results using various statistical measures: preci-
sion and recall, nearest neighbour (NN), first tier (1-T), sec-
ond tier (2-T), e-measure (E-M), discounted cumulative gain
(DCG), and precision and recall curves. Definitions of these
measures are given in [SMKF04]. The results for Task 2
were evaluated using the F-Measure [BYRN11].

4. Methods

4.1. Simple shape measures, and Euclidean distance
based canonical forms D. Pickup, X. Sun,
P. L. Rosin and R. R. Martin

This section presents two techniques, simple shape measures
based on surface area, and skeleton driven canonical forms.

4.1.1. Simple shape measures

Two simple shape measures were tested separately on the
datasets. The first is the total surface area of the mesh. This
measure is not scale independent, and all human models
were assumed to be properly scaled. In order to present a
scale independent result, the second measure used is com-
pactness. This is calculated as Volume2/SurfaceArea3. Both
methods are trivial to implement, and are very efficient to
compute.
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4.1.2. Skeleton driven canonical forms

A variant on the canonical forms presented by Elad and Kim-
mel [EK03] is used to normalise the pose of all the models
in the dataset, and then the rigid view-based method by Lian
et al. [LGSX13] is used for retrieval. A canonical form is
produced by extracting a curve skeleton from a mesh, using
the method by Au at al. [ATC∗08]. The SMACOF Multidi-
mensional Scaling method used by [EK03] is then applied
to the skeleton, to put the skeleton into a canonical pose.
The skeleton driven shape deformation method by Yan et
al. [YHMY08] is then used to deform the mesh to the new
pose defined by the canonical skeleton. This produces a sim-
ilar canonical form to [EK03], but with the local features
better preserved. The models in theSyntheticdataset are sim-
plified to approximately 15000 vertices, and any holes are
filled, before computing the canonical form.

4.2. Hybrid shape descriptor and meta similarity
generation for non-rigid 3D model retrieval, B. Li,
Y. Lu, A. Godil and H. Johan

A hybrid shape descriptor [LGJ13] has been proposed to
integrate both geodesic distance-based global features and
curvature-based local features. An adaptive algorithm based
on Particle Swarm Optimization (PSO) is developed to adap-
tively fuse different features to generate a meta similarity be-
tween any two models. The approach can be generalized to
similar approaches which integrate more or other features.
It first extracts three component features of the hybrid shape
descriptor: curvature-based local feature, geodesic distance-
based global feature, and Multidimensional scaling (MDS)
based ZFDR [LJon] global feature. Based on the extracted
features, corresponding distance matrices are computed and
they are fused into a meta distance matrix based on PSO. Fi-
nally, the distances are sorted to generate the retrieval lists.

Curvature-based local feature vector: VC. First, the
Curvature Index feature of a vertexp is computed, which

characterizes local geometry:CI = 2
π log(

√
K2

1+K2
2

2 ), where
K1 and K2 are the two principal curvatures in thex and y
directions respectively atp. Then the Curvature Index de-
viation feature of the adjacent vertices ofp is computed:

δCI =

√
∑n

i=1 (CIi−C̃I)
n , whereCI1, CI2,. . .,CIn are the Cur-

vature Index values of the adjacent vertices ofp andC̃I is
the mean Curvature Index of all the adjacent vertices. Next,
to describe the local topological property, the Shape Index
feature ofp is computed:SI= 2

π arctan( K1+K2
|K1−K2|

). After that,
a combined local shape descriptor is formed by concatenat-
ing the above three local features:F = (CI,δCI,SI). Finally,
based on the Bag-of-Words framework, the local feature vec-
torVC = (h1,h2, · · · ,hNC) is generated, where the number of
cluster centresNC is set to 50.

Geodesic distance-based global feature vector: VG.
First, to avoid the high computational cost involved in the

geodesic distance computation among many vertices, the
models are simplified to 1000 vertices. Next, the geodesic
distances among all the vertices of a simplified model are
generated to form a geodesic distance matrix GDM. Finally,
the GDM is decomposed based on Singular Value Decom-
position and the first largestk eigenvalues are used as the
global feature vector. In experiments,k is set to 50.

MDS-based ZFDR global feature vector: VZ. To lever-
age pose and deformation variations of non-rigid models,
Multidimensional scaling (MDS) techniques are utilized to
map the non-rigid models into a 3D canonical form. The pre-
viously computed geodesic distances among the 1000 ver-
tices of each simplified 3D model are used as the input of
MDS for the feature space transformation. Finally, the hy-
brid global shape descriptor ZFDR [LJon] is used to charac-
terize the features of the transformed 3D model in the new
feature space. There are four feature components in ZFDR:
Zernike moments feature,Fourier descriptor feature,Depth
information feature andRay-based feature. This approach
is named as MDS-ZFDR and Stress MDS is adopted in the
experiments. It was also found that for 3D human retrieval
using R feature only (that is MDS-R) can always achieve
better results than other combinations such asZF, DR or
ZFDR. The reason should be related to the more salient fea-
ture of the geometry-related ‘thickness’ variations in thehu-
man models, such as fat versus slim bodies which are bet-
ter characterized by theR feature, compared to other visual-
related features likeZF andD.

Retrieval algorithm: (1) Computation of Curvature-
based local feature vectorVC based on the original models
and local feature distance matrixMC generation; (2) Com-
putation of Geodesic distance-based global feature vector
VG and global feature distance matrixMG. (3) MDS-based
ZFDR global feature vectorVZ and MDS-ZFDR global fea-
ture distance matrixMZ computation; (4) PSO-based meta
distance matrix generation and ranking. A meta distance ma-
trix M = wCMC +wGMG +wZMZ is generated, wherewC,
wG andwZ fall in [0,1]. As a swarm intelligence optimiza-
tion technique, PSO-based approach is robust and fast in
solving problems that are non-linear and non-differentiable.
It includes four steps: initialization, particles’ velocity and
positions update, search evaluation and result verification.
The number of particlesNP=10; the maximum number of
search iterationsNt=10; and First Tier is selected as the fit-
ness value for search evaluation.Please note that the PSO-
based weight assignment preprocessing step is only per-
formed once for each of the test sets.

The ‘Hybrid_R’ runs only use ‘MDS-R’ features,
compared to the original ‘Hybrid’ approach presented
in [LGJ13] which uses ‘MDS-ZFDR’. Besides comparing
the component features including ‘Curvature’, ‘Geodesic’
distance and ‘MDS-ZFDR’ based features, the performance
of ‘MDS-R’ is compared with ‘MDS-ZFDR’.
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4.3. Histograms of Area Projection Transform,
A. Giachetti and V. Garro

Human characters are recognised with the Histograms of
Area Projection Transform (HAPT), general purpose shape
descriptors proposed in [GL12]. The method is based on a
spatial map (Multiscale Area Projection Transform) that en-
codes the likelihood of the points inside the shape of being
centres of spherical symmetry. This map is obtained by com-
puting for each radius of interest the value:

APT(~x,S,R,σ) = Area(T−1
R (kσ(~x)⊂ TR(S,~n))) (1)

whereS is the surface of interest,TR(S,~n) is the parallel
surface ofSshifted along the normal vector (only in the in-
ner direction) andkσ(~x) is a sphere of radiusσ centred in the
generic point~x where the map is computed. Values at dif-
ferent radii are normalized in order to have a scale-invariant
behaviour, creating the Multiscale APT (MAPT):

MAPT(x,y,z,R,S) = α(R) APT(x,y,z,S,R,σ(R)) (2)

whereα(R) = 1/4πR2 andσ(R) = c ·R (0< c< 1).

A discretized MAPT is easily computed, for selected val-
ues of R, on a voxelized grid including the surface mesh,
with the procedure described in [GL12]. The map is com-
puted in a grid of voxels with sideson a set of corresponding
sampled radius valuesR1, ...,Rn. In the paper it is also shown
that histograms of MAPT computed inside the objects are
very good global shape descriptors, showing very good per-
formances on the SHREC 2011 Non-Rigid Watertight con-
test data [LGB∗11]. For that recognition task discrete MAPT
maps were quantized in 12 bins and histograms computed at
the different scales (radii) considered were concatenatedcre-
ating a unique descriptor. Voxel side and sampled radii were
chosen differently for each model and proportional to the
cubic root of the object volume, in order to have the same
descriptor for scaled versions of the same geometry.c was
always taken equal to 0.5.

For the recognition of different human subjects, however,
scale invariance is not wanted. For this reason a fixed voxel
size and a fixed set of radii are used.

The values for these parameters have been chosen differ-
ently for theReal and theSyntheticdatasets, using simple
heuristics. The algorithm was tested using three differentpa-
rameter configurations for each dataset (RealandSynthetic).
The results were then compared, and the best configurations
for each dataset were submitted to the track. The voxel size
was taken similar to the size of the smaller details well de-
fined in the meshes. For theSyntheticdataset, where fin-
gers are visible and models are smaller,s= 4mm is used
and 11 increasing radii have been computed starting from
R1 = 8mmand iteratively adding a fixed step of 4mmfor the
remaining values{R2, . . . ,R11} . For theRealdataset, where
models are bigger and details are smoothed,s= 12mm is
used applying 7 different radii starting fromR1 = 24mm
with a constant radius increasing of 12mm.

The procedure for model comparison then simply consists
in concatenating the histograms computed at the different
scales and measuring distances between shapes by evaluat-
ing the Jeffrey divergence of the corresponding concatenated
vectors.

In the tests this ‘general purpose’ shape comparison pro-
cedure is applied without specific adaptations to the task.
A possible way to specialize it for human body recognition
may consist in learning discriminative sets of radii with a
feature selection procedure or in recognizing and comparing
specific body regions.

The MAPT/histograms extraction (using the c++ imple-
mentation available at http://www.andreagiachetti.it) for the
Real dataset takes around 46 min, with a mean of 7 sec.
for each model; the computation for theSyntheticdataset
is much longer dealing with more detailed meshes: 2 hours
for the entire dataset, 25 sec. for each shape. A single query
takes around 1.2 msec. using a Matlab implementation of the
Jeffrey divergence distance.

4.4. R-BiHDM, J. Ye

The R-BiHDM [YYY13] method is a spectral method used
for general non-rigid shape retrival. Using modal analysis,
the method projects Biharmonic distance [LRF10] map into
a low-frequency representation which operates on the modal
space spanned by the lowest eigenfunctions of shape Lapla-
cian [RWP06, OBCS∗12], and then computes its spectrum
as an isometric shape descriptor.

Let ψ0,ψ1, . . . ,ψm be the eigenfunctions of Laplacian∆
corresponding to its smallest eigenvalues 0= λ0 < λ1 ≤
. . . ≤ λm. Let d(x,y) be the Biharmonic distance between
two points on mesh, which is defined as

d(x,y)2 =
m

∑
i=1

1
λ2

i

(ψi(x)−ψi(y))
2 . (3)

The squared Biharmonic distance mapD2 is a functional
map defined by

D2[ f ](x) =
∫

x∈S
d2(x,y) f (y)dy, (4)

whereS is the differential manifold of shape. The reduced
matrix version ofD2 is denoted byA= {ai, j}, whereai, j =〈

ψi ,D2ψ j

〉
S
=

∫
Sψi(x)D2[ψ j ](x)dx for 0≤ i, j ≤ m. Note

that tr(A)= 0 and all eigenvalues ofA, denoted byµ0, . . . ,µm

are in a magnitude descending order, whereµ0 > 0 and
µi < 0 for i > 0. The shape descriptor is defined as a vec-
tor [µ1, . . . ,µm]

T (scale dependent) or[ µ1
µ0
, . . . , µL

µ0
]T (scale in-

dependent). For this shape contest, we chooseL = 30 and
m= 100. Finally, a normalized Euclidean distance is used
for nearest neighbour queries. The descriptor is insensitive
to a number of perturbations, such as isometry, noise, and
remeshing. It has superior discrimination capability regard-
ing globally change of shape and is very efficient to com-
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pute. It has been shown that scale independent descriptor (R-
BiHDM) is more reliable for generic nonrigid shape tasks,
while scale dependent descriptor (R-BiHDM-s) is more suit-
able for this human shape task.

4.5. HKS-TS and SIHKS-H, L. Lai, X. Lui and H. Li

The HKS-TS (heat kernel signature based on time serial) is
an application of HKS [SOG09], which adds the statistics of
dynamic HKS on a shape according to an appropriate time
serial chosen using a subset of theRealdata. The SIHKS-H
(scale invariant heat kernel signature based on statisticshis-
togram) is an application of SI-HKS [BK10]. The SI-HKS is
calculated on the shape to form a histogram. Then the sim-
ilarity between different shapes can be calculated according
to the SIHKS-H. Different similarity will be found by using
different methods. Finally, the ranking list can be produced
according to the similarity. For Task 2 two methods are used,
HKS-TS-HC and SIHKS-H-HC. They add a further process-
ing step to the methods used for Task 1. HC means the hier-
archical clustering algorithm. The hierarchical clustering al-
gorithm is added for classification according to the similarity
calculating in Task 1. Intuitively, the algorithm is improved
to be fit for this task.

4.6. High-level Feature Learning for 3D Shapes, S. Bu,
S. Chen, Z. Lui and J. Han

The proposed high-level feature learning method for 3D
shapes is carried out in the following three stages.

1. Low-level feature extraction: three representative in-
trinsic features, scale-invariant heat kernel signature
(SI-HKS) [BK10], shape diameter function (SDF)
[GSCO07], and averaged geodesic distance (AGD)
[HSKK01], are adopted as low-level descriptors.

2. Middle-level feature extraction: To tackle the spatial in-
formation missing in the low-level features, a middle-
level position-independent Bag-of-Features (BoF) is first
extracted from the above low-level 3D descriptors. In or-
der to compensate the lack of structural relationship, the
original BoF is further extended into a geodesic-aware
BoF (GA-BoF), which considers the geodesic distance
between each pair of BoF on the 3D surface.

3. High-level feature learning: Finally, a deep learning
based approach is introduced to further learn high-level
features from the GA-BoF, which is able to discover the
intrinsic relationship among GA-BoF and provide high
discriminative features for 3D shape retrieval.

4.6.1. Low-level 3D Shape Descriptors

In this research, the scale-invariant heat kernel signature,
shape diameter function, and average geodesic distance are
adopted as the low-level 3D shape descriptors which are
used for generating middle-level features, since these three
local descriptors are robust against non-rigid and complex

shape deformations. The first six frequency components of
the SI-HKS, SDF and AGD descriptors are concatenated to
form a low-level shape descriptor as

F(xi) = (SIHKS(xi)[ω1, ...,ω6],SDF(xi),AGD(xi)) , (5)

where the dimension of the feature isM = 8.

4.6.2. Middle-level Features

In this step, Bag-of-Features (BoFs) are computed to
represent the occurrence probability of geometric words,
and Minkowski metric is adopted as feature weighting
[CdAM12] for k-means to generate geometric words more
precisely.

After the geometric wordsC = {c1,c2, ..,cK} of sizeK is
obtained, the next step is to quantize the low-level descrip-
tor space in order to obtain a compact representation. For
each pointx ∈ X with the descriptorF(x), feature distribu-
tion φ(x) is defined as

φi(x) = c(x)exp

(
−||F(x)− ci ||22

kBoF σ2
min

)
, (6)

where the constantc(x) is selected to satisfy||φ(x)||1 = 1.

The geodesics on the mesh are used to measure the spa-
tial relationship between each pair of BoFs on vertices, and
introduce the geodesics-aware Bag-of-Features (GA-BoF):

v(X) = N(X) ∑
xi∈X

∑
x j∈X

φ(xi)φ(x j )
T exp

(
−kgd

gd(xi ,x j)

σgd

)
,

(7)
where N(X) is a normalization factor which makes fea-
tures have a fixed maximum value of 1,σgd is the maximal
geodesic distance of any pair of vertices on the mesh, andkgd
denotes the decay rate of distances, which is selected empir-
ically. The resultingv is a K ×K matrix, which represents
the frequency of geometric wordsi and j appearing within
a specified geodesic distance. This expression provides oc-
currence probability of geometric words and relationship be-
tween them.

4.6.3. Feature Learning via Deep Learning

In order to further deeply mine the relationship of features
from intra-class shapes and inter-class shapes in a large
dataset, deep learning is introduced into our framework,
which will result in high-level features with strong gener-
alization. Due to the fact that deep belief networks (DBN)
[HOT06] has shown good performance and is a probabilistic
approach, DBN is adopted as the feature learning method to
extract high-level features for the 3D shapes.

Stacking a number of the restricted Boltzmann machines
(RBMs) and learning layer by layer from bottom to top
gives rise to a DBN. It has been shown that the layer-by-
layer greedy learning strategy [HOT06] is effective, and
the greedy procedure achieves approximate maximum like-
lihood learning. In this method, the bottom layer RBM is
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trained with the input data of GA-BoF, and the activation
probabilities of hidden units are treated as the input data for
training the upper-layer RBM, and so on.

In the shape retrieval task, unlabelled 3D shape data are
used to train the DBN layer-by-layer. After obtaining the
optimal parameters, the input GA-BoFs are processed layer-
by-layer till the final layer which are used as the high-level
features. In the retrieval,L2 distance of the features is used
to measure the similarity of two shapesX andY as

ds(X,Y) = ||o(X)−o(Y)||2. (8)

4.7. Bag-of-Features approach with Augmented Point
Feature Histograms, A. Tatsuma and M. Aono

The developed Augmented Point Feature His-
tograms (APFH) expands Point Feature Histograms
(PFH) [RMBB08] by adding the statistics of their geometric
features. PFH is known as a local feature vector for 3D point
clouds. PFH constructs a histogram of geometric features
extracted from neighbouring oriented points. Improving
the discriminant power of PFH by adding the mean and
covariance of its geometric features is investigated. Because
APFH is a local feature vector as well as PFH, it is invariant
to the global deformation and articulation of the 3D model.

The overview of how the method defines the proposed
APFH is illustrated in Figure2. With APFH, the first step
is to randomly generate oriented points on the triangle sur-
face of a 3D model using Osada’s method [OFCD02]. To
generate a random pointp on an arbitrary triangle surface
composed of verticesva, vb, andvc, the following formula
is employed:

p = (1−√
r1)va+

√
r1(1− r2)vb+

√
r1r2vc. (9)

In the implementation, two random variables,r1 andr2 in the
above equation, are computed using the Niederreiter pseudo-
random number generator [BFN94]. The oriented point is
generated by inheriting the normal vector of the surface as
an orientation of the point.

Next a PFH for each oriented point is constructed.
The PFH finds thek-neighbourhood for each oriented
point, and calculates a four-dimensional geometric feature
f = [ f1, f2, f3, f4]

T as proposed in [WHH03]. The four-
dimensional geometric feature is defined as follows for every
pair of pointspa andpb in thek-neighbourhood, and for their
normal vectorsna andnb:

f1 = arctan(w ·nb,u ·na),

f2 = v ·nb,

f3 = u · pb−pa

d
,

f4 = d,

whereu = na, v = (pb − pa)× u/||(pb − pa)× u||, w =
u × v, and d = ||pb − pa||. The PFH collects the four-
dimensional geometric features in a 16-bin histogramfh. The

index of the histogram binh is defined by the following for-
mula:

h=
4

∑
i=1

s(t, fi) ·2i−1,

wheres(t, f ) is a threshold function defined as 0 iff < t and
1 otherwise. The threshold value off1, f2, and f3 are set to
0, and set the threshold value off4 to the average value off4
in thek-neighbourhood.

Furthermore, the mean and covariance of the four-
dimensional geometric features is calculated. Letfi be the
four-dimensional geometric feature of an oriented point in
the k-neighbourhood. The mean featurefm and covariance
featurefc in thek-neighbourhood are defined as follows:

fm =
1
k

k

∑
i=1

fi ,

fc = Upper

(
1

k−1

k

∑
i=1

(fi − fm)(fi − fm)
T

)
,

where Upper(·) concatenates the upper triangular part of the
matrix. Our APFHfAPFH is composedfh, fm, andfc.

Finally, APFH fAPFH is normalized with the power and
the L2 normalization [PSM10].

To compare 3D models, the set of APFH features of a 3D
model is integrated into a feature vector of the 3D model us-
ing the Bag-of-Features (BoF) approach [BBGO11, SZ03].
Moreover, the BoF is projected onto Jensen-Shannon kernel
space using the homogeneous kernel map method [VZ12].
This approach is called BoF-APFH.

In addition, similarity between features is calculated us-
ing the manifold ranking method with the unnormalized
graph Laplacian [ZBS11]. This approach is called MR-BoF-
APFH.

The parameters of each algorithm are fixed empirically.
For the APFH, the number of points is set to 20000, and
the number of the neighbourhood to 55. For the BoF-APFH
approach, a codebook of 1200 centroids is generated using
K-means clustering, and used the SHREC’11 Non-rigid 3D
Watertight dataset for training of the codebook.

4.8. BoF and SI-HKS, R. Litman, A. Bronstein,
M. Bronstein and U. Castellani

All shapes were down-sampled to have 4,500 triangles. For
each shapeS in the data-set, an SI-HKS [BK10] descriptor
xi was calculated in every pointi ∈ S . Unsupervised dictio-
nary learning was done over randomly selected descriptors
from all of the shapes using the SPAMS toolbox [MBPS09],
with dictionary size of 32. The resulting 32 atom dictionary
D was, in essence, thebag-of-featuresof this method. Next,
in every point descriptorxi was ‘replaced’ with a sparse code
zi by solving pursuit problem
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Figure 2: Overview of the Augmented Point Feature His-
tograms (APFH).

min
zi

1
2
‖xi −Dzi‖2

2+λ‖zi‖1. (10)

The resulting codeszi were subsequently pooled into a sin-
gle histogram using mean poolingh = ∑i ziwi , with wi being
element area of pointi.

Lastly, the main contribution of this method: the initialD
has undergone supervised training using about 30% of the
shape-classes. Training was done using stochastic gradient
descent of the loss-function defined in [WS09].

Present are the performance of the supervised training
(supDLtrain), and for reference, the performance of ini-
tial unsupervisedD (UnSup32). Additionally, a similar un-
supervised method used in [BBGO11] is also presented
(softVQ48). This method usesk-means clustering (withk=
48) and soft vector-quantization, instead of dictionary learn-
ing and pursuit, respectively.

4.9. Spectral Geometry, C. Li, A. Godil and
A. Ben Hamza

The spectral geometry based framework in [Li13] is used for
human body shape representation and retrieval. This frame-
work is based on the eigendecomposition of the Laplace-
Beltrami operator (LBO), which provides a rich set of eigen-
bases that are invariant to isometric transformations. It con-
sists of two main stages: (1) spectral graph wavelet sig-
nature [LH13b] for descriptors extraction, and (2) intrin-
sic spatial pyramid matching [LH13a] for shape compari-
son. The cotangent weight scheme was used to discretize
LBO. The eigenvaluesλi and associated eigenfunctionsϕϕϕi
can be computed by solving the generalized problemCϕϕϕi =
λiAϕϕϕi , i = 1,2, . . .,m, whereA is a positive-definite diag-
onal area matrix andC is a sparse symmetric weight matrix.
In the experimentsm is set to 200.

Spectral graph wavelet signature: The first stage con-
sists of the computation of a dense spectral descriptorh(x) at
each vertex of the triangle meshed shapeX. In general, any
one of spectral descriptors with the eigenfunction-squared
form reviewed in [LH13c] can be used in the human body
retrieval contests for isometric invariant representation. In
this work the recently proposed spectral graph wavelet sig-
nature (SGWS) is used as the local descriptor; it provides a
general and flexible interpretation for the analysis and design
of spectral descriptorsSx(t,x) = ∑m

i=1 g(t,λi)ϕ2
i (x). In a bid

to capture the global and local geometry, a multi-resolution
shape descriptor was obtained by settingg(t,λi) as a cubic
spline wavelet generating kernel and considering the scaling
function. The resolution level is set as 2.

Intrinsic spatial pyramid matching: Given a vocab-
ulary of representative local descriptorsP = {pk, k =
1,2, . . .,K} learned by k-means, the dense descriptorS=
{st , t = 1,2, . . .,T} at each point of the shape is replaced
by the Gaussian kernel based soft assignmentQ= {qk, k =
1,2, . . .,K}.

Any function f on X can be written as the linear combi-
nation of the eigenfunctions. Using the variational charac-
terizations of the eigenvalues in terms of the Rayleigh-Ritz
quotient, the second eigenvalue is given by

λ2 = inf
f⊥ϕϕϕ1

f ′C f
f ′A f

(11)

The isocontours of the second eigenfunction (Figure3)
are used to cut the shape intoR patches, thus the shape de-
scription is the concatenation ofR sub-histograms ofQ along
eigenfunction value in the real line. To consider the two-sign
possibilities in the concatenation, the histogram order isin-
verted, and the scheme with the minimum cost is consid-
ered as a better matching. The second eigenfunction is the
smoothest mapping from the manifold to the real line, re-
sulting in this intrinsic partition quite stable. It provably ex-
tends the property of popular SPM in image domain to cap-
ture spatial information for meshed surfaces, so is referred as
intrinsic spatial pyramid matching (ISPM) in [LH13a]. The
partition number is set as 2 in this contest.

Finally, the result is ISPM induced histograms for shape
representation. The dissimilarity between two shapes is
computed as theL1 distance.

Running time The method is implemented in MATLAB.
The time consuming steps of the method are the computation
of LBO and k-means dictionary learning. For a mesh with
15,000 vertices, it takes 8 seconds to compute the LBO. For
a mesh with 60,000 vertices, it takes 37 seconds to compute
the LBO. To learn a dictionary with 100 geometric words,
it takes 45 minutes. Therefore, it averagely takes at most 24
hours (less than one day) to run the program for each dataset.
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Figure 3: The isocontours of the second eigenfunction.

5. Results

Here we evaluate the retrieval results of the methods de-
scribed in Section4, applied to the datasets described in
Section2. Table1 shows the results of Task 1 evaluated us-
ing the NN, 1-T, 2-T, E-M and DCG measures discussed in
Section3. All methods performed better on theSynthetic
dataset, with most methods performing poorly on theReal
data. This shows that it is potentially easier to distinguish
between synthetically generated objects, rather than objects
captured from the ‘real world’, and that testing on synthetic
data is not a reliable way to predict performance on real data.
The different classes in theSyntheticdata may also be more
easily distinguished because they have been manually de-
signed to be different for this competition, whereas the mod-
els in theRealdataset were generated from body scans of
human participants taken from an existing dataset, who may
or may not have had very different body shapes. There is
in fact a much higher similarity between the classes in the
Realdataset. Figure4 shows the precision-recall curve for
the best performing methods submitted by each participant.

On the more challengingRealdataset, three methods, due
to Litman et al., Ye, and Giachetti and Garro, performed sig-
nificantly better than the others. The best performing method
by Litman et al. was trained on a subset of the test set, and
therefore has an advantage over their other submissions, but
the unsupervised variants of their method still perform well.

The performance of different methods is far closer on the
Syntheticdataset. The organisers (Pickup et al.) submitted
two very simple methods, Surface Area and Compactness. It
is interesting to note that they perform better than many of
the more sophisticated methods submitted, including their
own, and Surface Area is one of the top performing methods
on theSyntheticdataset. These measures are obviously not
novel, but they highlight that sophistication does not always
lead to better performance, and a simpler and computation-
ally very efficient algorithm may suffice. Algorithms should
concentrate on what is truly invariant for each class.

Table2 shows the results of Task 2 evaluated using the
F-Measure. As for Task 1, the performance of all methods

Author Method NN 1-T 2-T E-M DCG

Giachetti APT† 0.845 0.534 0.681 0.355 0.795

Lai
HKS-TS† 0.245 0.259 0.461 0.314 0.548
SIHKS-H† 0.125 0.090 0.186 0.145 0.388

B. Li

Curvature 0.083 0.076 0.138 0.099 0.347
Geodesic 0.070 0.078 0.158 0.113 0.355
Hybrid† 0.045 0.080 0.164 0.117 0.354

Hybrid-R† 0.043 0.092 0.173 0.123 0.363
MDS-R 0.035 0.066 0.129 0.090 0.330

MDS-ZFDR 0.030 0.040 0.091 0.075 0.310
C. Li Spectral Geom.0.313 0.206 0.323 0.192 0.488

Litman
supDLtrainR† 0.793 0.727 0.914 0.432 0.891

UnSup32 0.583 0.451 0.659 0.354 0.712

softVQ48 0.598 0.472 0.657 0.356 0.717

Pickup
Surface Area 0.263 0.289 0.509 0.326 0.571
Compactness 0.275 0.221 0.384 0.255 0.519

Canonical 0.010 0.012 0.040 0.043 0.279
Bu 3DDL 0.225 0.193 0.374 0.262 0.504

Tatsuma
BoF-APFH 0.053 0.100 0.226 0.162 0.383

MR-BoF-APFH 0.048 0.071 0.131 0.084 0.327

Ye
R-BiHDM 0.275 0.201 0.334 0.217 0.492

R-BiHDM-s 0.685 0.541 0.742 0.387 0.781

RealDataset

Author Method NN 1-T 2-T E-M DCG

Giachetti APT† 0.970 0.733 0.927 0.655 0.936

Lai
HKS-TS 0.467 0.476 0.743 0.504 0.729
SIHKS-H 0.427 0.206 0.332 0.219 0.562

B. Li

Curvature 0.620 0.485 0.710 0.488 0.774
Geodesic 0.540 0.362 0.529 0.363 0.674
Hybrid† 0.460 0.503 0.743 0.512 0.773

Hybrid-R† 0.413 0.518 0.767 0.532 0.774
MDS-R 0.267 0.284 0.470 0.314 0.594

MDS-ZFDR 0.207 0.228 0.407 0.265 0.559

C. Li Spectral Geom.0.993 0.832 0.971 0.706 0.971

Litman
supDLtrainS† 0.960 0.887 0.991 0.721 0.975

UnSup32 0.893 0.754 0.918 0.657 0.938
softVQ48 0.910 0.729 0.949 0.659 0.927

Pickup
Surface Area 0.807 0.764 0.987 0.691 0.901
Compactness 0.603 0.544 0.769 0.527 0.773

Canonical 0.113 0.182 0.333 0.217 0.507
Bu 3DDL 0.923 0.760 0.911 0.641 0.921

Tatsuma
BoF-APFH 0.650 0.592 0.740 0.528 0.824

MR-BoF-APFH 0.880 0.672 0.871 0.601 0.887

Ye
R-BiHDM 0.737 0.496 0.673 0.467 0.778

R-BiHDM-s 0.793 0.572 0.760 0.533 0.836

SyntheticDataset

Table 1: Retrieval results for Task 1. The1st , 2nd and

3rd highest scores of each column are highlighted.† means
the method has used part of the test data for training or pa-
rameter optimisation.

is much higher for theSyntheticdataset. All but one of the
methods used pre-existing knowledge of the size of each
class.
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Real Synthetic
Participant Method F-MeasureF-Measure

Giachetti APT†‡ 0.534 0.733

Lai
HKS-TS-HC†‡ 0.063 0.244
SIHKS-H-HC†‡ 0.038 0.089

C. Li Spectral Geometry‡ 0.204 0.828

Litman supDLtrainR† 0.640 0.814

Pickup Surface Area‡ 0.301 0.759

Bu 3DDL‡ 0.193 0.760

Table 2: Retrieval results for Task 2. The1st , 2nd and

3rd highest scores of each column are highlighted.‡ signi-
fies the method is aware of the class size, other annotation
as for Table 1.

6. Conclusion

This paper compared non-rigid retrieval results obtained by
22 different methods, submitted by nine research groups,
on two new datasets of human body models. These
datasets are much more challenging than previous non-rigid
datasets [LGB∗11], as evidenced by lower success rates. The
data obtained by scanning real human participants proved
more challenging than the synthetically generated data. This
shows that there is a lot of room for future research to im-
prove the analysis of ‘real’ data. If the performance of meth-
ods is to be improved for real data, then more real datasets
are needed for testing purposes, as synthetic datasets do not
adequately mimic the same challenge.

All methods submitted were designed for generic non-
rigid shape retrieval. Our new dataset has created the poten-
tial for new research into methods which specialise in shape
retrieval of humans.
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