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ABSTRACT
We propose a method for modeling the topology of swarm
behavior in a manner which facilitates the application of ma-
chine learning techniques such as clustering. This is achieved
by modeling the persistence of topological features, such as
connected components and holes, of the swarm with respect
to time using zig-zag persistent homology. The output of
this model is subsequently transformed into a representa-
tion known as a persistence landscape. This representation
forms a vector space and therefore facilitates the applica-
tion of machine learning techniques. The proposed model is
validated using a real data set corresponding to a swarm of
300 fish. We demonstrate that it may be used to perform
clustering of swarm behavior with respect to topological fea-
tures.

CCS Concepts
•Mathematics of computing → Algebraic topology;
•Information systems→Geographic information sys-
tems;
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1. INTRODUCTION
A swarm may be defined as a large set of agents mov-

ing in close spatial proximity to each other. The agents in
question may correspond to animals, such as fish, birds or
humans, robots or other environmental phenomena. Swarms
can accomplish many complex tasks such as building com-
plex structures [10]. As well as being able to accomplish
such tasks, swarms can do so in a manner which is robust,
scalable and flexible. For these reasons, the development of
accurate models of swarm behavior has long been of interest
to the research community.

Most existing models of swarm behavior model metric
properties such as agent orientation. If one assumes the
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swarm to be samples lying on an unknown manifold, where
a manifold is a space which locally looks like an open subset
of Rn, one can infer this manifold using methods such as
kernel density estimation. One can then model the topology
of this manifold and in turn that of the swarm. Comput-
ing the Betti numbers of a manifold is a commonly used
approach to model its topology. Intuitively the kth Betti
number equals the number of k-dimensional holes in the
manifold with the 0th Betti number equaling the number
of path-connected components [5]. Toward illustrating this
approach to modeling swarm behavior consider Figure 1(a)
which displays a swarm at a given time where the agents
in question correspond to 300 Golden Shiners which are a
type of fish [9]. The fish are swimming in a shallow pool
and therefore their position may be accurately specified us-
ing x and y Cartesian coordinates. This manifold appears
to have a single path-connected component which contains
a single one dimensional hole. That is, the corresponding
0th and 1st Betti numbers are both equal to 1. Topologi-
cal features which persist for a longer period of time are of
greater significance than those which persist for a shorter
period. Therefore when modeling the topology of a swarm
it is important to model the persistence of Betti numbers
with respect to time.

In this paper we propose a novel method for modeling
swarm behavior. This method first computes the corre-
sponding Betti numbers and their persistence with respect
to time using zig-zag persistent homology. This information
is subsequently transformed into a representation known as
a persistence landscape. The latter representation forms a
vector space that facilitates the application of vector based
tools from machine learning. In this paper we specifically
consider the task of clustering swarm behavior.

The layout of this paper is as follows. In section 2 we
review related works on modeling swarm behavior. In sec-
tion 3 we describe the model of swarm behavior proposed
in this paper. In section 4 we demonstrate that it may be
used to cluster swarm behavior. Finally in section 5 we draw
conclusions.

2. RELATED WORKS
There exists a vast array of works which attempt to model

the behavior of moving agents [7]. However in this section
we only consider these works where the agents in question
correspond to a swarm; that is, a large set of agents mov-
ing in close spatial proximity to each other. Two commonly
used characteristics of swarm behavior are polarization and
rotation order which provide measures of the alignment and
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Figure 1: A swarm of 300 Golden Shiner fish, its KDE and simplicial complex are displayed.

angular momentum of the agents respectively [9]. These
characteristics only model swarm behavior at a given in-
stance in time. In order to model the temporal behaviour
of a swarm [9] proposed to model how these characteristics
vary as a function of time. [6] proposed a method for clas-
sifying swarm behavior as flock, torus or disordered. These
three types of swarm behavior are considered to be the most
common types exhibited by swarms. In a flock behavior the
agents form a compact cluster with all agents moving in a
common direction. In a torus behavior the agents move in
a circular motion around a region in space. While in a dis-
ordered behavior the agents behave randomly.

[8] recently proposed a model of swarm behavior which
computes the corresponding Betti numbers independently
at each time step. The authors subsequently visualized the
Betti numbers as a function of time. This approach was
found to reveal characteristics of swarm behavior not cap-
tured by models which do not explicitly model topological
features. A limitation of this method is that it does not com-
pute the persistence with respect to time of the topological
features corresponding to Betti numbers.

3. MODEL OF SWARM BEHAVIOR
The proposed method for modeling the topology of swarm

behavior contains the following computational steps. Firstly
we infer the manifold on which the agents lie. Next we use
a methodology called zig-zag persistence homology for com-
puting the persistence of topological features with respect to
time [3]. We subsequently transform this information into
a representation known as a persistence landscape which fa-
cilitates the application of tools from statistics and machine
learning [2]. In order to achieve robustness with respect to
noise we draw from recent advances in robust topological
inference.

In this section we describe each of these steps in detail.
Specifically in section 3.1 we describe how the manifold is
inferred. In section 3.2 we briefly review background mate-
rial on homology theory. In sections 3.3 and 3.4 we describe
zig-zag persistence homology and persistence landscape re-
spectively.

3.1 Inferring the Manifold
In this section we describe how the manifold on which

the agents lie may be inferred using the combinatorial rep-
resentation of a simplicial complex [5]. Briefly a simplicial
complex K is a family of finite subsets of a universal set such

that for each σ in K all subsets of σ are also in K. A set σ
in K is called a k-simplex if |σ| = k + 1 where |.| represents
the cardinality of the set in question. The faces of a simplex
σ correspond to all simplices τ such that τ ⊂ σ. This rep-
resentation subsequently provides a platform for computing
topological features of the manifold.

As stated in the introduction, we assume the agents to be
samples drawn from an unknown manifold. When attempt-
ing to infer this manifold it is important to do so in a manner
which is robust to noise. In this context noise corresponds
to a minority of agents whose behavior differs from that of
the majority and as a consequence their presence introduces
topological artifacts.

Using a Gaussian kernel with bandwidth h we compute
a Kernel Density Estimation (KDE) of the agent locations.
Let fh denote the kernel density estimator. The upper-level
set f−1

h [a,∞) of this estimator can be considered a robust
estimate of the manifold provided the threshold a is appro-
priately chosen. This is justified by the fact that agents
corresponding to noise will lie in regions of the space with
low density and therefore will not be represented in the in-
ferred manifold. We subsequently represent this super-level
set using a simplicial complex K as follows. We first estimate
the density for a grid of points over R2. For each point we
include a corresponding 0-simplex in K if the density at that
point is greater than a. For each pair of 0-simplices which
are horizontally, vertically or main diagonally adjacent we
include a corresponding 1-simplex in K. For each triple of
0-simplices where all subsets of pairs are horizontally, verti-
cally or main diagonally adjacent we include a corresponding
2-simplex.

To illustrate this construction in the context of a swarm
consider again the swarm displayed in Figure 1(a). The
KDE corresponding to this swarm is displayed in Figure
1(b). The simplicial complex representation of the upper-
level set of this KDE is displayed in Figure 1(c). It is evident
that this simplicial complex contains a single path-connected
component and a single one dimensional hole. As such it
accurately models the topology of the original swarm in a
robust manner.

3.2 Homology Theory
In this section we formally define Betti numbers and de-

scribe how the Betti numbers of a manifold may be inferred
from a simplicial complex representation of that manifold.
Let K be a simplicial complex. A k-chain on K is defined by



Equation 1 where each σi ∈ K is a k-simplex and each λi is
an element from a given field. The set of k-chains forms a
group known as the chain group Ck(K). The boundary map
is a map from a k-simplex to a sum of its (k − 1)-simplex
faces and is defined in Equation 2. Here [v1, . . . , v̂i, . . . , vk+1]
is the (k − 1)-simplex obtained by removing the 0-simplex
vi from the k-simplex σ = [v1, . . . , vk+1]. This map is dis-
tributive and therefore extends to the chain groups to give
the sequence of chain groups defined in Equation 3. Such a
sequence of groups is known as a chain complex C∗.

c =
�

λiσi (1)

∂kσ =

k+1�

i=1

[v1, . . . , v̂i, . . . , vk+1] (2)

. . . −→ Ck+1(K)
∂k+1−−−→ Ck(K)

∂k−→ Ck−1(K) −→ . . . (3)

A k-chain c ∈ Ck(K) is a k-boundary if there exists a
d ∈ Ck+1(K) such that c = ∂d. It is a k-cycle if ∂c = 0. The
set of all k-boundaries and k-cycles form groups denoted
by Bk(K) and Zk(K) respectively. Both these groups are
subgroups of Ck(K). By virtue of the fact that ∂k+1∂k = 0 it
follows that Bk(K) ⊆ Zk(K). The quotient group Hk(K) =
Zk(K)/Bk(K) is called the k-homology group of K and its
rank is called the kth Betti number. As discussed in the
introduction to this paper, intuitively the kth Betti number
equals the number of k-dimensional holes in K.

3.3 Zig-Zag Persistent Homology
For the purposes of this work we are not only interested

in computing the Betti numbers but also the persistence
with respect to time of the corresponding topological fea-
tures. This is achieved using a methodology called zig-zag
persistence homology. Consider the sequence of simplicial
complexes K defined in Equation 4 which is called a zig-zag
diagram [3]. Here each map ↔ represents either a forward
inclusion map → or a backward inclusion map ←. A for-
ward inclusion map corresponds to the addition of simplices
while a backward inclusion map corresponds to the removal
of simplices. A zig-zag diagram induces a corresponding se-
quence of homology groups defined in Equation 5 which is
called a zig-zag module.

K : K1 ↔ K2 ↔ · · · ↔ Kn (4)

Hk(K) : Hk(K1) ↔ Hk(K2) ↔ · · · ↔ Hk(Kn) (5)

This zig-zag module can be decomposed into a direct sum
of interval modules. These modules have a form defined by
Equation 6 where Ii = k for b ≤ i ≤ d and otherwise Ii = 0
and every k ↔ k is the identity map.

I[b,d] : I1 ↔ I2 ↔ · · · ↔ In (6)

The zig-zag persistent homology of K for dimension p,
which is denoted Persp(K) and defined in Equation 7, is
the multiset of intervals [b, d] corresponding to the set of
summands I[b,d] of Hp(K). Each interval [b, d] corresponds
to the persistence of a topological feature in K which ex-
ists from b to d inclusive. The total persistence Pers(K) of

the zigzag diagram K is the collection of Persp(K) for each
dimension p [4].

Persp(K) = {[bj , dj ]|j ∈ J} (7)

When attempting to analyze the characteristics of swarm
behavior one typically knows the locations of the agents in
question at a sequence of discrete times. The corresponding
sequence of simplicial complexes might not have the prop-
erty that between each consecutive pair of simplicial com-
plexes a forward or backward inclusion map exists. This
is because the transformation between such a pair may in-
clude both the addition and removal of different simplices.
Therefore one cannot directly compute the zig-zag persis-
tent homology for such a sequence. To overcome this chal-
lenge for each consecutive pair of simplicial complexes we
compute an intermediate simplicial complex corresponding
to the union of the simplicial complexes in question. This
gives the zig-zag diagram K of Equation 8 for which the zig-
zag persistent homology can be computed. In this work we
used the method of [4] to perform this computation.

K : K1 → (K1 ∪K2) ← K2 → (K2 ∪K3) ← K3 . . .Kn (8)

3.4 Persistence Landscape
Given the total persistence Pers(K), corresponding to the

collection of Persp(K), we wish to transform this into a rep-
resentation which facilitates the application of tools from
statistics and machine learning. The most commonly used
approach toward achieving this goal is to use a representa-
tion known as a persistence diagram. This representation is
obtained by mapping the intervals of a given Persp(K) to
their endpoints [2]. It may be equipped with a metric, such
as the bottleneck or Wasserstein metrics, to form a metric
space [1]. However a metric space does not allow one to per-
form vector based machine learning tasks, such as computing
averages and distances between averages. To overcome this
limitation we use a representation known as a persistence
landscape which forms a normed vector space [2].

4. EXPERIMENTS
This section presents experiments performed to evaluate

the accuracy and usefulness of the proposed model of swarm
behavior. It is structured as follows. In section 4.1 we de-
scribe the data used within the experiments. In section 4.2
we describe how the proposed model may be used to perform
clustering of swarm behavior.

4.1 Data
The data used in our experiments corresponds to a swarm

of 300 Golden Shiners. This data was described briefly in
the introduction to this paper and was obtained from [9].
The fish in question were swimming in a small shallow tank
(2.1 m × 1.2 m, water depth 5 cm). They were filmed for
56 minutes at 30 Hz. A vision based algorithm was used to
track the position and orientation of individual fish. For the
purposes of this paper we down-sampled the frame rate to
3 Hz. In all experiments swarm behavior is modeled over
a temporal window of length equal to 10 time steps. An
example of the swarm in question at a given time step is
displayed in Figure 1(a).



Figure 2: The swarm, persistence diagram Pers0(K) and persistence diagram Pers1(K) are displayed.

4.2 Clustering
In this section we describe an experiment performed to

evaluate if the proposed model may be used to discover clus-
ters of swarm behavior with distinct topological features. In
order to perform clustering the K-medoids data clustering
algorithm was used. The individual data points to be clus-
tered correspond to the persistence landscape representation
of swarm behavior in a given temporal window. K-medoids
is an iterative clustering method which determines K clus-
ters by assigning each cluster a corresponding cluster center
represented by a data point such that the distance between
each data point and its corresponding cluster center is min-
imized. We clustered swarm behavior using K-medoids for
K=3. Figure 2 illustrates one of the clusters obtained. Re-
call that swarm behavior is modeled over a temporal win-
dow of length equal to 10 time steps. The left image of
Figure 2 displays the swarm at the midpoint of this win-
dow for the cluster in question. The center and right images
of Figure 2 display the corresponding persistence diagrams
of Pers0(K) and Pers1(K) respectively. A persistence dia-
gram is obtained by mapping the intervals in question to
their endpoints. A point exists at coordinates (0,10) in the
persistence diagram of Pers0(K) and this indicates that a
path-connected component appeared at time 0 and disap-
peared at time 10. Likewise a point exists at coordinates
(0,10) in the persistence diagram of Pers1(K) and this indi-
cates that a one dimensional hole appeared at time 0 and
disappeared at time 10. Points which lie closer to the di-
agonal of a persistence diagram, represented by blues lines
in our figures, do not persist for a significant period and
therefore are considered topological noise. This is the case
for the point (8,9) in the persistence diagram of Pers1(K).
This examination of the cluster of Figure 2 reveals that it
corresponds to the swarm behavior torus. A similar exam-
ination of the two remaining clusters returned reveals that
they correspond to the behaviors flock and disordered. As
such, our model is able to discover these three behaviors in
an unsupervised manner.

5. CONCLUSIONS
To the authors’ knowledge the work presented in this pa-

per represents the first attempt to model the topology of
swarm behavior in a manner which facilitates the application
of machine learning techniques. The experiment results pre-
sented demonstrate that the proposed model may be used
to perform the machine learning task of clustering swarm

behavior with respect to topological features. The model
proposed has many potential applications beyond modeling
swarm behavior. For example it could potentially be used
to model topological events in sensor networks [11].
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