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Abstract. One of the primary methods of studying change in the natural and 
man-made environment is that of comparison of multi-date maps and images of 
the earth's surface. Such comparisons are subject to error from a variety of 
sources including uncertainty in surveyed location, registration of map 
overlays, classification of land cover, application of the classification system 
and variation in degree of generalisation. Existing geographical information 
systems may be criticised for a lack of adequate facilities for evaluating errors 
arising from automated change detection. This paper presents methods for 
change detection using polygon area-class maps in which the reliability of the 
result is assessed using Bayesian multivariate and univariate statistics. The 
method involves conflation of overlaid vector maps using a maximum 
likelihood approach to govern decisions on boundary matching, based on a 
variety of metrics of geometric and semantic similarity. The probabilities of 
change in the resulting map regions are then determined for each class of 
change based on training data and associated knowledge of prior probabilities 
of transitions between particular types of land cover. 

1 Introduction 

One of the major applications of geographically-referenced spatial data is that of 
monitoring change on the earth's surface. Change in natural and semi-natural 
environmental phenomena may reflect variation in climate, the dynamics of plant and 
animal communities and the influence of human activity in land and transport 
development, agriculture and the production of pollutants. Approaches to automated 
change detection based on existing spatial data sources differ according to the type of 
data that are used. A considerable volume of literature documents the application of 
satellite remote sensing, in which the evidence for change is based on comparison of 
either the radiometric pixel values and their combinations, such as in vegetation 
indices, or the classified pixels resulting from various methods of interpretation of the 
source data [1]. An alternative approach is based on the comparison of area-class 
polygon maps produced from interpretation of sources such as aerial photography and 
land surveys [2].  
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The results of change detection analyses based on comparisons of multi-date 
digital maps are subject to error from several sources. All methods may incur error in 
the surveyed location of spatial data elements and error in the locational registration 
of the respective datasets. In the case of classified data, errors arise due to variation in 
the definition of and the application of the classification systems and in the degree of 
generalisation. Comparison of radiometric data values, or their combinations or 
transformations, is also affected by factors such as variation in lighting conditions and 
in seasonal characteristics of vegetation and agriculture.  

Studies of the reliability of change detection based on comparison of spatial 
datasets have been performed with regard to a range of methodologies, with the most 
extensive research being in the field of satellite remote sensing. Less effort has been 
expended on the development of automated change detection with area-class maps, 
whether derived from aerial photography, land survey, or indeed satellite image 
interpretation, yet they constitute a massive source of historical data on various 
aspects of the environment. Several studies have highlighted the problems of error in 
this context (e.g.[3], [4], [5], [6]). However there are many examples of automated 
change detection using either area-class maps or satellite imagery, in which reliability 
of the results is not reported (e.g. [7], [8], [9]), a situation which may be regarded as 
reflecting the lack of appropriate and readily implemented methods. Most 
geographical information systems do provide facilities that can be used to perform 
comparisons of polygon maps for purposes of change detection, but there is a 
shortage of effective tools for determining the nature of change. In particular it is 
difficult to evaluate the reliability of the results with regard to the sources of data on 
which they are based.  

 In this paper we address specifically the use of area-class polygon maps for 
automated change detection and present methods that are intended to assist in 
improving reliability while providing quantitative measures of the accuracy of the 
results. The approach adopted is based on the application of Bayesian statistical 
methods [10]. It is assumed that a variety of geometric and semantic measures 
associated with elements of the source data can be used, in combination with prior 
knowledge of the occurrence of transitions between different land-cover categories, to 
indicate that multi-date maps represent specific types of change. Training data, based 
on expert assertions of the presence and absence of change, are used to estimate the 
prior conditional density functions for each type of evidence. The training data used 
in this study relate to change in map boundaries and in land cover categories derived 
from aerial photographic surveys of Scotland. We present results of evaluating the 
method using expert-asserted ground truth data separate from that used in training.  

In the remainder of the paper we start by reviewing existing methods of polygon 
map comparison and discuss the relevance of conflation methods in Section 2, before 
summarising the procedures employed here in Section 3. Section 4 describes the 
experimental results, and a conclusion is provided in Section 5. 



2 Map Overlay Methods for Change Detection 

Given a pair of polygon maps relating to different dates, a simple approach to 
determining differences between them, and hence potential regions of change, is to 
overlay the maps and analyse the resulting regions of intersection. Differences in 
classifications derived from the parent maps for a particular polygon indicate that the 
region may be categorised as representing change. If the source maps contain 
independently generated boundaries that are approximately coincident then sliver 
polygons can be expected to occur and the problem arises of distinguishing them from 
polygons that may represent genuine change [3]. Conventional GIS functionality 
allows the slivers to be removed if they are smaller than some areal threshold. 
However, the problem then arises of selecting an appropriate threshold value and in 
any event the result may be an arbitrary increase in the area of the adjacent polygon 
with which it is merged.  

Chrisman and Lester [3] pointed out that sliver area by itself is not a reliable 
measure and proposed distinguishing between change and non-change slivers on the 
basis of their shape. This still does not distinguish the case where, though a sliver may 
be relatively small, it may include a separation between its opposite sides that exceeds 
a locational error distance threshold. Cherrill and McClean [4] suggested confining 
measurements of change to the internal zones of polygons that exclude a boundary 
error buffer, and they presented results of applying this method using a range of 
buffer sizes. The results reduced the incidence of what they considered to be 
erroneous change, though the technique leads to the exclusion from change analysis 
of what could be a significant proportion of the map area. It should be remarked 
however that Cherrill and McClean observed in their study that boundary location 
error was a much less important factor than that of area class differences due to 
disagreement between interpretations rather than to ‘real world’ change. 

An alternative approach to resolving the problem of slivers in conventional GIS is 
to increase the size of a ‘fuzzy tolerance’ value that is used to control the merger of 
line vertices that belong to adjacent line features. A technique for performing this 
merger has been described by [11], but the method appears to merge vertices in a 
manner which, though distance-constrained, may result in an arbitrary location for the 
merged lines within the limits of the distance constraint. For maps containing 
boundaries with errors of different magnitudes, this could result in the degradation of 
better quality boundaries that may be moved in the course of the merge procedure. As 
suggested by Chrisman [12], when two boundary segments are considered to be 
equivalent, it may be preferable simply to delete the poorer quality line. A method of 
map overlay in which differing locational errors of the map components are taken into 
account has been described in [13] and [14]. A shortcoming of this and related 
techniques, such as [15] and [16], is that they adopt a very localised, largely point-
based approach which fails to take account of higher level geometric and semantic 
characteristics of the parent linear features. This issue is addressed in the feature 
matching procedures developed in the work described here.  



2.1 Map Conflation 

The idea of overlaying a pair of maps, such that the better quality versions of 
equivalent parts of the maps are retained, is integral to the concept of map conflation 
(e.g. [17],  [18]). An important part of conflation is the matching of equivalent 
features. When a lower quality representation is merged with a better quality 
equivalent, it is assumed that it brings with it other topologically linked features for 
which there may be no match between the maps. The result is a map in which the best 
quality elements of the sources are preserved while non-common elements are also 
retained in a topologically consistent manner.  

As originally conceived, map conflation was intended to be applied to multiple 
representations of the same phenomena relating to a particular point in time. The 
concept is extended here to combine maps relating to different points in time. Thus 
where linear features or boundaries cannot be distinguished from each other, the 
resulting map should include the best known representation of the feature which may 
be the result of a merge process. Recent work on conflation [19] addresses the 
problems of data uncertainty with a rule-based approach using geometric and attribute 
matching procedures. Our approach is related, but differs in being concerned with 
change and in the explicit use of training data to analyse the statistical characteristics 
of change.  

3 Probabilistic Change Detection Procedure 

In the present study there are two types of event, concerning a pair of maps relating to 
different times, that can be evaluated probabilistically with Bayesian statistics. These 
are: 

− sections of area boundaries being equivalent, 
− land cover changing from one category to another.  

 
The major functional stages in the procedure for change detection are as follows: 

− training to determine the prior conditional probability distributions of evidence 
associated with the presence of boundary section equivalence and land-cover 
category change, 

− overlay the two maps under consideration and identify paired sections of 
boundary that are indistinguishable at some probability level, 

− merge matched line features, if a conflation is required, 
− determine the probability that land-cover change has occurred for map regions 

in which the source land cover attributes differ. 

3.1 Training  

The training stage requires that an expert asserts the presence of each of the two types 
of event within training data that are representative of the context of change detection. 
Associated metrics of potentially relevant evidence are then analysed to estimate their 



conditional probability distribution. We now summarise metrics that have been 
considered in this study. It is important to stress however that the approach is generic 
and there are many potential items of evidence that might prove to be effective. 

 
Evidence for Boundary Equivalence (Hypothesis H1). Given an overlay of a pair of 
time-differing maps of the same area, an expert must identify nearby sections of 
boundary that represent the same (unchanged) boundary phenomenon on the ground. 
These pairs of asserted equivalent line portions are then analysed to evaluate the 
following metrics:  

 
E1: Hausdorff distance between line sections a and b. This is a measure of the 
maximum lateral separation of a and b. If dai is the shortest distance from edge i of 
line a to its nearest neighbouring edge in b (taking account of all locations on each of 
the edges), and dbj is the distance from edge j of line b to its nearest neighbour in a, 
then  
 

E1 = max (max(dai), max(dbj)) . 

E2: approximate average distance between line sections consisting of m and n 
vertices, given by 

                            
                                            E2 =            Σdai + Σdbj  . 

      1 
  m + n  

E3: difference in line length. 

E4: difference in alternation (i.e. intersections with ‘anchor line’ connecting start and 
end). 

E5: difference in trend orientation as determined by the ‘anchor line’. 

E6: difference between the pair of left-right attribute codes of each section of 
boundary. The difference between a pair of attribute codes can be measured as the 
weighted path length between the two codes within the hierarchical classification 
system to which they belong. If P is the set of edges e in the shortest path and each 
edge has a weight determined by a function w of the depth in the hierarchy of the 
node at the lower (most distant from the root) end of the edge, then combining the 
weighted left Pl and right Pr path distances  

 
                                          E6 = Σ W(e)  + Σ W(e) . 
                                                               e ∈ Pl                   e ∈ Pr



Evidence for Change in Land Cover Type (Hypothesis H2). The following items of 
evidence were considered in an effort to support the hypothesis of change in a single 
polygon for one type of land cover X to another type Y: 

E7: (0 or 1) the attribute from map A is type X, while the attribute from map B is type 
Y. 

E8: (0 or 1) there is a polygon of type Y adjacent to the polygon of type X in map A.  

Conditional Probability Density Functions. For each of these items of evidence, the 
mean is determined and stored in the vector M and a covariance matrix C is 
constructed using the items of evidence (such as E1 to E6). Provided that the 
individual items of evidence are approximately normally distributed, or can be 
transformed to normality, the conditional probability density function [10] for a set of 
items of evidence E is represented by:       
 

p(E|H)  =            1              exp[ - ½ (E - M)T C-1(E - M)] . 

                                        (2π)
n/2  ⎢C ⎢½ 

 
In the event of only a single item of evidence being used, then the conditional 

probability may be estimated directly from the training data. 

3.2 Posterior Probabilities and Prior Probabilities 

Given a set of items of evidence E it will then be possible to estimate the posterior 
probability of an event using the conditional probability density function with Bayes' 
rule: 
 

p(H|E) =  p(E|H) p(H)
                                                                            p(E)  

 
The prior probability p(E) can be derived in this case from the summation of the 

product (p(E|Hi).p(Hi)) for the hypothesis and its negation. The prior probability of a 
hypothesis p(H) should be based on expert knowledge that is relevant to the context. 
In the absence of such knowledge it may be approximated on the basis of the training 
data [20]. Thus p(H1) is estimated by the frequency with which an expert has asserted 
that a neighbouring line within a predetermined maximum tolerance distance of the 
source line is in fact equivalent to the source line. p(H2) may be found from analysis 
of land-cover transition matrices based on expert assertions of change between one 
land use type and another. An example of such a study that is relevant to the research 
described here is that of Hester et al [21]. In the case of types of transition for which 
no such prior knowledge is available it can be approximated from the training data by 



the proportion of the area of type X polygons that become type Y polygons, as 
verified by the expert assertions.  

3.3 Locational Matching (Via Triangulation) 

In order to identify candidate sections of pairs of lines that may prove to be regarded 
as indistinguishable, a search is performed to find for each edge of each line segment 
all edges of other line segments that are within a given tolerance distance, based on 
the locational accuracy of the relevant lines. The results of these searches are used to 
construct pairs of line sections that are mutually within the tolerance distance of each 
other, i.e. there is no part of one line that is further (when measured by shortest 
distance) than the tolerance distance from the other line section. Each section of a line 
segment is a sequence of component edges. However, because one part of an edge 
could be within tolerance and the other part out of tolerance, the source edges are split 
where such ambiguities arise. The spatial search for neighbouring edges is performed 
using a main-memory constrained Delaunay triangulation of the vertices of the linear 
features. Details of this type of procedure can be found in [22] and in [23]. 

For each line section there may then be several other line sections with which it 
might be regarded as equivalent. The posterior probabilities of equivalence with all 
candidates are estimated as summarised above. If a probability exceeds a specified 
threshold then the pair of line sections with the highest probability (maximum 
likelihood) is selected as equivalent. 

3.4 Merging of Line Sections Deemed Equivalent for a Given Probability Level 

Merging of equivalent line sections is carried out in a way that will give preference to 
one of the line sections if it is known to be of higher accuracy than the other line 
section. This could be the case if the source maps had been produced at different 
nominal scales or if the procedure for producing one of the maps was known to be 
more reliable than that for the other.  

Assuming that two line sections a and b are to be merged, then the merged line 
section c is found by a weighted averaging of a and b where the weighting is 
governed by the relative accuracy of a and b. There are three steps in the merging 
process. First, vertices are added to a and b such that: (i) a and b have the same 
number of vertices; and (ii) vertices appear at proportionally equivalent distances 
along a and b. Each vertex in a now has a corresponding vertex in b. Next, c is found 
by calculating the weighted average of corresponding vertices in a and b (i.e. vc = Wva 
+ [1-W]vb, where 0<=W<=1). If one line section is of a much higher accuracy than the 
other, the averaging procedure may be replaced by a procedure which simply selects 
the more accurate. As a result of the weighted averaging there will be sharp breaks 
between the merged and the adjacent unmerged line sections. The final step involves 
applying a local progressive weighting to provide a smooth transition (see Fig. 4 and 
Fig. 5). More details can be found in [24]. 



Fig. 1. 1946 test data 
 

Fig. 2. 1988 test data  
 



Fig. 3. 1946/1988 change map based only on feature attribute difference 

Fig. 4. Part of the 1946/1988 change map before (left) and after (right) boundary 
merging 



3.5 Determine Change Probabilities for Each Region of the Map 

The final stage of the change detection process is that of attaching posterior 
probabilities of land cover change to polygons resulting from the combination of the 
source maps. This stage may be performed on the conflated map or on the ‘raw’ 
intersection map. 
 
Taking Account of Differences in Generalisation of Land Cover Classification.  
When comparing land cover maps in which the classification systems differ, or in 
which the nature of application of a classification system differs, care must be taken 
to identify differences in land cover category that are attributable only to differences 
in the degree of generalisation of the categories. Thus if one category is a 
generalisation of the other, then they cannot be treated as evidence of change. The 
semantic closeness metric for a single ‘path’ used in E6 may be appropriate to a 
consistently applied individual classification, but it provides a finite difference 
between a class and its immediate superclass. An alternative closeness measure E9 
(based on that given in [25]), determines the number of non-common superclasses of 
a pair of categories, so that a parent-child relation gives a distance of zero. A third 
metric E10, which is potentially applicable to diverse classification schemes, 
determines the semantic distance based on the difference between the set of terms 
used to define a category [26]. Metrics E9 and E10 have been implemented as part of 
the current research project and enable candidate change polygons to be screened out 
of the result of the probabilistic change detection procedure. 
 
Visualisation of the Results. Several methods have been used to present the results 
of the change detection procedures. At the simplest level the source maps and their 
intersected overlay can be displayed (Figs. 1-4). On a change map, those polygons 
that represent change with a confidence exceeding a specified probability may be 
highlighted. Alternatively the variation in confidence between different change 
polygons can be represented by a variable range of colour lightness and saturation 
(not illustrated here). A further refinement of the latter is to display the variable 
confidence, via lightness and saturation, of polygons that represent selected types of 
change. The degree of confidence with which area boundaries are merged can be 
illustrated by modifying the thickness of the corresponding boundary line symbol, as 
in Fig. 5. 

4 Experimental Results 

The functionality described in Section 3 has been implemented in the C programming 
language in combination with the Avenue scripting language of the ArcView GIS. 
The change detection functions can all be called from a modified version of the 
conventional ArcView user interface. 

In order to evaluate the method, land cover maps and associated training data for 
1946, and 1988 (Fig. 1 and Fig. 2) were obtained for the same 30km2 region (at UK 
National Grid origin 282000E 790000N) in the Cairngorms from the Macaulay Land 



Use Research Institute (MLURI). A requirement was that the maps be generated 
independently which was not initially the case. This resulted in a reinterpretation (by 
MLURI staff) of the selected 'squares' of the earlier map using the original aerial 
photography.  

The newly generated maps were then overlaid in pairs and, for each boundary 
section on each map, a set of candidate equivalent boundaries was generated 
automatically. The expert mapper was asked to indicate which pairs of boundary 
sections were regarded as logically equivalent in the sense that they could not be 
distinguished from each other on the basis of location (though there could be an 
associated attribute change).  

In addition the expert was asked to label those intersection polygons which 
corresponded to genuine (‘real world’) change in land cover, as well as those for 
which change was assumed to be unlikely. A distinction was made at this stage 
between changes involving human activity (such as plantation and felling) and those 
regarded as natural or semi-natural. The map data were then partitioned into training 
data and evaluative data and the parameters of the conditional probability density 
functions were estimated. The analyses referred to subsequently relate to comparison 
of the 1946 and 1988 maps. 

Fig. 5. Part of the 1946/1988 conflated change map. Line thickness relates to 
confidence in conflated lines (thicker lines represent lower confidence) 

4.1 Boundary Merging 

In a comparison of the 1946 and 1988 datasets, a buffering procedure was used to 
create a set of 294 candidate matching pairs of boundary segments. This set was 
divided into a training set of 150 with the remainder to be used as an evaluation 
dataset. In the training set, Kolmogorov-Smirnov tests for normality on the relevant 
items of evidence revealed that E3 was normally distributed. E1 and E2 required 
transformation to normality using the Box-Cox power transformation. E4 and E5 
were found to be indistinguishable from random. However E5 was used at one level 
to filter out pairs of lines that exceeded 45 degree difference, as no such pairs were 
found to be equivalent in training. Preliminary observations indicate that E6 was not 
normally distributed and not a significant discriminator in this experiment. It may be 



envisaged however that it or a similar metric is likely to be of value in preventing 
merger of conceptually different types of boundary.  

In the evaluation dataset, 64 out of 126 candidate matches were known to be 
matches on the basis of expert assertion. Of these, 55 were selected correctly as 
matches at the 50% confidence level, with 21 matches being identified incorrectly, 
giving 72% correct identifications. The remaining 9 expert asserted matches were 
recognised with a confidence level of less than 50%. At the 90% confidence level, 
88% of identified matches were correct based on 30 correct matches (4 incorrect). 
The size of the samples at intermediate levels is too small to warrant reporting. 
However, the 90% confidence level results may be regarded as reasonable estimates 
of the reliability of the boundary matching results. These results were obtained when 
using the items of evidence E1, E2 and E3. It was found that lower success rates 
obtained when only using either E1, or E1 and E2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Unconflated (left) and conflated (right) maps showing change between heather 
types at the 56% confidence level. Boundaries in the right hand map have been 
merged at the 70% confidence level 

4.2 Probability of Land Cover Change 

A problem arose with determining conditional probability density functions for 
categorical change in that the large number of MLURI attribute codes (including 
mosaic codes) resulted in only a few specific transitions occurring sufficiently 
frequently to generate significant statistics. In order to generate more robust statistics, 



a subset consisting of the more frequent occurrences of the 49 MLURI codes was 
selected for experimental purposes. Theoretical considerations indicate that metric E8 
would need to be used selectively for particular types of change. This item of 
evidence is that prior to change the change unit had a neighbour of the same type that 
it changed to. This is expected to be of most relevance to evaluation of change in 
natural and semi-natural vegetation. Preliminary results have not demonstrated that it 
is a very sensitive indicator and hence here we confine the probability analysis to the 
use of evidence E7 alone (i.e. that the feature attribute codes indicate a specific type 
of change). As is to be expected the results vary considerably according to the type of 
change.  

In the case of change from heather to coniferous woodland, training indicated that 
following boundary matching all feature codes indicating change to coniferous 
woodland corresponded to all expert assertions of such change. As a consequence the 
posterior probability (confidence level) was found to be 100% and the evaluation data 
confirmed this level.  

In contrast, for example, training indicated that feature codes showing change from 
one type of heather to another (Fig. 6) are prone to a high level of uncertainty, giving 
a posterior probability of 56%. In the corresponding evaluation data only 47% of 
polygons exhibiting change between heather types represented actual change. This 
discrepancy may reflect the relatively small sample sizes that were used. Thus of an 
initial 157 polygons indicating change between heather types, only 68 remained 
following boundary merging. These were split into a training set and an evaluation 
set, each of size 34. 

5. Conclusions 

This project has addressed the problem of evaluating and improving the reliability of 
automated environmental change detection using area-class polygon maps. Bayesian 
statistics have been applied to estimate the probability of equivalence of boundary 
segments and the probability of land-cover change within polygons resulting from 
overlaying the maps. The approach enables the possibility of merging boundary 
sections to create a conflated map representing the best quality geometric elements of 
the source maps. A variety of geometric and semantic evidence for change may be 
considered, and the methods lead to the possibility of improving the reliability of the 
results by increasing the amount of training data used to estimate conditional 
probability density functions. Preliminary results using training data from land cover 
maps of Scotland found a reasonably close match between the generated probability 
levels and those of expert assertions. It is anticipated that larger training datasets and 
refinement of the choice of metrics could improve the robustness of this approach.  

There is clearly scope for further research to build on the results of this project. 
This includes evaluating alternative geometric and semantic difference metrics and 
investigating automatic adoption of appropriate metrics and constraints depending 
upon the source data types. There is also potential for developing more versatile, 
hybrid methods to combine conventional quantitative multivariate statistics with 
qualitative sources of evidence. Thus certain types of land cover change may be 



associated with particular spatial relationships with neighbouring features, or with 
physical characteristics of terrain and climate (introducing an analogy with contextual 
methods in remote sensing such as those of [27] and [28]. 
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