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Abstract. An important requirement of multiscale spatial databases is that 
topological consistency is maintained both within individual features and 
between co-displayed features for all scales at which they may be retrieved. 
Here we show how a triangulation-based branch-pruning generalisation 
procedure can be enhanced to enable its output to be used to build 
topologically-consistent multiscale data structures. A major limitation of 
existing branch-pruning methods, of the lack of vertex filtering, is overcome by 
the application of a topologically consistent, vertex priority labelling procedure. 
The branch pruning generalisation method is also improved by the introduction 
of an edge re-sampling technique and the provision of control over single and 
double-sided application of pruning. Experimental results of the use of the 
techniques are presented. 

1. Introduction 

Visualisation and analysis of spatial data at multiple levels of detail is fundamental 
to many applications of geographical information. Traditionally the requirement for 
multiple levels of detail has been met by the production of topographic map series at a 
range of scales. This approach of maintaining discrete single-scale versions, or 
multiple representations, is currently reflected in geographical information systems 
and their associated spatial database technology. Thus primitive spatial objects in a 
GIS represent scale-specific map features using geometric primitives such as 
polylines and polygons. Some GIS do maintain multiple versions at a few different 
scales, but the database access facilities are typically limited to retrieval of the few 
stored, fixed-scale representations. Typically, the database is unable to access the 
geometry at intermediate levels of detail and as a consequence is unable to adapt 
effectively to the scale specific requirements of many GIS applications. There is a 
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need therefore for multi-scale spatial databases that provide progressive access to 
multiple levels of detail of spatial objects.  

1.1 Multi-scale spatial data access schemes 

The idea of building data structures to support multi-scale access to simple spatial 
objects such as lines and polygons dates back to the early 1980s.  The strip tree 
(Ballard 1981) organised the geometry of linear features hierarchically in a binary 
tree, the nodes of which represented approximating line segments by bounding 
rectangles (strips). The arc tree (Gunther 1988) provided a variation in which 
approximating line segments were indexed by ellipses. Another binary tree structure, 
the BLG-tree, was combined with R-tree indexing of spatial objects covering 
specified scale ranges within the Reactive data structure of van Oosterom (1994). 
Layered approaches, in which scale-prioritised geometry is allocated to pre-specified 
scale intervals, were introduced in the quadtree-based multi-scale line tree of Jones 
and Abraham (1986) and in the PR-file (Becker et al 1991).  

Experimental implementation of these techniques has been based on basic line 
simplification procedures, typically the Douglas-Peucker algorithm. This has resulted 
in some major limitations of the resulting databases. One problem is that the 
hierarchical ordering of vertices generated by the algorithm may not correspond to a 
monotonic change in the threshold values of the respective vertices. Consequently 
some vertices low down in the hierarchy may provide more significant shape 
information than higher level vertices. Another more challenging problem is that the 
intermediate scale geometry that is retrieved cannot be guaranteed to be topologically 
consistent either with itself or with neighbouring map features.  

The problem of topological consistency has been considered with regard to 
complete spatial objects (of which there may be multiple representations) by 
Bertolotto and Egenhofer (1999) and by van Putten and van Oosterom (1998) who 
presented schemes for maintaining consistency between these complete objects. 
Maintenance of topological consistency between the multiple realisations of 
individual polylines and polygons in a database requires line and polygon 
generalization algorithms that can be guaranteed to generate simplifications that are 
topologically consistent. This issue was considered in Jones et al (2000), who also 
presented a scheme for keeping track of different levels of topological consistency. 
Several algorithms have been presented for generalising lines in a topologically 
consistent manner, including de Berg (1998), Saalfield (1999), van der Poorten and 
Jones (1999) and Ai et al (2000), but there has been little progress in the application 
of such procedures for priority labelling of vertices in a multi-scale database in order 
to guarantee topological consistency across retrieved levels of detail of the line and 
area primitives.  

In this paper we show how the topologically consistent, "branch-pruning" 
generalisation procedure of van der Poorten and Jones (1999) can be enhanced and its 
results used to improve the quality of multi-scale datasets used to construct a multi-
scale database. "Branch Pruning" in essence involves identifying 'features' of a line 
(very roughly speaking, sections of the line between bends) and selectively removing 
them.  The method is based on triangulating the space around the lines.  This 



procedure was chosen as the basis of multi-scale database construction because it 
provides more flexibility than any other topologically-consistent procedure with 
regard to controlling the style of generalisation and enabling simultaneous 
generalisation of multiple map features. The technique of Ai et al (2000) is very 
similar, but it operates only on a single map feature, pruning one side at a time. A 
fundamental limitation of the branch pruning technique in general is that, while 
simplifying shape, it does not systematically reduce the number of vertices. A method 
is required therefore to filter redundant vertices while maintaining topological 
consistency. The previous implementations of branch pruning also suffer from other 
limitations with regard to the introduction of discontinuities (or "stumps") following 
branch deletion and the lack of explicit control over whether branches refer to one or 
other, or both, sides of the line.  

In the remainder of the paper we provide in Section 2 an overview of the aspects of 
a multi-scale spatial database architecture that provides support for multi-resolution 
representation of individual polylines and polygons. This is followed in Section 3 by 
the description of triangulation-based branch pruning procedures which builds upon 
the ideas in van der Poorten and Jones, but extends them to apply to polygons, in 
addition to polylines, to incorporate a solution to the problem of introducing stumps, 
and to provide an option for single or double-sided application of the branch pruning 
procedure. Examples of its application to real data are provided. Section 4 describes 
and illustrates the results of a triangulation-based topologically consistent priority-
labelling procedure that can be used to post-process the results of branch pruning of 
multiple map features in order to remove the potentially large number of redundant 
vertices which would otherwise be present. The method implemented here adopts the 
principles of the Douglas-Peucker algorithm and is used here simply for point 
reduction, rather than shape simplification. Experimental results of applying the 
procedure to branch-pruned data are given for various combinations of branch prune 
metric and filter tolerance values. The paper concludes in Section 5 with a summary 
of the results and of future work. 

2. Multi-Scale Spatial Access Schemes for Polylines and Polygons 

Here we give an overview of the geometric data storage characteristics of a multi-
scale spatial database, based on Zhou and Jones (2001a), that can provide access to 
individual spatial objects at multiple levels of detail. We are concerned here only with 
the issue of storage of the scale-priority attributed geometry and not with other issues 
such as selection of whole map features, or the maintenance and update of the 
database objects. The conceptual model of the multiscale spatial database represents 
map features as Multi-scale Spatial Objects, or MSOs, which have an application 
specific class, cover a resolution range RMSO and reference one or more Multiscale 
Geometry Objects (MGEOs).  The MGEOs have a geometry type tMGEO, a resolution 
range rMSO and, in the case of simple polylines and polygons which we consider here, 
an ordered set of vertices VMGEO. A vertex consists of the components (MGEOID, vid, 
R, vsn, x, y), where MGEOID is the identifier of the parent MGEO, vid is the 
identifier of the vertex, R is the set of resolution ranges of the vertex, and x and y are 



the geometric coordinates in 2D space.   The implementation need not store all of 
these items explicitly for every vertex. 

The term resolution refers here to a numerical value that can be used to determine 
the applicability of the vertex to a specified query scale. In practice it is equivalent to, 
or a function of, a tolerance value that has been used to control the degree of 
generalisation of the respective geometric object. In the case of the Douglas-Peucker 
(1973) algorithm, its tolerance value, when divided by a map scale denominator, may 
be regarded as a measure of the smallest discernable feature on the map.  

The significance of a resolution value attached to a vertex varies according to the 
nature of the generalisation algorithm that was used to produce it. We can distinguish 
primarily between sub-setting and non-sub-setting procedures. In the former, each 
vertex in the representation is present at the most detailed level of representation, 
while in the latter new vertices may be introduced in the course of generalisation. We 
can also distinguish between continuous and non-continuous vertices. A continuous 
vertex is one that appears across a single range of resolutions of the geometry. A non-
continuous vertex may appear in separate discrete ranges of resolution. The Douglas-
Peucker algorithm results in continuous sub-setting vertices in that each vertex 
represents a range of resolution from the most detailed to some intermediate or 
extreme level of simplification. The original branch pruning procedures result in 
continuous sub-setting vertices, but the modification of branch pruning to avoid 
stumps, that we present in this paper, results in non-sub-setting vertices in that new 
vertices can be introduced (and sometimes subsequently be removed) following the 
elimination of a branch.  

2.1 Implementation schemes 

There are many possible ways of implementing a spatial database to support access 
to MGEOs, following on from the techniques referred to in Section 1.1. Zhou and 
Jones (2001a) have demonstrated the practicality of a layered scheme, similar to that 
of Becker et al (1991), in which vertices of an MGEO are grouped initially with 
respect to a scale interval partition and then within a layer with regard to space, using 
R-trees to index sub-sequences of vertices. Resolution values of vertices within a 
layer may be mapped to a single value that is representative of the entire layer, which 
can be adequate in the case of continuous sub-setting vertices. Alternatively, for 
example in the case of continuous, non-subsetting vertices, a pair of values 
representing the range of the vertex may be stored. 

An alternative to layered schemes is a tree scheme that may include internal spatial 
indexing, or simply complete object indexing in the manner of the BLG-tree.  

 

 



3 Feature-Based Line and Polygon Generalisation with Branch 
Pruning 

3.1 Overview of triangulation-based branch pruning 

The technique of branch pruning is based on the principle of eliminating 
discernable features of a line according to shape criteria. A feature corresponds to one 
or more bends in the line that introduce protuberances or embayments, and it may be 
hierarchical in the sense of having sub-features at multiple levels of detail. In the 
triangulation method, the set of lines and polygons to be generalised is triangulated 
with a constrained Delaunay triangulation (CDT). The paths of sequences of 
neighbouring triangles are then used to approximate the location of branches of the 
skeleton of the lines and polygons (Ferley et al 1997; Gold 2000). The “true” 
skeleton, or medial axis transformation, represents the locus of points that are 
equidistant from the boundaries. It’s branches and sub-branches may be equated with 
features of the lines and polygons (Lee 1982) at their respective levels of detail. 
Within the CDT, the sets of triangles that represent features can be used to calculate 
metrics that may be used to distinguish between different shaped features. The metrics 
are based on the dimensions of the constituent triangles and the set of constraining 
edges that constitute the corresponding feature. 

3.2 Triangulation components 

We define here some concepts to be used in the analysis of the CDT. Edges of the 
triangulation that belong to an original line (and hence constrain the triangulation) are 
described as real, while those that belong to the bounding box external and all others 
are virtual. Two triangles that have an edge in common are described as internal 
neighbours if the edge is virtual and external neighbours if it is real. Triangles that 
are internal neighbours are said to be connected. 

Triangles are divided into three basic types.  A triangle with two real edges is 
termed a leaf triangle, while one with one such edge is termed a trunk triangle and one 
with none is a branching triangle.   Figure 1 illustrates this categorisation.   

A branch in the CDT of an open line is a contiguous set of connected triangles, 
bounded by a sequence of real edges belonging to the line, plus a single virtual edge, 
referred to as the base edge of the branch  (see Figure 2). The sequence of real edges 
is defined to be the feature of the line that the branch represents, ideally it should 
coincide with the visual feature referred to above. The two vertices of the branch’s 
base edge are the first and last vertices of the feature. 
 



Fig. 1. A line and its corresponding constrained Delaunay triangulation. Leaf triangles 
are dark grey, trunk triangles are white and branching triangles are light grey. 
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Fig. 2. A feature, a branch, and its base edge 

A path is an ordered sequence of connected triangles. Paths cannot backtrack, that 
is, they may not cross the same virtual edge more than once, but may form a loop.  

We divide each triangle type (branching, trunk, leaf) into several subtypes, based 
on the role they play in the triangulation structure.  This is mostly for purposes of 



computational efficiency only and most of these details are not covered here.  
However, one important sub-type is the root triangle (for the single line case 
equivalent to type I triangles in Ai et al 2000).  Such a triangle forms the ‘root’ of an 
entire feature.  One way to define such a triangle is with regard to a leafward edge.  A 
leafward edge is an edge of triangle, say T, which satisfies the following criteria: 
• it is virtual 
• it lies between two vertices of the same line of the original dataset  
• all triangles which can be reached from it by means of a legal path (i.e. without 

passing through T) have all their vertices on that same line. 
 A root triangle is a branching triangle with exactly one such edge. Note that some 

branching triangles will have two such edges, while others will have none. 
We can now define the rootward edge of triangle T as being that which (a) is 

virtual (b) lies between two vertices of the same line of the original dataset and (c) 
from which a path can be found to reach the root triangle of that branch without 
passing through T.  See Figure 3. 
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Fig. 3. Root triangles (shaded medium grey) 

A further important distinction is between interior and exterior triangles.  This 
arises in the presence of polygons within the original line set.  An interior triangle is 
one all of whose vertices lie on a single line and from which no path can be traced to 
connect it to a triangle with any vertex on a different line.  That is, it is a triangle lying 
within a polygon.  Any triangle not interior is deemed exterior.   See Figure 4.  

The principle significance of this, is that within a polygon the ‘root’/ ‘non root’ 
distinction does not apply.  All interior branching triangles are roots to three branches. 
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Fig. 4. Interior vs. exterior triangles 

3.3 Branch statistics 

Analysis of the triangulation as above reveals an implicit hierarchy of features. 
Features stem from the leafward edges of the root nodes, continuing in a leafward 
direction from triangle to (connected) triangle, while sub-features stem from the 
leafward edges of branching triangles. We can now calculate various statistical 
properties (‘metrics’) relating to each branch and sub-branch, in order to allow 
decisions to be made about which features to remove.  By basing such decisions on 
different metrics we can achieve different styles of generalisation. 

 A dozen such statistics have been devised. Only two of these metrics are used in 
this paper (path length, average width).  These, plus those necessary for their 
derivation, are described below.  The true error metric is listed as the availablity of 
such a metric is clearly important for any line generalisation procedure.  Other metrics 
(e.g. boundary length) are not discussed in this paper. 
• The area of the branch is the total area of all its component triangles.   
• To define the length of a branch we define the node length.  For a trunk triangle 

this is the distance between the midpoints of its two internal edges.  For a leaf 
triangle it is that from the midpoint of its (single) internal edge to its opposing 
vertex.   A branching triangle has two node lengths depending on which sub-
branch one is measuring.  The length of the branch is obtained by summing the 
node lengths of all the triangles that form the branch.   The length of a complex 



branch is considered to be the length of its longest path – we follow the branch 
from its baseline, taking the longest branch at each junction.   

• Branch height is calculated by summing node heights of a branch’s constituent 
triangles. Node height is defined to be half the height of the relevant triangle 
(taking the rootward edge as the base).  

• Average width is defined to be a branch’s total area divided by its height. 
• True error of a branch is the displacement error that would be introduced into the 

generalisation if the relevant branch were to be deleted. 

3.4 Details of the method 

Initially, the smallest branch of the triangulation, according to the selected metric, 
is identified. The segment of the line that defines this branch is removed and replaced 
by its baseline, and the affected area of the triangulation is updated. This process is 
repeated until the relevant metric value of the smallest remaining branch is above the 
given threshold value. It is also possible to specify thresholds for a combination of 
different metrics and delete all branches that fall below all of the relevant thresholds.   
The true error metric may be combined with others to ensure control over locational 
accuracy. 

Figures 5 and 6 illustrate the application of branch pruning with the single metrics 
of average width and length respectively.  Of particular note are the effects on the 
coastline, the rivers on the right and left hand sides of the map and the roughly U-
shaped object adjacent to the coast-line.  When pruning by width the narrower left 
hand river is removed completely by figure 5B, the wider right hand one by figure 5C.  
When pruning by length both rivers are retained, but lose their shorter tributaries. 

It should be remarked that the dataset illustrated here consists of contours, for 
which no selection operator has been applied to provide an appropriate contour 
interval for the map scale. The dataset has been chosen as it constitutes a challenging 
test of the maintenance of topological consistency among multiple, often densely 
spaced features. It is not intended and does not serve as a demonstration of 
appropriate terrain model generalisation. Note also that the original dataset includes 
the un-closed contours that are apparent in the figures. 
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Fig. 5. Branch pruning – A original, width metric in metres B 64, C 128, D 256 (map size: 15 
by 7.5km. Source data: ©Ordnance Survey® Crown copyright 2001) 
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Fig. 6. Branch pruning – A original, length metric in metres B 128, C 256, D 512 (map size: 15 
by 7.5km Source data: ©Ordnance Survey® Crown copyright 2001) 

 



3.4 Two-sided or single-sided dynamic triangulation 

Because this procedure makes use of dynamic re-triangulation, only updating the 
triangulation in the region affected by the deletion of a branch, it can deal with 
(multiple) lines in a completely two-sided fashion. However the procedure also allows 
the option of single sided pruning, with the ability to specify which side each line in 
the dataset is to be pruned from on a line-by-line basis.  This could be particularly 
useful when considering features such as coastlines in which promontories such as 
peninsulas only exist as areal features on the landward side. 
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Fig. 7. Single (B and C) and dual (A) sided pruning 

Figure 7B shows a (coast)line generalised (using the width metric) from one 
(seaward) side, figure 7C shows the same line generalised only from the reverse 
(landward) side, while figure 7A shows generalisation from both sides 
simultaneously.  Note that certain features are retained when generalised from both 
sides yet removed when pruning is restricted to one side.  This is because when 



pruning is allowed on both sides, those features are slightly enlarged by the removal 
of their indentations from the reverse side. 

3.6 Resampling 

Resampling is the practice of adding co-linear vertices to the straight line left by 
the deletion of a branch. This helps greatly to smooth the resulting generalisation and 
avoids drastic changes in the level of detail from one part of the line to another.  It 
also prevents the creation of what we call stumps. Figure 8A shows a line with a 
feature eligible for pruning.  In this case the removal would leave an inappropriate 
stump because the base of the feature has not quite been correctly identified (in many 
cases a perfect cut may not be possible due to the configuration of original vertices).  
This is seen in figure 8B. 

The underlying problem is that making such cuts creates line segments that may 
have a large vertex spacing compared to the distance between the line and a 
neighbouring line. The immediate effect of resampling following the removal of the 
branch is shown in Figure 8C.  The new vertices lead to the creation of new smaller 
branches, the pruning of which smoothes the stump left by the pruning of the original 
branch, giving the final result shown Figure 8D.  Further smoothing could result from 
resampling of cuts created by the subsequent removal of the new branches. In general 
resampling results in smoother generalisations, at the expense of increased processing 
time. 

A B 

C D 

Stump

New points 
added 

Smoothed

Fig. 8. Resampling. 



4. Triangulation-based Topologically-consistent vertex priority 
labelling (TCL) 

Here we describe a triangulation-based procedure for attaching resolution, or scale 
priority, values to the vertices of multiple map features in a manner that ensures 
topological consistency. The procedure operates on geometry in which the vertices 
have been given an initial priority value, using a generalisation procedure that need 
not be guaranteed topologically consistent. In our current implementation we use the 
Douglas-Peucker criterion (distance to a base-line) for the initial stage of priority 
labelling. This may be regarded as analogous to the BLG-tree of van Oosterom 
(1994). Compared with the BLG tree, we made the following improvements in the 
initial priority labelling procedure (Zhou and Jones 2001b): 
• Priority promotion: when a vertex has a priority value Pc larger than that (Pp) of its 

parent vertex in the BLG-tree, the priority value of the parent vertex will be 
promoted to Pc so that priority values will always decrease monotonically on any 
path down from the root and the correct order of retrieval can be maintained. 

• Feature sectioning based on convex hull: as the Douglas-Peucker criterion is used 
to calculate priority value, it is very important to select the proper vertices as the 
starting point of the process. For closed polylines, we use the two end points of the 
longest diagonal of its convex hull to divide the polyline into two sections and 
them process them separately; for open polylines, we apply the above convex-hull 
based method recursively to divide a polyline into one or several sections and then 
process them separately. This method solves the so-called problem of “extending 
beyond endpoints” (Gunther 1988, pp96). 

The procedure does not guarantee that the retrieved result will be topologically 
consistent.  

4.1 Scale priority dimension scan, topological inconsistency detection and 
removal 

To detect and remove topological inconsistency within the whole scale range of the 
dataset, we designed an algorithm which starts from the smallest priority value (i.e. 
finest resolution, and hence largest scale) and scans the entire scale priority dimension 
until the largest scale priority value is reached, detecting and removing any 
topological inconsistency encountered. In this way, all potential query scale values 
falling into the scale range of the dataset will have been examined. We regard this 
method as a case of "progressive generalisation" (Zhou and Jones 2001b). Here is the 
outline of the algorithm: 
• Step 1: Build an index I for all vertices in the dataset, sorted primarily by their 

priority values, and an empty list L that will be used to store vertices whose 
removal will cause inconsistency; 

• Step 2: While I is not empty, remove vi, the vertex with smallest priority value p0, 
from I and test if the insertion of line segment vi-1-vi+1 (the two adjacent vertices of 
vi in the feature to which vi belongs) will cause any topological inconsistency 
(intersection with other segments on the same feature or on other features); 



− Step 2a: If no inconsistency occurs, remove vi from the feature that owns it, and 
insert segment vi-1-vi+1. If L is not empty, raise the priority values of all vertices 
in L to p0, and reinsert these vertices into I and empty L. Go back to step 2. 

− Step 2b: If inconsistency occurs, insert vi into L and go back to step 2. 

For a dataset with N vertices, this algorithm requires O(N) time in the best case 
while each step a vertex can be labelled and removed. In the worst case while no 
vertex can be removed until the extent of the dataset is reached, it runs at O(N2) 
although this is unlikely for real datasets. 

4.2 Implementation and experiment 

The above algorithm has been implemented using C++. A dynamic constrained 
Delaunay triangulation procedure is used for inconsistency detection. An initial 
triangulation is computed for the whole dataset. Subsequently when a vertex is 
removed from the triangulation or a new constrained line segment is inserted into the 
triangulation, the triangulation is updated locally, which on average can be done in 
constant time. The process of consistency checking requires testing the potential new 
edge vi-1-vi+1 for intersection with existing constraining edges in the triangulation. 
This is done by stepping through the triangles in the region of the triangulation 
between vi-1 and vi+1 checking for the presence of constraining edges along the path of 
the new edge. Note that in the event of a non-constraining edge coinciding with the 
path of the new edge, there is no need for further checks.  

The test dataset is the contour layer of an Ordnance Survey sample Land-Form 
tile (grid ref. ss68) at 1:10,000, which contains 846 polylines and 85024 vertices. The 
program was run on a notebook PC with mobile PIII 850MHz CPU and 128MB 
RAM. 

4.3 The issue of proximity inconsistency 

The TCL method presented here can be easily extended to PCL (P for proximity) 
for handling proximity inconsistency (vertex or line segment are too close to each 
other). For PCL, the intersection search procedure in TCL (see 4.1) will be replaced 
by a proximity search procedure such as (Jones and Ware 1998).  

5. Combining TCL with branch pruning 

The simple strategy for inconsistency removal in the previous section is not very 
satisfactory due to the fact that it can remove at most one vertex each time. Therefore, 
some singular vertices may be retained at Douglas-Peucker threshold values much 
larger than those at which such vertices would normally be deleted, due to the close 
proximity of other features making the removal of such vertices impossible without 
the introduction of topological inconsistencies. Furthermore it is subject to other 
limitations of the Douglas Peucker algorithm for purposes of line generalization 



(Visvalingam and Whyatt 1991). In order to improve the result, we have combined 
the results from branch pruning with the TCL method, so that the Douglas-Peucker 
algorithm is functioning simply as a filtering procedure which removes redundant 
vertices from the branch pruning results, enabling the vertex density of branch 
pruning to be adapted to the display resolution. In Table 1 we present the results of 
applying the topologically-consistent filtering procedure to the branch pruned dataset 
for several combinations of branch prune metric and Douglas-Peucker tolerance. The 
table illustrates the failure of branch pruning by itself to filter vertices and the major 
effect of our post-processing operation in reducing numbers of vertices.  

We have implemented a labelling procedure, whereby all branch prune labelled 
vertices of a dataset are relabelled with Douglas-Peucker style tolerances to facilitate 
mapping to required display resolutions. This is based on choosing a ratio of the 
branch prune metric to filter tolerance. Ratios that we have used in practice for branch 
metrics such as average width and length are typically in the range 4 to 8. Data 
derived from the labelling procedure have been used to create a layered multi-scale 
spatial database that is accessed by a Java servlet to create an experimental web 
demonstrator. 

The initial constrained Delaunay triangulation time ranged between 2.4 and 4.0 
seconds for numbers of vertices in branch pruned datasets ranging between 50,862 
and 85,024 respectively. For the same range of numbers of vertices, the processing 
time to provide a topologically consistent labeling varied between 87.7 and 155 
seconds, based on averaging 10 runs for each dataset. For the same range of datasets, 
the numbers of failed attempts at deleting vertices (i.e. ones that resulted in 
topological inconsistencies) ranged from 3,926,863 to 6,992,492. It should be stressed 
that the operation of vertex labeling is one that should be carried out at the time of 
building a database. 

Chart 1 demonstrates the vertex filtering effects of DP and TCL in comparison to 
BP(using the same DP tolerance for branching pruning). Chart 2 shows the result of 
combining TCL and BP (using various larger brunch pruning tolerance values).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chart 1: Vertex filtering of DP/TCL
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Chart 2: Vertex reduction (TCL+BP)
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Figures 9 illustrates the TCL method applied on the original dataset, retrieved with 
three resolution values of 12.5m, 25m and 50m and plotted at scales of 1:125,000, 
1:250,000 and 1:500,000 respectively.  

 
 

Fig. 9. TCL on the original dataset, plotted at 1:125,000, 1:250,000 and 1:500,000 
(Source data: ©Ordnance Survey® Crown copyright 2001) 

Figure 10 illustrates the application of the method to branch-pruned data that have 
been displayed with the same parameter values as those of Figure 9.  



 

 

 

Fig. 10. TCL with Branch Pruning (ratio of BP to DP tolerance is ~5)(Source data: 
©Ordnance Survey® Crown copyright 2001) 

Figure 11 illustrates the use of the Douglas-Peucker algorithm only (using a 
tolerance of 12.5m), and highlights an example of the many topological 
inconsistencies that result. 

5 Conclusions and Discussion 

In this paper we have introduced several important enhancements to the branch 
pruning method of line generalisation to facilitate the use of the procedure for pre-
processing geometry that may be stored in a multi-scale spatial database. The method 
is of particular interest in that it provides topological consistency for all levels of 
detail of ensembles of line and polygon features. A topologically consistent filtering 
procedure has been implemented for purposes of vertex priority labelling, to enable 
the vertex density of branch-pruned features to be adapted to the resolution of the map 
display. We have also implemented a re-sampling procedure to avoid the introduction 
of stumps at the base of pruned branches and we have provided explicit control over 
the use of single and double sided pruning procedures.  

The approach described has been implemented in the context of a multi-scale 
database that is linked to a web server, using branch-pruned and filtered geometry for 
a single pruning metric. It is possible to envisage that future multi-scale databases 
could be implemented to exploit the versatility of branch pruning, by storing multiple 



branch metrics that enable the style of generalisation to be modified online. The 
existing implementation is also limited, for example with regard to the small number 
of map generalisation operators that are supported. Current research is investigating 
the integration of the branch-pruning generalisation methods with conflict resolution 
procedures to ensure adequate separation of plotted map features through the 
application of selection, displacement and amalgamation. A further topic of future 
research is the development of incremental update procedures to maintain large 
databases of topologically consistent multi-scale data. 

 
 
Fig. 11. Douglas-Peucker only - conflicts occur (DP tolerance = 12.5m)             

(Source data: ©Ordnance Survey® Crown copyright 2001). 
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