
Topologically-Consistent Map Generalisation
Procedures and Multi-Scale Spatial Databases1

P. M. van der Poorten, Sheng Zhou and Christopher B. Jones

Department of Computer Science,
Cardiff University

Newport Road, PO Box 916
Cardiff CF24 3XF
United Kingdom

{p.vanderpoorten, s.zhou, c.b.jones}@cs.cf.ac.uk

Abstract. An important requirement of multiscale spatial databases is that
topological consistency is maintained both within individual features and
between co-displayed features for all scales at which they may be retrieved.
Here we show how a triangulation-based branch-pruning generalisation
procedure can be enhanced to enable its output to be used to build
topologically-consistent multiscale data structures. A major limitation of
existing branch-pruning methods, of the lack of vertex filtering, is overcome by
the application of a topologically consistent, vertex priority labelling procedure.
The branch pruning generalisation method is also improved by the introduction
of an edge re-sampling technique and the provision of control over single and
double-sided application of pruning. Experimental results of the use of the
techniques are presented.

1. Introduction

Visualisation and analysis of spatial data at multiple levels of detail is fundamental
to many applications of geographical information. Traditionally the requirement for
multiple levels of detail has been met by the production of topographic map series at a
range of scales. This approach of maintaining discrete single-scale versions, or
multiple representations, is currently reflected in geographical information systems
and their associated spatial database technology. Thus primitive spatial objects in a
GIS represent scale-specific map features using geometric primitives such as
polylines and polygons. Some GIS do maintain multiple versions at a few different
scales, but the database access facilities are typically limited to retrieval of the few
stored, fixed-scale representations. Typically, the database is unable to access the
geometry at intermediate levels of detail and as a consequence is unable to adapt
effectively to the scale specific requirements of many GIS applications. There is a

1 This work was supported by an ESRI Research Contract and by the UK EPSRC grant

GR/49314

need therefore for multi-scale spatial databases that provide progressive access to
multiple levels of detail of spatial objects.

1.1 Multi-scale spatial data access schemes

The idea of building data structures to support multi-scale access to simple spatial
objects such as lines and polygons dates back to the early 1980s. The strip tree
(Ballard 1981) organised the geometry of linear features hierarchically in a binary
tree, the nodes of which represented approximating line segments by bounding
rectangles (strips). The arc tree (Gunther 1988) provided a variation in which
approximating line segments were indexed by ellipses. Another binary tree structure,
the BLG-tree, was combined with R-tree indexing of spatial objects covering
specified scale ranges within the Reactive data structure of van Oosterom (1994).
Layered approaches, in which scale-prioritised geometry is allocated to pre-specified
scale intervals, were introduced in the quadtree-based multi-scale line tree of Jones
and Abraham (1986) and in the PR-file (Becker et al 1991).

Experimental implementation of these techniques has been based on basic line
simplification procedures, typically the Douglas-Peucker algorithm. This has resulted
in some major limitations of the resulting databases. One problem is that the
hierarchical ordering of vertices generated by the algorithm may not correspond to a
monotonic change in the threshold values of the respective vertices. Consequently
some vertices low down in the hierarchy may provide more significant shape
information than higher level vertices. Another more challenging problem is that the
intermediate scale geometry that is retrieved cannot be guaranteed to be topologically
consistent either with itself or with neighbouring map features.

The problem of topological consistency has been considered with regard to
complete spatial objects (of which there may be multiple representations) by
Bertolotto and Egenhofer (1999) and by van Putten and van Oosterom (1998) who
presented schemes for maintaining consistency between these complete objects.
Maintenance of topological consistency between the multiple realisations of
individual polylines and polygons in a database requires line and polygon
generalization algorithms that can be guaranteed to generate simplifications that are
topologically consistent. This issue was considered in Jones et al (2000), who also
presented a scheme for keeping track of different levels of topological consistency.
Several algorithms have been presented for generalising lines in a topologically
consistent manner, including de Berg (1998), Saalfield (1999), van der Poorten and
Jones (1999) and Ai et al (2000), but there has been little progress in the application
of such procedures for priority labelling of vertices in a multi-scale database in order
to guarantee topological consistency across retrieved levels of detail of the line and
area primitives.

In this paper we show how the topologically consistent, "branch-pruning"
generalisation procedure of van der Poorten and Jones (1999) can be enhanced and its
results used to improve the quality of multi-scale datasets used to construct a multi-
scale database. "Branch Pruning" in essence involves identifying 'features' of a line
(very roughly speaking, sections of the line between bends) and selectively removing
them. The method is based on triangulating the space around the lines. This

procedure was chosen as the basis of multi-scale database construction because it
provides more flexibility than any other topologically-consistent procedure with
regard to controlling the style of generalisation and enabling simultaneous
generalisation of multiple map features. The technique of Ai et al (2000) is very
similar, but it operates only on a single map feature, pruning one side at a time. A
fundamental limitation of the branch pruning technique in general is that, while
simplifying shape, it does not systematically reduce the number of vertices. A method
is required therefore to filter redundant vertices while maintaining topological
consistency. The previous implementations of branch pruning also suffer from other
limitations with regard to the introduction of discontinuities (or "stumps") following
branch deletion and the lack of explicit control over whether branches refer to one or
other, or both, sides of the line.

In the remainder of the paper we provide in Section 2 an overview of the aspects of
a multi-scale spatial database architecture that provides support for multi-resolution
representation of individual polylines and polygons. This is followed in Section 3 by
the description of triangulation-based branch pruning procedures which builds upon
the ideas in van der Poorten and Jones, but extends them to apply to polygons, in
addition to polylines, to incorporate a solution to the problem of introducing stumps,
and to provide an option for single or double-sided application of the branch pruning
procedure. Examples of its application to real data are provided. Section 4 describes
and illustrates the results of a triangulation-based topologically consistent priority-
labelling procedure that can be used to post-process the results of branch pruning of
multiple map features in order to remove the potentially large number of redundant
vertices which would otherwise be present. The method implemented here adopts the
principles of the Douglas-Peucker algorithm and is used here simply for point
reduction, rather than shape simplification. Experimental results of applying the
procedure to branch-pruned data are given for various combinations of branch prune
metric and filter tolerance values. The paper concludes in Section 5 with a summary
of the results and of future work.

2. Multi-Scale Spatial Access Schemes for Polylines and Polygons

Here we give an overview of the geometric data storage characteristics of a multi-
scale spatial database, based on Zhou and Jones (2001a), that can provide access to
individual spatial objects at multiple levels of detail. We are concerned here only with
the issue of storage of the scale-priority attributed geometry and not with other issues
such as selection of whole map features, or the maintenance and update of the
database objects. The conceptual model of the multiscale spatial database represents
map features as Multi-scale Spatial Objects, or MSOs, which have an application
specific class, cover a resolution range RMSO and reference one or more Multiscale
Geometry Objects (MGEOs). The MGEOs have a geometry type tMGEO, a resolution
range rMSO and, in the case of simple polylines and polygons which we consider here,
an ordered set of vertices VMGEO. A vertex consists of the components (MGEOID, vid,
R, vsn, x, y), where MGEOID is the identifier of the parent MGEO, vid is the
identifier of the vertex, R is the set of resolution ranges of the vertex, and x and y are

the geometric coordinates in 2D space. The implementation need not store all of
these items explicitly for every vertex.

The term resolution refers here to a numerical value that can be used to determine
the applicability of the vertex to a specified query scale. In practice it is equivalent to,
or a function of, a tolerance value that has been used to control the degree of
generalisation of the respective geometric object. In the case of the Douglas-Peucker
(1973) algorithm, its tolerance value, when divided by a map scale denominator, may
be regarded as a measure of the smallest discernable feature on the map.

The significance of a resolution value attached to a vertex varies according to the
nature of the generalisation algorithm that was used to produce it. We can distinguish
primarily between sub-setting and non-sub-setting procedures. In the former, each
vertex in the representation is present at the most detailed level of representation,
while in the latter new vertices may be introduced in the course of generalisation. We
can also distinguish between continuous and non-continuous vertices. A continuous
vertex is one that appears across a single range of resolutions of the geometry. A non-
continuous vertex may appear in separate discrete ranges of resolution. The Douglas-
Peucker algorithm results in continuous sub-setting vertices in that each vertex
represents a range of resolution from the most detailed to some intermediate or
extreme level of simplification. The original branch pruning procedures result in
continuous sub-setting vertices, but the modification of branch pruning to avoid
stumps, that we present in this paper, results in non-sub-setting vertices in that new
vertices can be introduced (and sometimes subsequently be removed) following the
elimination of a branch.

2.1 Implementation schemes

There are many possible ways of implementing a spatial database to support access
to MGEOs, following on from the techniques referred to in Section 1.1. Zhou and
Jones (2001a) have demonstrated the practicality of a layered scheme, similar to that
of Becker et al (1991), in which vertices of an MGEO are grouped initially with
respect to a scale interval partition and then within a layer with regard to space, using
R-trees to index sub-sequences of vertices. Resolution values of vertices within a
layer may be mapped to a single value that is representative of the entire layer, which
can be adequate in the case of continuous sub-setting vertices. Alternatively, for
example in the case of continuous, non-subsetting vertices, a pair of values
representing the range of the vertex may be stored.

An alternative to layered schemes is a tree scheme that may include internal spatial
indexing, or simply complete object indexing in the manner of the BLG-tree.

3 Feature-Based Line and Polygon Generalisation with Branch
Pruning

3.1 Overview of triangulation-based branch pruning

The technique of branch pruning is based on the principle of eliminating
discernable features of a line according to shape criteria. A feature corresponds to one
or more bends in the line that introduce protuberances or embayments, and it may be
hierarchical in the sense of having sub-features at multiple levels of detail. In the
triangulation method, the set of lines and polygons to be generalised is triangulated
with a constrained Delaunay triangulation (CDT). The paths of sequences of
neighbouring triangles are then used to approximate the location of branches of the
skeleton of the lines and polygons (Ferley et al 1997; Gold 2000). The “true”
skeleton, or medial axis transformation, represents the locus of points that are
equidistant from the boundaries. It’s branches and sub-branches may be equated with
features of the lines and polygons (Lee 1982) at their respective levels of detail.
Within the CDT, the sets of triangles that represent features can be used to calculate
metrics that may be used to distinguish between different shaped features. The metrics
are based on the dimensions of the constituent triangles and the set of constraining
edges that constitute the corresponding feature.

3.2 Triangulation components

We define here some concepts to be used in the analysis of the CDT. Edges of the
triangulation that belong to an original line (and hence constrain the triangulation) are
described as real, while those that belong to the bounding box external and all others
are virtual. Two triangles that have an edge in common are described as internal
neighbours if the edge is virtual and external neighbours if it is real. Triangles that
are internal neighbours are said to be connected.

Triangles are divided into three basic types. A triangle with two real edges is
termed a leaf triangle, while one with one such edge is termed a trunk triangle and one
with none is a branching triangle. Figure 1 illustrates this categorisation.

A branch in the CDT of an open line is a contiguous set of connected triangles,
bounded by a sequence of real edges belonging to the line, plus a single virtual edge,
referred to as the base edge of the branch (see Figure 2). The sequence of real edges
is defined to be the feature of the line that the branch represents, ideally it should
coincide with the visual feature referred to above. The two vertices of the branch’s
base edge are the first and last vertices of the feature.

Fig. 1. A line and its corresponding constrained Delaunay triangulation. Leaf triangles
are dark grey, trunk triangles are white and branching triangles are light grey.

Base points

Base edge

A

Leaf node

Fig. 2. A feature, a branch, and its base edge

A path is an ordered sequence of connected triangles. Paths cannot backtrack, that
is, they may not cross the same virtual edge more than once, but may form a loop.

We divide each triangle type (branching, trunk, leaf) into several subtypes, based
on the role they play in the triangulation structure. This is mostly for purposes of

computational efficiency only and most of these details are not covered here.
However, one important sub-type is the root triangle (for the single line case
equivalent to type I triangles in Ai et al 2000). Such a triangle forms the ‘root’ of an
entire feature. One way to define such a triangle is with regard to a leafward edge. A
leafward edge is an edge of triangle, say T, which satisfies the following criteria:
• it is virtual
• it lies between two vertices of the same line of the original dataset
• all triangles which can be reached from it by means of a legal path (i.e. without

passing through T) have all their vertices on that same line.
 A root triangle is a branching triangle with exactly one such edge. Note that some

branching triangles will have two such edges, while others will have none.
We can now define the rootward edge of triangle T as being that which (a) is

virtual (b) lies between two vertices of the same line of the original dataset and (c)
from which a path can be found to reach the root triangle of that branch without
passing through T. See Figure 3.

Root Triangles

Not Root Triangles

Rootward Edge (of
shaded triangle)

A Leafward Edge (of
shaded triangle)

Fig. 3. Root triangles (shaded medium grey)

A further important distinction is between interior and exterior triangles. This
arises in the presence of polygons within the original line set. An interior triangle is
one all of whose vertices lie on a single line and from which no path can be traced to
connect it to a triangle with any vertex on a different line. That is, it is a triangle lying
within a polygon. Any triangle not interior is deemed exterior. See Figure 4.

The principle significance of this, is that within a polygon the ‘root’/ ‘non root’
distinction does not apply. All interior branching triangles are roots to three branches.

Interior triangles

Exterior triangles

Exterior triangles

Fig. 4. Interior vs. exterior triangles

3.3 Branch statistics

Analysis of the triangulation as above reveals an implicit hierarchy of features.
Features stem from the leafward edges of the root nodes, continuing in a leafward
direction from triangle to (connected) triangle, while sub-features stem from the
leafward edges of branching triangles. We can now calculate various statistical
properties (‘metrics’) relating to each branch and sub-branch, in order to allow
decisions to be made about which features to remove. By basing such decisions on
different metrics we can achieve different styles of generalisation.

 A dozen such statistics have been devised. Only two of these metrics are used in
this paper (path length, average width). These, plus those necessary for their
derivation, are described below. The true error metric is listed as the availablity of
such a metric is clearly important for any line generalisation procedure. Other metrics
(e.g. boundary length) are not discussed in this paper.
• The area of the branch is the total area of all its component triangles.
• To define the length of a branch we define the node length. For a trunk triangle

this is the distance between the midpoints of its two internal edges. For a leaf
triangle it is that from the midpoint of its (single) internal edge to its opposing
vertex. A branching triangle has two node lengths depending on which sub-
branch one is measuring. The length of the branch is obtained by summing the
node lengths of all the triangles that form the branch. The length of a complex

branch is considered to be the length of its longest path – we follow the branch
from its baseline, taking the longest branch at each junction.

• Branch height is calculated by summing node heights of a branch’s constituent
triangles. Node height is defined to be half the height of the relevant triangle
(taking the rootward edge as the base).

• Average width is defined to be a branch’s total area divided by its height.
• True error of a branch is the displacement error that would be introduced into the

generalisation if the relevant branch were to be deleted.

3.4 Details of the method

Initially, the smallest branch of the triangulation, according to the selected metric,
is identified. The segment of the line that defines this branch is removed and replaced
by its baseline, and the affected area of the triangulation is updated. This process is
repeated until the relevant metric value of the smallest remaining branch is above the
given threshold value. It is also possible to specify thresholds for a combination of
different metrics and delete all branches that fall below all of the relevant thresholds.
The true error metric may be combined with others to ensure control over locational
accuracy.

Figures 5 and 6 illustrate the application of branch pruning with the single metrics
of average width and length respectively. Of particular note are the effects on the
coastline, the rivers on the right and left hand sides of the map and the roughly U-
shaped object adjacent to the coast-line. When pruning by width the narrower left
hand river is removed completely by figure 5B, the wider right hand one by figure 5C.
When pruning by length both rivers are retained, but lose their shorter tributaries.

It should be remarked that the dataset illustrated here consists of contours, for
which no selection operator has been applied to provide an appropriate contour
interval for the map scale. The dataset has been chosen as it constitutes a challenging
test of the maintenance of topological consistency among multiple, often densely
spaced features. It is not intended and does not serve as a demonstration of
appropriate terrain model generalisation. Note also that the original dataset includes
the un-closed contours that are apparent in the figures.

D

C

B

A

Fig. 5. Branch pruning – A original, width metric in metres B 64, C 128, D 256 (map size: 15
by 7.5km. Source data: ©Ordnance Survey® Crown copyright 2001)

A

B

C

D

Fig. 6. Branch pruning – A original, length metric in metres B 128, C 256, D 512 (map size: 15
by 7.5km Source data: ©Ordnance Survey® Crown copyright 2001)

3.4 Two-sided or single-sided dynamic triangulation

Because this procedure makes use of dynamic re-triangulation, only updating the
triangulation in the region affected by the deletion of a branch, it can deal with
(multiple) lines in a completely two-sided fashion. However the procedure also allows
the option of single sided pruning, with the ability to specify which side each line in
the dataset is to be pruned from on a line-by-line basis. This could be particularly
useful when considering features such as coastlines in which promontories such as
peninsulas only exist as areal features on the landward side.

A

B

C

Fig. 7. Single (B and C) and dual (A) sided pruning

Figure 7B shows a (coast)line generalised (using the width metric) from one
(seaward) side, figure 7C shows the same line generalised only from the reverse
(landward) side, while figure 7A shows generalisation from both sides
simultaneously. Note that certain features are retained when generalised from both
sides yet removed when pruning is restricted to one side. This is because when

pruning is allowed on both sides, those features are slightly enlarged by the removal
of their indentations from the reverse side.

3.6 Resampling

Resampling is the practice of adding co-linear vertices to the straight line left by
the deletion of a branch. This helps greatly to smooth the resulting generalisation and
avoids drastic changes in the level of detail from one part of the line to another. It
also prevents the creation of what we call stumps. Figure 8A shows a line with a
feature eligible for pruning. In this case the removal would leave an inappropriate
stump because the base of the feature has not quite been correctly identified (in many
cases a perfect cut may not be possible due to the configuration of original vertices).
This is seen in figure 8B.

The underlying problem is that making such cuts creates line segments that may
have a large vertex spacing compared to the distance between the line and a
neighbouring line. The immediate effect of resampling following the removal of the
branch is shown in Figure 8C. The new vertices lead to the creation of new smaller
branches, the pruning of which smoothes the stump left by the pruning of the original
branch, giving the final result shown Figure 8D. Further smoothing could result from
resampling of cuts created by the subsequent removal of the new branches. In general
resampling results in smoother generalisations, at the expense of increased processing
time.

A B

C D

Stump

New points
added

Smoothed

Fig. 8. Resampling.

4. Triangulation-based Topologically-consistent vertex priority
labelling (TCL)

Here we describe a triangulation-based procedure for attaching resolution, or scale
priority, values to the vertices of multiple map features in a manner that ensures
topological consistency. The procedure operates on geometry in which the vertices
have been given an initial priority value, using a generalisation procedure that need
not be guaranteed topologically consistent. In our current implementation we use the
Douglas-Peucker criterion (distance to a base-line) for the initial stage of priority
labelling. This may be regarded as analogous to the BLG-tree of van Oosterom
(1994). Compared with the BLG tree, we made the following improvements in the
initial priority labelling procedure (Zhou and Jones 2001b):
• Priority promotion: when a vertex has a priority value Pc larger than that (Pp) of its

parent vertex in the BLG-tree, the priority value of the parent vertex will be
promoted to Pc so that priority values will always decrease monotonically on any
path down from the root and the correct order of retrieval can be maintained.

• Feature sectioning based on convex hull: as the Douglas-Peucker criterion is used
to calculate priority value, it is very important to select the proper vertices as the
starting point of the process. For closed polylines, we use the two end points of the
longest diagonal of its convex hull to divide the polyline into two sections and
them process them separately; for open polylines, we apply the above convex-hull
based method recursively to divide a polyline into one or several sections and then
process them separately. This method solves the so-called problem of “extending
beyond endpoints” (Gunther 1988, pp96).

The procedure does not guarantee that the retrieved result will be topologically
consistent.

4.1 Scale priority dimension scan, topological inconsistency detection and
removal

To detect and remove topological inconsistency within the whole scale range of the
dataset, we designed an algorithm which starts from the smallest priority value (i.e.
finest resolution, and hence largest scale) and scans the entire scale priority dimension
until the largest scale priority value is reached, detecting and removing any
topological inconsistency encountered. In this way, all potential query scale values
falling into the scale range of the dataset will have been examined. We regard this
method as a case of "progressive generalisation" (Zhou and Jones 2001b). Here is the
outline of the algorithm:
• Step 1: Build an index I for all vertices in the dataset, sorted primarily by their

priority values, and an empty list L that will be used to store vertices whose
removal will cause inconsistency;

• Step 2: While I is not empty, remove vi, the vertex with smallest priority value p0,
from I and test if the insertion of line segment vi-1-vi+1 (the two adjacent vertices of
vi in the feature to which vi belongs) will cause any topological inconsistency
(intersection with other segments on the same feature or on other features);

− Step 2a: If no inconsistency occurs, remove vi from the feature that owns it, and
insert segment vi-1-vi+1. If L is not empty, raise the priority values of all vertices
in L to p0, and reinsert these vertices into I and empty L. Go back to step 2.

− Step 2b: If inconsistency occurs, insert vi into L and go back to step 2.

For a dataset with N vertices, this algorithm requires O(N) time in the best case
while each step a vertex can be labelled and removed. In the worst case while no
vertex can be removed until the extent of the dataset is reached, it runs at O(N2)
although this is unlikely for real datasets.

4.2 Implementation and experiment

The above algorithm has been implemented using C++. A dynamic constrained
Delaunay triangulation procedure is used for inconsistency detection. An initial
triangulation is computed for the whole dataset. Subsequently when a vertex is
removed from the triangulation or a new constrained line segment is inserted into the
triangulation, the triangulation is updated locally, which on average can be done in
constant time. The process of consistency checking requires testing the potential new
edge vi-1-vi+1 for intersection with existing constraining edges in the triangulation.
This is done by stepping through the triangles in the region of the triangulation
between vi-1 and vi+1 checking for the presence of constraining edges along the path of
the new edge. Note that in the event of a non-constraining edge coinciding with the
path of the new edge, there is no need for further checks.

The test dataset is the contour layer of an Ordnance Survey sample Land-Form
tile (grid ref. ss68) at 1:10,000, which contains 846 polylines and 85024 vertices. The
program was run on a notebook PC with mobile PIII 850MHz CPU and 128MB
RAM.

4.3 The issue of proximity inconsistency

The TCL method presented here can be easily extended to PCL (P for proximity)
for handling proximity inconsistency (vertex or line segment are too close to each
other). For PCL, the intersection search procedure in TCL (see 4.1) will be replaced
by a proximity search procedure such as (Jones and Ware 1998).

5. Combining TCL with branch pruning

The simple strategy for inconsistency removal in the previous section is not very
satisfactory due to the fact that it can remove at most one vertex each time. Therefore,
some singular vertices may be retained at Douglas-Peucker threshold values much
larger than those at which such vertices would normally be deleted, due to the close
proximity of other features making the removal of such vertices impossible without
the introduction of topological inconsistencies. Furthermore it is subject to other
limitations of the Douglas Peucker algorithm for purposes of line generalization

(Visvalingam and Whyatt 1991). In order to improve the result, we have combined
the results from branch pruning with the TCL method, so that the Douglas-Peucker
algorithm is functioning simply as a filtering procedure which removes redundant
vertices from the branch pruning results, enabling the vertex density of branch
pruning to be adapted to the display resolution. In Table 1 we present the results of
applying the topologically-consistent filtering procedure to the branch pruned dataset
for several combinations of branch prune metric and Douglas-Peucker tolerance. The
table illustrates the failure of branch pruning by itself to filter vertices and the major
effect of our post-processing operation in reducing numbers of vertices.

We have implemented a labelling procedure, whereby all branch prune labelled
vertices of a dataset are relabelled with Douglas-Peucker style tolerances to facilitate
mapping to required display resolutions. This is based on choosing a ratio of the
branch prune metric to filter tolerance. Ratios that we have used in practice for branch
metrics such as average width and length are typically in the range 4 to 8. Data
derived from the labelling procedure have been used to create a layered multi-scale
spatial database that is accessed by a Java servlet to create an experimental web
demonstrator.

The initial constrained Delaunay triangulation time ranged between 2.4 and 4.0
seconds for numbers of vertices in branch pruned datasets ranging between 50,862
and 85,024 respectively. For the same range of numbers of vertices, the processing
time to provide a topologically consistent labeling varied between 87.7 and 155
seconds, based on averaging 10 runs for each dataset. For the same range of datasets,
the numbers of failed attempts at deleting vertices (i.e. ones that resulted in
topological inconsistencies) ranged from 3,926,863 to 6,992,492. It should be stressed
that the operation of vertex labeling is one that should be carried out at the time of
building a database.

Chart 1 demonstrates the vertex filtering effects of DP and TCL in comparison to
BP(using the same DP tolerance for branching pruning). Chart 2 shows the result of
combining TCL and BP (using various larger brunch pruning tolerance values).

Chart 1: Vertex filtering of DP/TCL

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Presentation Resolution (m)

N
um

be
r o

f V
er

tic
es

DP
TCL
BP

Chart 2: Vertex reduction (TCL+BP)

0
10000
20000
30000
40000
50000
60000
70000
80000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Presentation resolution (m)

N
um

be
r o

f V
er

tic
es 1

4
16
64
256

Figures 9 illustrates the TCL method applied on the original dataset, retrieved with
three resolution values of 12.5m, 25m and 50m and plotted at scales of 1:125,000,
1:250,000 and 1:500,000 respectively.

Fig. 9. TCL on the original dataset, plotted at 1:125,000, 1:250,000 and 1:500,000
(Source data: ©Ordnance Survey® Crown copyright 2001)

Figure 10 illustrates the application of the method to branch-pruned data that have
been displayed with the same parameter values as those of Figure 9.

Fig. 10. TCL with Branch Pruning (ratio of BP to DP tolerance is ~5)(Source data:
©Ordnance Survey® Crown copyright 2001)

Figure 11 illustrates the use of the Douglas-Peucker algorithm only (using a
tolerance of 12.5m), and highlights an example of the many topological
inconsistencies that result.

5 Conclusions and Discussion

In this paper we have introduced several important enhancements to the branch
pruning method of line generalisation to facilitate the use of the procedure for pre-
processing geometry that may be stored in a multi-scale spatial database. The method
is of particular interest in that it provides topological consistency for all levels of
detail of ensembles of line and polygon features. A topologically consistent filtering
procedure has been implemented for purposes of vertex priority labelling, to enable
the vertex density of branch-pruned features to be adapted to the resolution of the map
display. We have also implemented a re-sampling procedure to avoid the introduction
of stumps at the base of pruned branches and we have provided explicit control over
the use of single and double sided pruning procedures.

The approach described has been implemented in the context of a multi-scale
database that is linked to a web server, using branch-pruned and filtered geometry for
a single pruning metric. It is possible to envisage that future multi-scale databases
could be implemented to exploit the versatility of branch pruning, by storing multiple

branch metrics that enable the style of generalisation to be modified online. The
existing implementation is also limited, for example with regard to the small number
of map generalisation operators that are supported. Current research is investigating
the integration of the branch-pruning generalisation methods with conflict resolution
procedures to ensure adequate separation of plotted map features through the
application of selection, displacement and amalgamation. A further topic of future
research is the development of incremental update procedures to maintain large
databases of topologically consistent multi-scale data.

Fig. 11. Douglas-Peucker only - conflicts occur (DP tolerance = 12.5m)

(Source data: ©Ordnance Survey® Crown copyright 2001).

References

Ai, Tingua, Guo, RenZhong, Guo and Yaolin, Liu, August 2000. "A Binary Tree
Representation of Curve Hierarchical Structure Based On Gestalt Principles",
Proceedings 9th International Symposium on Spatial Data Handling, sec. 2a, 30-43.
Ballard, D. 1981. “Strip trees, a hierarchical representation for curves.” Communications of the
ACM 24, 310-321.

Becker, B., H.-W. Six, et al. 1991. "Spatial priority search: an access technique for scaleless
maps". ACM SIGMOD 20(2), 128-137.
Bertolotto, M. and M. J. Egenhofer 1999. "Progressive vector transmission". 7th ACM
Symposium on Advances in Geographic Information Systems, Kansas City, MO, ACM Press,
152-157.
De Berg, M., M. van Kreveld, et al. 1998. “Topologically correct subdivision simplification
using the bandwidth criterion.” Cartography and Geographic Information Systems 25(4), 243-
257.
Douglas, D. H. and T. K. Peucker 1973. “Algorithms for the Reduction of the Number of
Points Required to Represent a Digitized Line or its Caricature.” The Canadian Cartographer
10(2), 112-122.
Ferley E, Cani-Gascuel M-P and Attali D., 1997. "Skeletal Reconstruction of Branching
Shapes", Computer Graphics Forum, 16(5), 283-293.
Gold, C. 2000. "Primal/Dual Spatial Relationships and Applications", Proceedings 9th
International Symposium on Spatial Data Handling, sec. 4a, 15-27.
Günther, Oliver 1988. Efficient structures for geometric data management. Springer-Verlag.
Jones, C.B. Abdelmoty A.I, Lonergan, M.E.,van der Poorten, P.M., and Zhou, S. 2000. “Multi-
scale spatial database design for online generalisation”. Proceedings 9th International
Symposium on Spatial Data Handling, sec. 7b, 34-44.
Jones, C. B. and I. M. Abraham 1986. "Design considerations for a scale-independent
database". Second International Symposium on Spatial Data Handling, Seattle, International
Geographical Union, 384-398.
Jones, C.B., Bundy, G. L. and Ware, J.M., 1995. Map Generalisation with a Triangulated Data
Structure. Cartography and Geographical Information Systems, 22(4), 317-313.
Jones, C.B. and J. M. Ware, 1998. Proximity Search with a Triangulated Spatial Model. The
Computer Journal, 41(2), 71-83
Lee, D.T, July 1982. Medial Axis Transformation of a Planar Shape, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-4, No. 4, 363-369.
Saalfield, A. 1999. “Topologically consistent line simplification with the Douglas-Peucker
algorithm.” Cartography and Geographic Information Science 26(1), 7-18.
van der Poorten, P.M, Jones C.B., August 1999. "Customisable Line Generalisation using
Delaunay Triangulation", CD ROM proceedings of the 19th ICA conference Ottawa, section 8.
van Oosterom, P. 1994. Reactive Data Structures for Geographic Information Systems. Oxford,
Oxford University Press.
van Putten, J. and P. van Oosterom 1998. "New results with generalised area partitionings". 8th
International Symposium on Spatial Data Handling, Vancouver, International Geographical
Union.
Visvalingam M and J.D. Whyatt 1991. "Cartographic algorithms: Problems of implementation
and evaluation and the impact of digitising errors". Computer Graphics Forum 10(3), 225-235.
Zhou, S. and Jones, C.B. 2001a. “Design and Implementation of Multi-scale Databases”,
Advances in Spatial and Temporal Databases, 7th International Symposium, SSTD 2001,
Proceedings. Lecture Notes in Computer Science 2121 Springer 2001, 365-386
Zhou, S and Jones, C.B. 2001b. “Multi-Scale Spatial Database and Map Generalisation”,
working paper, 4th ICA Workshop on Progress in Automated Map Generalization, Beijing,
2001, accessible at: http://www.geo.unizh.ch/ICA/docs/beijing2001/papers01.html

http://www.geo.unizh.ch/ICA/docs/beijing2001/papers01.html

	References

