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Abstract. A method is presented for generalising cartographic lines using an
approach based on determination of their structure. Constrained Delaunay trian-
gulation is used to construct a skeleton of the space surrounding the lines and
hence represent line features in terms of skeleton branches. Several statistical
measures are used to characterise the triangulation branches. The measures enable
selective generalisation of diVerent types of line feature, leading to the possibility
of user-speci� cation of the style of generalisation. In our implementation of the
approach, the triangulation is updated dynamically to allow both sides of multiple
lines to be processed, while guaranteeing topological consistency between the
resulting generalised lines.

1. Introduction
Map generalisation is the process of creating a legible map at a given scale from

a more detailed geographical dataset. The art of map making lies in selecting both
what features to include and how to represent them (Butten� eld 1985). Typically
the eVective representation of selected generalised features involves one or more of
a variety of processes. These include reduction in detail of lines, areas and surfaces;
caricature or typi� cation of shape and pattern; amalgamation of neighbouring fea-
tures; exaggeration of features that would otherwise be too small; collapse in dimen-
sionality from areas to lines or points; and displacement to ensure adequate
separation distances. Many procedures have been developed to automate these
processes (Weibel and Dutton 1999) though the majority of these are concerned
with generalisation of isolated lines (McMaster 1987, Thapa 1988, Visvalingam and
Whyatt 1993, Wang and Muller 1988, de Berg et al. 1998 ).

Despite the attention paid to generalisation of lines, existing automated proced-
ures have serious shortcomings. A failing common to many of the line generalisation
methods so far proposed is that they treat the cartographic line as an abstract
geometric entity. In so doing they do not take into account the line’s geographical

Internationa l Journal of Geographical Information Science
ISSN 1365-8816 print/ISSN 1362-3087 online © 2002 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/13658810210149434



P. M. Van der Poorten and C. B. Jones774

nature—the fact that it represents a feature of the physical, political, social or

economic world. The line might represent a road, a coastline, or a river, and its

curves and indentations may represent signi� cant sub-features, such as a hairpin
bend, a peninsula, or a delta. Many existing algorithms generally do not ‘see’ such

sub-features, and may remove them or distort them inappropriately. Consequently,

while they perform very well as point reduction techniques, they are not designed

to achieve eVective cartographic generalisation, particularly in regard to the retention

of original shape characteristics.

Some recent work has attempted to identify sub-features, essentially by looking

for so-called ‘critical points’ at diVerent scales (points of maximum curvature and
points of in� ection) (Thapa 1988, Wang and Muller 1988, Plazanet et al. 1995 ).

Using critical points is, however, a somewhat indirect means of � nding sub-features.

It requires additional processing to move from the points to the features, as the

points detected by some critical point methods do not correspond exactly to those

that would be identi� ed as such by a human observer (Wang and Muller 1988).

Furthermore the simpler of these methods can produce results which are less than

ideal (Visvalingam and Herbert 1999). More re� ned approaches generally require
some form of smoothing in order to obtain a hierarchy of features at diVerent scales

(Plazanet et al. 1995, Thapa 1988).

A further problem with the majority of existing methods is that they fail to

respect topological relations between diVerent lines, or even diVerent parts of the

same line. The generalisation process may create artefactual intersections between

lines or parts of the same line, and this usually has to be cleared up with ad hoc

post-processing (Muller 1990).

The procedure of de Berg et al. (1998) avoids crossovers within a line and between
a line and neighbouring points (but not other lines). The procedure of Saal� eld

(1999) avoids self-intersections and crossovers with neighbouring features but at the

expense of the possibility of no generalisation being performed, as it is based on ‘un-

winding’ the Douglas and Peucker(1973) algorithm. Neither of these procedures is

concerned with shape characteristics of the lines.

Visvalingam and Whyatt (1993), and Visvalingam and Herbert (1999) describe

an approach, based on examining the area of triangles formed by consecutive triplets
of line vertices. This appears to make good progress towards identifying features,

which it tends to remove selectively, in an order determined by their area. This

approach is perhaps closest in its aims to the method outlined in this paper.

This paper explores an alternative approach to the problem of identifying sub-

features, expanding the ideas outlined in van der Poorten and Jones (1999) and Ai

et al. (2000). This approach has some potential advantages over existing methods,

notably its ability to eliminate sub-features on the basis of a set of shape parameters.
In addition it is guaranteed to preserve topological relations between linear objects

generalised as a group.

The method is based on a dynamically updated Delaunay triangulation, and is

optimised for eYciency. This allows multiple lines to be generalised with both sides

of the lines being considered equally, while attempting to keep processing times

down to acceptable levels (currently around 10 minutes for a 30 000 points dataset,

using a P3 600 Mhz). For the sample data used here the use of this more eYcient

approach (as compared to one involving repeated retriangulation and reprocessing

of the entire map area) reduces typical processing times from hours to seconds.
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An outline of the paper is as follows:

E The basic principles of the approach are � rst described, and a number of
de� nitions given.

E The method of analysing the data set prior to processing is then described in
detail and the various ‘metrics’ used to determine the style of generalisation
are de� ned.

E A more detailed description is given of the implementation of the method, with
emphasis on the complications implied by the need to optimise the algorithm.

E The bene� ts of the method are then described and a number of sample results
are given to demonstrate this and to compare the approach with others.

E Finally some possibilities for further development of this approach are
discussed.

2. A triangulation based approach
Critical point methods approach the problem of segmenting the line into distinct

‘features’ by examining the line itself. An alternative approach is to identify such
features by examination of the space surrounding the line. The hope is that such an
approach would allow sub-features to be identi� ed in a more direct fashion than in
the former method. Additionally it should be possible to calculate a variety of
descriptive statistics about the sub-features so identi� ed.

It was decided to use the method of Delaunay triangulation for the purposes of
investigating the space surrounding the line. Such an approach, strictly speaking
constrained Delaunay triangulation (CDT), has proved fruitful in exploring other
aspects of cartographic generalisation. For example, the use of triangulated networks
is helpful for handling the various operations (e.g. amalgamation, collapse and
displacement) necessary for generalising areal objects (Jones et al. 1995). The bene� ts
of triangulation derive particularly from the rich neighbourhood relationships that
are encoded in the triangulation. This leads, for example, to very eYcient search
procedures, as well as the identi� cation of local proximal relations that can be
exploited in triangle transformations such as collapse and re-attribution.

The line or set of lines to be generalised is enclosed in a containing box and a
constrained Delaunay triangulation is created for the resulting area (� gure 1). The
constraint is that the line segments making up the given lines and the bounding box
must be retained as edges within the triangulation. The triangulation so obtained is
then examined in an attempt to gain an idea of its structure.

In generating a CDT of a line, or a set of lines, we hope to identify geometric
features of the line that may become candidates for elimination for purposes of line
generalisation. A geometric feature is a part of the line that a human observer
recognises as a distinct entity or sub-entity corresponding to a characteristic form
in the real world. In practice this will be in the form of a bend, an embayment or a
protuberance. Such features occur at diVerent levels of detail, a feature may have a
sub-feature. The CDT helps to � nd these features because in a digitised line they
will be associated with sets of triangles that � ll the space that the feature contains.
An analogy may be made with the medial axis transformation or skeleton which has
a history of assisting in identifying features associated with curves (Lee 1982, Ferley
et al. 1997, Gold 2000). In a CDT, sequences of neighbouring triangles form paths
that approximate the location of the skeleton. The sum of these paths constitutes a
hierarchy of branches and sub-branches that we regard as features of the line.
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Figure 1. A sample line and its corresponding constrained Delaunay triangulation. Leaf
triangles are shaded dark grey, trunk triangles are white and branching triangles are
light grey. (Note: arti� cial data, regularity of point spacing is a result of the way data
were generated).

Having identi� ed features in terms of sets of triangles, we can calculate metrics
that may be used to recognise particular types of feature, and hence make decisions
on the selective elimination of features. An important characteristic of features
composed of sets of triangles is that, provided the vertices of the respective triangles
constitute a continuous sequence of points belonging to a single line, their elimination
is guaranteed to avoid topological inconsistencies. This is because by de� nition a
triangulation of all the geometry in an area cannot contain any other geometry and
hence its controlled collapse cannot result in overlap of other features.

2.1. T riangulation components
We now de� ne the components of a CDT that lead to the identi� cation of a

hierarchy of branches.
Edges of the triangulation are described as real if they belong to an original line,

and therefore constrain the triangulation, external if they belong to the bounding
box, and otherwise as virtual.

Two triangles that share a common edge are described as internal neighbours if
the edge is virtual and external neighbours if the common edge is real. Triangles that
are internal neighbours are also described as being connected .

A triangle with two real edges is a leaf triangle. A triangle with one real edge is
a trunk triangle and a triangle with no real edges is a branching triangle. As we will
see below, branching triangles are further subdivided into internal, root and external.
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Figure 1 illustrates the primary categorisation of triangles into three types according
to their number of real edges.

A branch in the CDT of an open line is a contiguous set of connected triangles
that is bounded by a sequence of real edges belonging to the line, and by a single
virtual edge, referred to as the base edge of the branch (see � gure 2). Figure 2(b)
shows a complex branch with sub-branches.

The sequence of real edges is de� ned to be the feature of the line that the branch
represents, ideally coinciding with the geometric feature de� ned above. The two
vertices of the base edge are the � rst and last vertices of the feature.

A branch may be composed recursively of sub-branches, corresponding to sub-
features within the feature represented by the parent branch. Triangles composing
sub-branches are subsets of the triangles composing the parent branch.

In order to determine the branching structure associated with a CDT we make
a distinction between diVerent types of branching triangle. Sub-branches of an entire
branch stem from internal branching triangles, while the entire branch stems from
a branching triangle referred to as the root triangle. There is a third type of branching
triangle referred to as an external branching triangle. We distinguish between these
types of branching triangles on the basis of ‘pathset attributes’ of their component
edges, as explained below. It should also be remarked however that all the vertices
of an internal branching triangle belong to the parent branch, while a root triangle
will have two vertices on the branch of which it is the root and a third belonging
either to the bounding box or to another line. Those of an external branching triangle
will belong to three diVerent lines (or two lines plus the bounding box).

A path is an ordered sequence of connected triangles. Paths cannot backtrack
on themselves, but they may form a loop. The virtual edges of each triangle are
categorised with one of three pathset attributes, according to the paths that cross
them relative to that triangle. For a given triangle, a virtual edge has a leafward
pathset attribute if all paths across that edge from the triangle will lead inevitably
to a leaf triangle. An edge has a rootward pathset attribute if traversal of the edge
can lead to a root. It is always the case that an edge designated as leafward by one
triangle will receive a rootward attribute from the neighbouring triangle that shares

Figure 2. A feature, a branch and its base edge.
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the edge. An edge is given a neutral pathset attribute if its traversal can lead to a
loop, i.e. it is possible to follow a path that enters the current triangle via one of its
other virtual edges. The neutral pathset attribute is attached irrespective of whether
or not the edge could also lead to a root.

Ai et al. (2000) extends van der Poorten and Jones (1999) with the addition of
a fourth triangle type, but here we retain the three basic types listed above, with the
addition of a further sub classi� cation depending on the pathset attributes of the
given triangles. Hence branching triangles may be of either internal or external type.

An additional distinction is possible, between trunk triangles whose vertices all
lie on a single line (or, equivalently, which has a leafward and a rootward exit) and
those who’s vertices are shared between two lines or a line and the bounding box
(or has two neutral exits). Connected sets of the latter triangle type constitute
channels between lines. This allows trunk triangles to be further subcatagorised as
either internal trunk (the former case) or external trunk (the latter).

The above considerations give rise to a total of six types of triangle ( leaf, internal
trunk, external trunk, internal branching, root, and external branching). These de� ni-
tions are easier to understand with reference to � gure 3. Here pathset attributes are
shown as lines from the centre of the triangle to the relevant edge. A thick solid line
indicates a neutral pathset attribute, a thin black one a leafward pathset attribute
and a thin grey one a rootward pathset attribute (the thickest black line is the

Figure 3. Triangulation with Pathset attributes.
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original line). Triangles are shaded here not purely according to the number of
internal edges, but also according to the pathset attributes of those edges. This is
signi� cant in identifying ‘root’ triangles.

Triangles with one or more real edges (i.e. leaf and trunk triangles of either type)
are white. Of the remaining (branching) triangles those with exactly one leafward
edge are the root triangles of branches. These are medium grey in � gure 3. Branching
triangles with two leafward edges are internal branching triangles, and are shaded
dark grey. Those with three neutral edges (and hence zero leafward edges), are
external branching triangles and occur only when more than one line is present.
These are light grey in the � gure.

2.2. Calculation of pathset attributes
Calculation of pathset attributes starts by locating all leaf triangles. We work

rootward from these, setting pathset attributes as we go (rootward in the direction
we are travelling, leafward in the reverse) until a branching triangle is reached. Every
such triangle has a count of the number of leafward exits it has, and when such a
triangle is reached while travelling rootward from a leaf this count is incremented.

Once all leaf triangles have been processed in this way, we examine all branching
triangles with two leafward exits. We then follow the remaining path from these
triangles rootwards, until reaching another branching triangle, where we increment
its leafward exit count, just as we did in the previous step. This second step is
performed repeatedly, each time starting at all the branching triangles that were
found to have two internal paths in the previous iteration. The process ends when
we � nd no more internal branching triangles. Any remaining paths are neutral ones.

2.3. Branch statistics
Once the triangles and pathset attributes have been so categorised (and marked)

we have an implicit hierarchy of features. Features stem from the leafward edges of
the identi� ed root nodes, continuing in a leafward direction from triangle to triangle,
while sub-features spawn from the leafward edges of branching triangles. With this
information we can calculate a number of statistical properties relating to each
branch and sub-branch. For each branch (or sub-branch) these values are stored as
part of a record associated with the edge of the root (or branching triangle) which
forms the base edge of that branch (or sub-branch) .

The statistics (or ‘metrics’) include:

E The area of the branch
E The length of the boundary of the branch
E The length of the branch
E The height of the branch
E The average width of the branch
E The standard deviation of the branch width
E The area of the convex hull of the branch
E The true error of the branch
E The boundary diVerence of the path
E The aspect ratio of the path
E The ‘base angle’ of the branch

These metrics are generally applicable to all branches and sub-branches, including
those with sub-branches, (though in the latter case an expanded de� nition is required
for some metrics).
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For most of these metrics their value for a particular branch or sub-branch is
partly determined by summing the respective values of any constituent sub-branches
it may have (plus the contribution from the remainder of the branch). In the case of
simple branches (or sub-branches) with no sub-branches, evaluation of the metrics
usually starts by calculating the contribution of each triangle in the triangulation,
before summing the contribution of the triangles in the branch. This is done for
reasons of eYciency, so that changes in the triangulation mesh require the minimum
amount of recalculation. When a region of the triangulation is retriangulated only
the new or changed triangles have to have their statistics (area, contribution to
boundary length, etc) recalculated.

The � rst two statistics are self-explanatory. The area of the branch is obtained
by summing the area of its component triangles. The boundary length is found by
summing the length of the real edges of its triangles. Both these de� nitions apply
unproblematically to complex branches.

To de� ne the length of a branch it is helpful to de� ne a ‘node length’ for each
triangle in the triangulation. The node length of a trunk triangle is the distance
between the midpoints of its two internal edges. For the leaf triangle the relevant
distance is that from the midpoint of its (single) internal edge to its opposing vertex.
For a branching triangle there are two possible node lengths, depending on which
sub-branch is being measured—the distance from the centre of the rootward edge
to the centroid of the triangle plus the distance from the centroid to either of its
leafward edges. The ‘centroid’ is de� ned as the point whose co-ordinates are the
averages of all the corner co-ordinates.

The length of the branch is calculated by summing the node lengths of all the
triangles that make up the branch. This is almost equivalent to measuring the length
of the skeleton of the branch, an approximate form of which can be derived by
connecting the midpoints of the edges of the triangles in this fashion. A pseudo-
skeleton (hereafter referred to as the ‘skeleton’), so derived, is shown in � gure 4. The
start and end points of a selected branch of the skeleton are shown, the branch
length being the length of the line between them. However when measuring the
length of a branch, the starting point is taken as the centre of the base edge of the
branch, not the point at which the skeleton branch connects with the parent skeleton
branch (� gure 5). This is advantageous as it gives a far more accurate measure of
the real size of the feature. One of the problems with using skeletons in shape
simpli� cation is that a small feature on the line can give rise to a large branch of
the skeleton (� gure 5 again) , i.e. the skeleton is very sensitive to ‘noise’ (Ferley
et al. 1997 ).

The length of a complex branch is considered to be the length of its longest path.
That is, we follow the branch from its baseline, taking the longest branch at each
junction. This also determines which of the two ‘node lengths’ of the branching
triangle itself is used (we use the one associated with the longest total path). Of
course, to determine which is the longest branch at each junction we have to measure
each branch, and they might themselves be complex (� gure 6), requiring use of this
de� nition, but eventually we will reach simple branches and can start working back
up again. Essentially the process is recursive.

The height of a branch is really an alternative de� nition of its length. In this case,
instead of summing the distance between the centre points of the virtual edges of
each triangle in the branch we sum half the height of each triangle in the branch
(where the height is measured taking the rootward edge as the base—that is, the
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Figure 4. Pseudo skeleton.

Figure 5. Branch length versus skeleton branch length.

edge on which the path from the root enters the triangle) . An exception is made for
leaf triangles where the whole height is used. As with length, the height of a complex
branch is considered to be the height of its longest path.
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Figure 6. The longest path is used to calculate the length of a complex branch.

The average width of a branch is de� ned to be the total area divided by the
branch height. For simple branches it is a weighted sum of the average widths of all
triangles in the branch. For complex branches the use of this formula has the eVect
of treating the longest path as the main path of the branch and treating other
sub-branches as if they were simply variations in the width of the branch.

The area of the convex hull of the branch is an alternative measure of the area
of a branch, particularly relevant when considering complex branches (branches with
sub branches) . This was suggested by Ai et al. (2000) and is added here as another
useful metric.

The true error metric is a measure of the displacement error that would be
introduced into the generalisation if the relevant branch were to be deleted—that is,
if it were to be replaced by a straight line segment between its end points. Unlike
the other metrics this is not obtained from the triangulation itself, but from comparing
the base edge of the branch to the original line between those points and
calculating the HausdorV distance.

The boundary diVerence is the diVerence between the boundary length of the
branch and the length of its base line.

The aspect ratio is simply the ratio of the path length to its average width, giving
a dimensionless measure of the shape of the path. Given the de� nition of average
width used, this metric is equivalent to the ratio of path length squared to area.

The base angle measures, for a given branch, the increase in angularity of the
line that would result from amputating the branch at its baseline. By only removing
branches in which this number is negative or zero (i.e. for which pruning would not
introduce a sharp angle in the line where none previously existed) one can, usually,
avoid chopping the corners oV features, while still pruning identically sized genuine
features. This was the approach used in van der Poorten and Jones (1999) and a
similar method is used by Ai et al. (2000 ).
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More precisely, for each branch four angles are measured, two for each side of
the base. The � rst of these is the angle between line segments A and B, where these

are de� ned as follows. Line segment A is the segment between the base vertex and
the vertex adjacent to the base vertex outside the branch. Line segment B is the

segment between the base vertex and the vertex adjacent to the base vertex within
the branch. This is shown in � gure 7. Note that ‘angle between’ in this case is
intended to mean the angle through which the line ‘swings’ at the common vertex

of the two edges. The largest of the absolute values of two of these angles (one for
each side of the branch) is then recorded (a, in � gure 7).

The second angle is that between line segment A and the base line of the branch.
Again there are two of these, one for each side, and again we take the maximum of

the absolute values (c). The diVerence between the value of these angles is then
obtained as (c ± a). This diVerence is a measure of how much larger the largest angle

associated with the base of this branch will become if a cut is made at this point.
The higher the value the less desirable the cut.

This approach is less than satisfactory because it depends entirely on the highly
local properties of the line at the base of the relevant segment. The angle concerned
is measured relative solely to the vertices directly adjacent to those determined to

represent the base of the feature, and this small segment of line is not necessarily
typical of the way the branch relates to the line when seen as a whole.

The use of these diVerent metrics allows decisions to be made about processing
the line in order to achieve diVerent styles of generalisation. At present this simply

provides a choice of diVerent criteria for ‘branch pruning’, the selective removal of
sections of the line. Each statistic allows a diVerent style of pruning. For example,

the use of the boundary length is equivalent to using the area multiplied by a
‘compactness factor’—meaning that circularly shaped features will be more likely to
be removed than less compact ones of the same area. The metrics that appear to be

of most obvious interest are those of average width, branch length, and true error.
The � rst two produce clearly contrasting styles of generalisation and the last is often

required as a fundamental constraint on a generalisation.

Figure 7. Angles a and c.
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3. The Generalisation procedure
Here we describe the procedure for generalisation processing by selective pruning

of branches. Initially, all the branching triangles are checked and the smallest branch,
according to a selected metric, is found. The segment of the line that de� nes this
branch is then deleted and replaced by its baseline, the aVected area is retriangulated
and the branch sizes are recalculated. This process is repeated until the smallest
remaining branch (measured by the chosen metric) is above the given threshold value.

3.1. Combining metrics
In general one can specify thresholds for each possible metric and remove all

branches that fall below all of the relevant thresholds. However, it is still necessary
to specify one metric as the primary one. This is due to the two-sided nature of the
line. When a branch is removed, the branches adjoining it (on the other side of the
line that constitutes its boundary) are aVected and will almost certainly change size.
These aVected branches may consequently become newly eligible for pruning or
cease to be so eligible, requiring metrics to be recalculated before pruning continues.
An apparently simpler strategy would be to remove all the branches with metrics
below the chosen thresholds in one pass. However if this strategy were employed it
is quite possible that some of the new branches thus created would have smaller
measurements than those deleted. Thus pruning must be done sequentially. This
requires one particular metric to be chosen to determine the order of pruning, though
it must be emphasised that all the chosen metric threshold values are used to
determine which features are pruned.

In practice which metric is chosen to be primary does not greatly aVect the
outcome. It can have a small eVect where there are neighbouring features that are
both eligible for removal. In this case the prior removal of either feature may
sometimes cause the remaining one to increase in size slightly and so escape pruning.
Thus choice of a given metric as primary will cause the process to give marginally
greater priority to removing features that fall below the speci� ed threshold for that
metric. For example making length primary when pruning by both length and width
will lead to the program producing a generalisation which minimises the number of
short branches remaining, while still satisfying the criteria that all surviving branches
must be either longer than the length threshold or wider than the width threshold.
For the most part however the end result is dependent only on the total set of
metrics that are applied.

It should be noted that with the current method of applying multiple metrics
(speci� cally that removable branches must be above all thresholds rather than any
threshold) for a given set of metrics the line will tend to be less simpli� ed than it
would be using a subset of the given set, assuming the same threshold values.

3.2. T wo-sided dynamic triangulation
Note that because this procedure uses dynamic retriangulation, only updating

the triangulation mesh in the area aVected by the removal of a branch, it can deal
with multiple lines in a genuinely two-sided fashion. Ai et al. (2000) perform two
single sided generalisations sequentially, one from each side (a method only applicable
to a single line), while van der Poorten and Jones (1999) used a two sided approach
but at the expense of having to retriangulate the entire region at each step. The
procedure used is optimised for eYciency, and we now provide a more detailed
description of how it works.
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3.3. Updating branch statistics and pathset attributes
When a branch is deleted, it is relatively straightforward to work out which

triangles in the triangulation are aVected. These triangles are removed from the
triangulation and the aVected area is retriangulated. It should be noted that
depending on the arrangement of lines in the dataset this region may well include
both ‘holes’, i.e. triangles unaVected by the point deletions, and sections of undeleted
line segments that impose constraints on the retriangulation.

In order to avoid doing unnecessary work, only those branches that have been
aVected should have their statistics recalculated. Finding these branches requires
updated information about the paths. This is obtained by working out the pathset
attributes of the new triangles deductively, making use of certain rules about what
combinations of pathset attributes are allowed, together with the fact that the
triangles not aVected by the branch removal retain their existing pathset attributes.

Essentially one is presented with a region of the triangulation where the pathset
attributes are missing. The neighbouring triangles, however, do have known pathset
attributes associated with the edges that they share with the outer triangles of the
unknown region. This information allows us to start � lling in the missing pathset
attributes, working from the outer edge leafwards using certain rules about what
combinations of pathset attributes are allowed within a triangle and what pathset
attribute pairings are legal for neighbouring triangles. We alternate a ‘reciprocation’
step with a ‘deduction’ step. In the ‘reciprocation’ step we simply look at the known
pathset attributes on one side of an edge and � ll in the complementary type on the
other side. In the ‘deduction’ step we look at the known pathset attributes of each
triangle and see if it is possible to deduce the remaining unknown ones. The � rst
step spreads information from one triangle to the next, the second � lls in the
information within each triangle.

The rules used are as follows (R denotes a rootward exit, L a leafward one, N a
neutral ):

E An R is always matched by an L for the shared edge of the neighbouring
triangle.

E Similarly, an N is paired with another N (because if you can form a loop in
one direction you must be able to reverse it and form a loop going in the other
direction).

E If a triangle has only one virtual edge it must be an R type.
E If a triangle has only two virtual edges they must be {LR} or {NN}.
E If a triangle has three such edges they can only be one of the following

combinations: {NNN}, {NNL }, {LLR}.

There is one awkward case where the process may become ‘stuck’ (following the
above rules results in no further pathset attributes being � lled in), but in this case
the very fact of becoming stuck tells us what the situation is—two ‘external branching
triangles’ (that is, {NNN} type) connected to each other. Hence the program can
retrieve the situation once it has detected that no progress is being made.

Once the path types have been assigned, we can quickly trace back from the
aVected triangles to the roots of the branches they lie on. We then know which
branches need to have their metrics recalculated.

4. Bene� ts of a triangulation based approach
The primary bene� t of this approach is that it allows a signi� cant degree of

control over the style of generalisation produced. While many existing algorithms



P. M. Van der Poorten and C. B. Jones786

allow the speci� cation of parameters, generally these parameters merely control the
degree of point reduction obtained. In fact, for the existing point reduction methods,
having multiple parameters to tune is often considered a drawback, as it is not clear
what each parameter in fact means. Instead the user is confronted with multiple
means of achieving the same end, a reduction in the number of points used in the
line, with no clear indication of what the diVerence is between tweaking parameter
a or parameter b in terms of the type of generalisation obtained. In the method
described here, it is possible for the user to have more control over the style of
generalisation, choosing for example the widths and lengths of features that are to
be retained on the generalised map.

A further important bene� t is the fact that topological consistency is maintained
implicitly. A major drawback of most existing methods, simple point � ltering algo-
rithms in particular, is their tendency to create bogus intersections between lines, or
even within the same line. These problems often have to be cleared up with post-
generalisation processing (Muller 1990). With a triangulation-based method such
problems generally do not arise, provided all the linear features on a particular map
are generalised together, producing a single triangulation. This method preserves
topological consistency as is illustrated in � gure 8 (A to F showing progressively
larger degrees of generalisation, corresponding to increasing values of the pruning
threshold, in this case area).

The method is also suitable for a pre-processing approach, that is, a complete
generalisation can be performed once, and all vertices of the dataset labelled with
the threshold value at which they are to be deleted. The data may then be displayed
at any level of pruning requested more-or-less instantaneously. However a caveat
must be added that the level of pruning should be described by a single metric. Use
of multiple simultaneous metrics is still possible but only if all but one metric is
dependent in some fashion on the remaining one (for example, being a simple
multiple of it). Note that any number of single metrics could be used, by pre-
processing the data with each metric separately and labelling the vertices with the
respective values for each.

Figure 8. Preservation of topology.
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5. Sample results
Some example results (using synthetic data) are shown in � gures 9(a ± e).

Figure 9(a) shows the original line. Figure 9 (b) shows the same line subjected to
‘pruning’ where the constraining metric is the branch area. Figure 9(c) shows the
same line pruned using the same metric with a higher threshold value. In � gure 9(d )
the branch width is used, while in � gure 9(e) the pruning is performed by branch
length, and in � gure 9( f ) pruning is by branch length with a larger value. In all
cases ‘base angle’ is used as a secondary metric.

As one would expect, when pruning is performed on the basis of branch width,
the narrow features are removed (regardless of length) while the wide features are
retained. With a length metric the shorter features are pruned, whether wide or
narrow. It is of course possible to specify a combination of metrics.

Figure 10 shows some real data (county boundaries, including a section of coast-
line) generalised using diVerent metrics. W1, W2, W3, W4 and W5 are generalisations
using progressively greater width thresholds only. L1, L2, and L3 use only a length
metric, with progressively greater values. W1+L2 uses both width and length metrics.
It uses the same width threshold as W1 and length as L2.

Note that when more than one threshold is used the generalisation is more
conservative, as for a branch to be pruned the relevant metric must fall below the
speci� ed value for both thresholds. Hence W1+L2 retains a set of features which
combine those from both W1 and L2.

Figure 9. Alternative generalisations (see text for explanation).
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Figure 10. Real data, alternative generalisations. Ordnance Survey data. © Crown copyright,
Ordnance Survey, all rights reserved, nc/01/586.

Figure 11 shows a comparison of data generalised with the Visvalingam and
Whyatt (1993) algorithm and the same data generalised using branch pruning
combined with a post-generalising point-� ltering step using the Douglas and Peucker
(1973) algorithm. This is necessary as branch-pruning is not intended as a point
reduction algorithm (it will not remove completely co-linear points, for example).
The generalisations are performed at four diVerent levels, (the numbers in the captions
refer to the number of points retained). The actual values of the thresholds used for
each stage of each case are shown in table 1. These values were chosen arbitrarily
as it is not easy to predict how many points will be retained for given combinations
of threshold values—these values were the ones that happened to give similar
numbers of points retained for each method.

The branch pruning is done by average width only and also by a combination
of average width and path length metrics. Note that once the major estuary is
removed the length metric has no eVect and the combined metric pruning gives
identical results to those using width only. This is because the estuary is the longest
feature present and once the length metric exceeds this value in the combined metrics
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method no features are retained speci� cally due to their lengths, and in all cases
width is then the limiting factor.

For the combined metrics the length and width metrics were chose so as to keep
a constant ratio between them. The post-processing with the Douglas-Peucker
algorithm was also performed using a threshold that was a (small ) multiple of the
width and length thresholds.

Note that Visvalingam and Whyatt’s method (1993) does selectively prune
‘features’. It � nds ‘features’ roughly equivalent to those detected by branch pruning,
though it also tends to partition features, distinguishing where a ‘feature’ (as detected
by the branch pruning algorithm) changes width signi� cantly. In this case it partitions
what branch pruning considers a single feature into several smaller features, e.g. the
estuary in this � gure. As with branch pruning (and Douglas-Peucker) it allows a
pre-processing approach, enabling points to be labelled for selection at display time.
The method also eVectively includes its own point-� ltering, so it doesn’t require a
separate point � ltering step. The disadvantages of Visvalingam and Whyatt’s method
compared to that described in this paper are that it is (roughly) equivalent to pruning
by area only with no other options and so lacks customisability, and that it is not
guaranteed to preserve topological relations.

We chose to use Visvalingam and Whyatt’s method for comparison because it
seemed to be one of the few existing methods which attempted to identify features
in a manner similar to branch pruning (as well as being relatively straightforward
to implement).

6. Remaining issues
In this section we identify some limitations of the methods described and suggest

directions for future work.

6.1. ‘Corners’
One potential source of problems is that the method for identifying branches

cannot distinguish between psuedo-features, referred to here as ‘corners’, and
branches that correspond to obvious perceived features (� gure 12). A ‘corner’ is
something that is detected as a feature, whose base vertices do not appear to be
associated with any corresponding bends in the original line. Usually it forms part
of a genuine feature, and pruning it amounts to shaving oV the corners of that
feature, whereas it would be preferable to leave the parent feature untouched until
we wish to remove it in its entirety.

One solution to this is to examine the angle the line makes at the base of the
feature (using the ‘base angle’ metric discussed above), and only perform pruning if
the angle exceeds some threshold. Although this does sometimes work, it is sensitive
to local changes in line direction that may not re� ect the overall situation. It is
apparent that better methods could be found. However it should be noted that the
problem does not appear to arise with the real test data used in our experiments.

6.2. ’Stumps’
Although the triangulation and branch detection method in general performs

well at identifying visual ‘features’ of the line, it does not always detect the base of
such a feature perfectly, particularly when there is another linear feature close by.
This is illustrated in � gure 13. Here a cut along the base line would leave an ugly
stump as a residue. This problem is not noticeable in the real data used so far. It is
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Figure 11. Comparison of branch pruning and Visvalingam and Whyatt (Ordnance Survey
data ©Crown copyright, Ordnance Survey, all rights reserved, NC/01/586.

however a potential problem, particularly with datasets with multiple closely spaced
linear features.

Again the ‘base angle’ metric discussed above is relevant as it prevents the
creation of stumps by simply preventing such cuts occurring in the � rst place. This
is not a satisfactory solution, as we wish to allow such cuts (which are not ‘corners’
in the sense described above), but to remove or smooth over the stump they
leave behind.

A possible solution is ‘resampling’. This involves adding additional points when-
ever a cut is made, to avoid creating excessively long line segments. The heart of the
problem is that at present making such cuts creates line segments which may have
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Figure 11. (Continued ).

Table 1. Threshold values used for results in � gure 11.

Num. points width+dp width+length+dp Visvalingam & Whyatt

47 1390+276 1390+13 900+276 689 701.5
77 800+169 800+8000+169 281 247.5

114 600+120 650+6500+131 128 461.0
162 400+81 450+4500+90 59 120.5
211 300+61 300+3000+61 33 656.0

Values in metres except for Visvalingam in square metres. dp refers to Douglas-Peucker
� lters.

a large point spacing compared to the distance between the line and a neighbouring
line. This is a problem discussed by Gold (2000) in relation to his skeleton retraction
approach to line generalisation, and he addresses it by means of resampling to
increase point density on the aVected part of the line.

Resampling has been implemented, and appears to work satisfactorily, though
at the expense of increasing execution time. Further testing is required to determine
if the bene� ts justify this. Because the ‘stump’ problem does not appear with the real
test data used so far, resampling has merely served to produce a slightly ‘smoother’
generalisation. However diVerent cartographic data may show greater diVerences
when resampling is enabled.

The principle is shown in � gure 14. The new points lead to the creation of new
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Figure 12. A corner.

Figure 13. A stump.

smaller branches, the deletion of which smoothes the stump left by the deletion of
the original branch. Further resampling (of the cuts created by the removal of the
new branches) will increase the degree of smoothing of the bump.

6.3. Option for one-sidedness
A capability that might usefully be added, in addition to the metrics discussed

previously, is to give users the option to declare lines, or segments thereof, to be
single sided. This would mean that only branches identi� ed on one (speci� ed) side
of the line would be considered for pruning. This would hugely simplify the pro-
cessing, as the deletion of a branch would not require retriangulation and
re-evaluation of the area on the opposite side of the line. More to the point, however,
it would provide another option when determining the style of map to be produced.
This might be particularly relevant when considering features such as coastlines
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Figure 14. Resampling a stump.

in which promontories such as peninsulas only exist as areal features on the
landward side.

6.4. L ogical combinations of metrics
Another desirable addition would be to allow more � exibility in combining

metrics. That is, while at present the system only allows multiple metrics using an
AND operator (e.g. ‘prune branches which are short AND narrow’) it might be
useful to be able to also use an OR (e.g. ‘prune branches which are either short OR
narrow’). One problem that would have to be overcome would be how to determine
the order of pruning in this case.

6.5. Networks and polygons
A signi� cant limitation of the system at present is that it works only for disjoint

non-intersecting lines. Further work is needed therefore to extend the technique to
handle networks and polygonal features. This will require introducing additional
types of triangle and of path attribute, as well as addressing, in the case of networks,
the possibility of moving nodes of the triangulation.

6.6. Choosing metrics
Perhaps the most challenging issue is the choice of metrics to control the proced-

ure. At present it is envisaged that some kind of machine learning approach may be
useful, whereby combinations of the available metrics are found that result in derived
maps that match training examples of particular styles of map. The present work
therefore concentrates on providing as large a degree of � exibility and control as
possible.

7. Conclusion
Existing point-� ltering algorithms are for the most part not designed for carto-

graphic generalisation. Such generalisation requires understanding of the structure
of the line that is to be generalised, allowing operations that are aware of the local
geographical features. Previous attempts to address this issue focused on the detec-
tion of points of in� ection and maxima of curvature. This paper has described an
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alternative approach, which analyses the shape of line features in terms of the
characteristics of local regions of a constrained Delaunay triangulation of the line.
The structure of the triangulation is used to create a hierarchy of branches that
correspond to line features at diVerent levels of detail. Generalisation of the line is
performed by pruning branches that meet user speci� ed criteria, expressed in terms
of a set of metrics associated with the branches. The method has the advantage of
guaranteeing topological consistency. It also enables multiple lines to be generalised
simultaneously. Of particular importance however is the fact that it oVers the
possibility of controlling the style of generalisation. This paper has demonstrated
with real datasets that application of diVerent metrics results in quite diVerent types
of generalisation, distinguishing, for example between the length and the width of
features of the line. Further work includes extending the technique to work for
networks of line features and � nding methods for automatic speci� cation of
appropriate metrics to obtain a particular style of generalisation.
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