A Meeting to Mark the Sixty-fifth Birthday of Professor M S P Eastham

26th-27th July, 2002

University of Wales
Gregynog Hall
Newtown
Powys

London --------------------------------- Cardiff University
Mathematical Society --------------------------------- Department of Computer Science
A Meeting to Mark the Sixty-fifth Birthday of Professor M S P Eastham

Gregynog Hall, 26-27th July, 2002

CONTENTS OF THIS BOOKLET

Laudatum ii

Speakers iv

Timetable of Talks and Events v

Abstracts of Presentations vi

List of Participants xi

Acknowledgement xvi
Michael Eastham received his early education in Manchester Grammar School and Mer-
ton College, Oxford. In 1959, after a successful undergraduate career, he was awarded
a Domus Senior Scholarship by Merton College to enable him to pursue postgraduate
studies under the guidance of E.C.Titchmarsh. In 1961, in recognition of the excellence
of the research for his D.Phil thesis, he was presented with the prestigious Senior Math-
ematical Scholarship by the University of Oxford. In 1978 he was awarded the Keith
Prize and Gold Medal by the Royal Society of Edinburgh for his contribution to classical
analysis, and was made a Fellow of the Royal Society of Edinburgh in 1982.]

After a year as Junior Research Fellow of Merton College, Michael left Oxford in 1962
to take up an appointment at Reading University. Later he held positions in the uni-
versities of Southampton, London (Chelsea College and King’s College) where he was
Professor of Pure Mathematics 1980-1988, and Bahrain. At present he is an honorary
Professorial Fellow of the University of Wales at Cardiff.

He has made a significant contribution to classical analysis, with an impressive output
of 4 books and over 100 papers to date. His main area of expertise is the spectral the-
ory of linear ordinary differential equations. Of notable significance is his work on the
asymptotics of solutions. Using the technique of repeated diagonalisation with consum-
mate skill and efficacy, he has obtained powerful results on asymptotics in a number of
papers which were the basis of his well-known book on the subject. His results have
enabled him and his students to make a comprehensive analysis of the deficiency index
problem for equations with suitably smooth coefficients. In recent years he has devel-
oped his work on asymptotics in a manner suitable for inclusion as an algorithm that can
be realised on a computer, and has applied his methods effectively to a problem of con-
siderable current interest, namely, that of the location of Sturm-Liouville resonances.
Out of Michael’s long and impressive list of publications, the papers listed below are
particularly noteworthy, and are good examples of the power of his analysis.

Michael has been a leading figure in the subject for the last forty years. He has lec-
tured on his work in many countries, and his books have become standard texts. He
continues to be very active in research, his current main areas of activity being spectral
concentration and resonance problems.

SELECTED PUBLICATIONS

1. B. M. Brown and M. S. P. Eastham. Analytic continuation and resonance-free

This Laudatum will appear in a future edition of the Journal of Computational and Applied Mathe-
ematics.

SPEAKERS

E B Davies, Electronic mail: E.B.Davies@kcl.ac.uk
Kings College, University of London

W D Evans, Electronic mail: EvansWD@cardiff.ac.uk
Cardiff University

W N Everitt, Electronic mail: w.n.everitt@bham.ac.uk
University of Birmingham

Hubert Kalf, Electronic mail: Hubert.Kalf@mathematik.uni-muenchen.de
Universität München

J B McLeod, Electronic mail: mcleod@pitt.edu
University of Pittsburgh
TIMETABLE OF TALKS AND EVENTS

FRIDAY, JULY 26TH, 2002

Chair W D Evans

1500 E B Davies Bounds on the eigenvalues of non-self-adjoint Schrödinger operators

1600 Tea

1630-1730 W N Everitt† and Anthippi Poulkou First-order linear boundary value problems

1900 Reception

1930 Dinner

followed by the Laudatum by Prof W N Everitt.

SATURDAY, JULY 27TH, 2002

0800 Breakfast

Chair B M Brown

0900 A A Balinsky and W D Evans† On the spectral properties of the Brown-Ravenhall operator

1000 Hubert Kalf On the spectral theory of Dirac operators with a variable mass term

1100 Coffee

1130 J B McLeod Stability of Poiseuille Flow

1230 Lunch

Depart

Where there is more than one author, the speaker is marked thus †.
ABSTRACTS OF PRESENTATIONS

BOUNDS ON THE EIGENVALUES OF NON-SELF-ADJOINT SCHröDINGER OPERATORS

E B Davies
E.B.Davies@kcl.ac.uk
Department of Mathematics
Kings College, University of London
The Strand
London WC2R 2LS, UK

This talk describes bounds on the location of the eigenvalues of one-dimensional non-self-adjoint Schrödinger operators, obtained jointly by the speaker and J Nath. The bounds are expressed in terms of L^p norms of the potentials, and are optimal if the potential is L^1.

ON THE SPECTRAL PROPERTIES OF THE BROWN-RAVENHALL OPERATOR

A A Balinsky
BalinskyA@cardiff.ac.uk

W D Evans
EvansWD@cardiff.ac.uk
School of Mathematics
Cardiff University
23 Senghennydd Road
P O Box 926
Cardiff CF24 4YH, UK

The fact that the Dirac is unbounded below creates problems if it is used to describe multi-particle relativistic systems since the resulting operator has a spectrum which covers the whole of the real line. To overcome this difficulty Brown and Ravenhall proposed the following one-particle model. To describe an electron in the field of its nucleus and subject to relativistic effects, the operator of Brown and Ravenhall is

\[(1) \quad B := \Lambda_+ \left(D_0 - \frac{e^2 Z}{|\cdot|} \right) \Lambda_+.\]

acting in the Hilbert space $\mathcal{H} := \Lambda_+(L^2(\mathbb{R}^3) \otimes \mathbb{C}^4)$. The notation in (1) is as follows
• D_0 is the free Dirac operator

$$D_0 = c\alpha \frac{\hbar}{i} \nabla + mc^2\beta \equiv \sum_{j=1}^{3} c \frac{\hbar}{i}\alpha_j \frac{\partial}{\partial x_j} + mc^2\beta,$$

where $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and β are the Dirac matrices given by

$$\alpha_j = \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

with $0_2, 1_2$ the zero and unit 2×2 matrices respectively and σ_j the Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

• Λ_+ denotes the projection of $L^2(\mathbb{R}^3) \otimes \mathbb{C}^4$ onto the positive spectral subspace of D_0, that is $\chi_{(0,\infty)}(D_0)$, where $\chi_{(0,\infty)}$ is the characteristic function of $(0, \infty)$. If we set

$$\hat{f}(p) \equiv \mathcal{F}(f)(p) = \left(\frac{1}{2\pi\hbar}\right)^{3/2} \int_{\mathbb{R}^3} e^{-i\mathbf{x} \cdot \mathbf{p}/\hbar} f(\mathbf{x}) \, d\mathbf{x}$$

for the Fourier transform of f, then it follows that

$$(\Lambda_+ f)^\wedge(p) = \Lambda_+(p)\hat{f}(p),$$

where

$$\Lambda_+(p) = \frac{1}{2} + \frac{c\alpha \cdot \mathbf{p} + mc^2\beta}{2e(p)}, \quad e(p) = \sqrt{c^2p^2 + m^2c^4}$$

with $p = |\mathbf{p}|$.

• $2\pi\hbar$ is Planck’s constant, c the velocity of light, m the electron mass, $-e$ the electron charge, and Z the nuclear charge.

The lecture will discuss spectral properties of operators $b_{l,s}$ appearing in the partial wave decomposition of B: the indices l, s, denote the angular momentum channel and spin respectively. The following topics will be covered: the value of the critical charge $Z_c(l, s)$ which yields the positivity of $b_{l,s}$, the charge range for essential self-adjointness, and the charge range for the absence of embedded eigenvalues.
1. Abstract

This lecture reports on joint work with Anthippi Poulkou, Department of Mathematics, University of Athens.

The general Lagrange symmetric first-order differential equation with Lebesgue integrable coefficients, on the open interval \((a, b)\) of the real line \(\mathbb{R}\), has the form, defining the differential expression \(M[\cdot]\),

\[
M[y](x) := i\rho(x)y'(x) + \frac{1}{2}i\rho'(x)y(x) + q(x)y(x) = \lambda w(x)y(x) \quad \text{for all } x \in (a, b)
\]

where \(\lambda \in \mathbb{C}\) is the complex spectral parameter. Here the coefficients \(\rho, q, w\) satisfy the conditions

\begin{enumerate}
 \item \(\rho, q, w : (a, b) \to \mathbb{R}\)
 \item \(\rho \in AC_{\text{loc}}(a, b)\) and \(\rho(x) > 0\) for all \(x \in (a, b)\)
 \item \(q, w \in L_{\text{loc}}^1(a, b)\)
 \item \(w(x) > 0\) for almost all \(x \in (a, b)\).
\end{enumerate}

The right-definite spectral analysis for this differential equation takes place in the Hilbert function space \(L^2((a, b); w)\) with norm and inner-product

\[
\|f\|_w^2 := \int_a^b w(x) |f(x)|^2 \quad \text{and} \quad (f, g)_w := \int_a^b w(x)f(x)\overline{g(x)} \, dx.
\]

A necessary and sufficient condition to ensure that the differential expression \(M[\cdot]\) generates a maximal operator in \(L^2((a, b); w)\) with equal deficiency indices \(d^\pm = 1\) whose self-adjoint restrictions have discrete spectra, is

\[
\int_a^b w(x) \rho(x) \, dx < +\infty.
\]

With this condition satisfied the GKN boundary condition method can be applied to give symmetric boundary value problems with the following properties:
Theorem 1.1. Let T be a self-adjoint restriction of the maximal operator generated by $M[·]$; then T has the following spectral properties:

(i) The spectrum $\sigma(T)$ of T in $L^2((a, b); w)$ is simple and discrete.

(ii) The spectrum $\sigma(T)$ is unbounded above and below on $\mathbb{R} \subset \mathbb{C}$, and so may be denoted by, here $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots \}$,

$$\sigma(T) = \{\lambda_n \in \mathbb{R} : n \in \mathbb{Z}\}$$

with

$$\lambda_n < \lambda_{n+1} \text{ for all } n \in \mathbb{Z}, \text{ and } \lim_{n \to \pm \infty} \lambda_n = \pm \infty.$$

(iii) There exists a positive number $k > 0$, with

$$k = 2\pi \left(\int_a^b \frac{w(x)}{\rho(x)} \, dx \right)^{-1},$$

such that

$$\lambda_{n+1} - \lambda_n = k \text{ for all } n \in \mathbb{Z}.$$

(iv) There exists an entire (integral) function $\varphi : \mathbb{C} \to \mathbb{C}$, generated by the boundary value problem, with the properties

(i) $\varphi(\lambda) = 0$ if and only if $\lambda \in \{\lambda_n : n \in \mathbb{Z}\}$

(ii) $\varphi'(\lambda_n) \neq 0$ for all $n \in \mathbb{Z}$.

2. KRAMER ANALYTIC KERNELS

The boundary value problems discussed in Section 1 generate Kramer analytic kernels in the Hilbert space $L^2((a, b); w)$.

Acknowledgement The authors are indebted to the Professors Michael Plum and Hubert Kalf for technical help in the preparation of the manuscript and for correcting errors in the first draft of the paper.

References

ON THE SPECTRAL THEORY OF DIRAC OPERATORS WITH A VARIABLE MASS TERM

HUBERT KALF
Hubert.Kalf@mathematik.uni-muenchen.de
Mathematisches Institut
Universität München
Theresienstr. 39
D-80333 München, Germany

The spectrum of the Dirac operator is purely discrete when the mass term “dominates” the potential (O. Yamada). In the opposite case one expects the spectrum to be purely absolutely continuous. This was proved when both the mass term and the potential are spherically symmetric (K. M. Schmidt, O. Yamada). Using virial techniques, a theorem is presented which establishes at least absence of eigenvalues when mass term and potential are not necessarily rotationally symmetric. This is joint work with T. Okaji (Kyoto) and O. Yamada (Kusatsu).

STABILITY OF POISEUILLE FLOW

J B McLEOD
mcleod@pitt.edu
Department of Mathematics
301 Thackeray Hall
University of Pittsburgh
Pittsburgh PA, 15260, USA

Poiseuille flow is two-dimensional flow in a straight pipe. The question of the stability of the steady flow, particularly with a parabolic velocity profile, is a long-standing one that has received intense treatment numerically, but very little analytically. The talk will examine what we can prove about this problem.
LIST OF PARTICIPANTS

Professor A A Abramov, *Electronic mail:* alalabr@ccas.ru
Department of Computational Methods, Dorodnicyn Computing Centre of the Russian Academy of Sciences, Vavilov St. 40, 119991 Moscow GSP-1, Russia

Dr A A Balinsky, *Electronic mail:* BalinskyA@cardiff.ac.uk
School of Mathematics, Cardiff University, 23 Senghennydd Road, P O Box 926, Cardiff CF24 4YH, UK

Dr H Behnke, *Electronic mail:* mahb@sinfonix.rz.tu-clausthal.de
Institut für Mathematik, Technische Universität Clausthal, Erzstraße 1, 38678 Clausthal-Zellerfeld, Germany

Dr Christer Bennewitz, *Electronic mail:* christer.bennewitz@math.lu.se
Department of Mathematics, Lund University, Box 118, SE-221 00 Lund, Sweden

Professor Paul Binding, *Electronic mail:* binding@math.ucalgary.ca
The Department of Mathematics and Statistics, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada, T2N 1N4

Dipl.-Math B Breuer, *Electronic mail:* bodo@ma1euler.mathematik.uni-karlsruhe.de
Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Dr B M Brown, *Electronic mail:* Malcolm.Brown@cs.cardiff.ac.uk
Department of Computer Science, Cardiff University, P O Box 916, Cardiff CF24 3XF, UK

Professor Patrick J Browne, *Electronic mail:* browne@admin.usask.ca
Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E6, Canada

Professor E B Davies FRS, *Electronic mail:* E.B.Davies@kcl.ac.uk
Department of Mathematics, Kings College, University of London, The Strand, London WC2R 2LS, UK

Professor Michael S P Eastham, *Electronic mail:* mandh@chesilhay.fsnet.co.uk
Department of Computer Science, Cardiff University, PO Box 916, Cardiff CF24 3XF, UK

Professor W D Evans, *Electronic mail:* EvansWD@cardiff.ac.uk
School of Mathematics, Cardiff University, 23 Senghennydd Road, P O Box 926, Cardiff CF24 4YH, UK
Professor W N Everitt, *Electronic mail*: w.n.everitt@bham.ac.uk
School of Mathematics and Statistics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Dr D J Gilbert, *Electronic mail*: dgilbert@maths.kst.dit.ie
School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland

Professor Leon Greenberg, *Electronic mail*: lng@math.umd.edu
Department of Mathematics, University of Maryland, College Park, Maryland MD 20742, USA

Dr G Gudmundsdottir, *Electronic mail*: Gudmundsdottir@math.lth.se
Department of Mathematics, Lund University, Box 118, SE-221 00 Lund, Sweden

Professor Dr Rainer Hempel, *Electronic mail*: hinkel@rzserv6i.rz.tu-bs.de
Institut für Analysis, TU Braunschweig, Germany

Professor D Hinton, *Electronic mail*: hinton@math.utk.edu
Mathematics Department, University of Tennessee, Knoxville, TN 37996-1300, USA

Professor Dr Andreas M Hinz, *Electronic mail*: hinz@rz.mathematik.uni-muenchen.de
Zentrum Mathematik, Technische Universität München, D-80290 München, Germany

Dr Michael Hitrik, *Electronic mail*: hitrik@math.berkeley.edu
Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720-3840, USA

M Jais, *Electronic mail*: mathiasjais@gmx.net
Zentrum Mathematik, Technische Universität München, D-80290 München, Germany
Department of Computer Science, Cardiff University, P O Box 916, Cardiff CF24 3XF, UK

Professor Dr Hubert Kalf, *Electronic mail*: Hubert.Kalf@mathematik.uni-muenchen.de
Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 München, Germany

Professor Ian Knowles, *Electronic mail*: iwk@vorteb.math.uab.edu
Department of Mathematics, University of Alabama at Birmingham, University Station, Birmingham, AL 35294, USA
O A Krus, Electronic mail: tchebolga@leibniz.iimas.unam.mx
IIMAS, UNAM Apdo Postal 20-726, Admon No 20. Deleg. Alvaro Obregón, 01000 Mexico DF, Mexico

Dr P Kurasov, Electronic mail: kurasov@maths.lth.se
Centre for Mathematical Sciences, Lund Institute of Technology, Lund University, Box 118, SE-221 00 Lund, Sweden

Professor Dr Heinz Langer, Electronic mail: hlanger@mail.zserv.tuwien.ac.at
Institute for Analysis and Technical Mathematics, Technical University of Vienna, Wiedner Hauptstr. 8-10, A-1040 Vienna, Austria

Dr Matthias Langer, Electronic mail: mlanger@math.uni-bremen.de
FB 3 - Mathematik, Universität Bremen, Bibliothekstrasse 1, D-28359 Bremen, Germany

Professor Roger T Lewis, Electronic mail: rlewis@nsf.gov
Division of Mathematical Sciences, Suite 1025, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, USA
Department of Mathematics, University of Alabama at Birmingham, University Station, Birmingham AL 35294, USA

Professor Juan J Manfredi, Electronic mail: manfredi@pitt.edu
Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh PA, 15260, USA
Division of Mathematical Sciences, Suite 1025, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, USA

Dr Marco Marletta, Electronic mail: mm7@le.ac.uk
Department of Mathematics and Computer Science, University of Leicester, University Road, Leicester LE1 7RH, UK

Professor J B McLeod FRS, Electronic mail: mcleod@pitt.edu
Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh PA, 15260, USA

Professor Sergey Naboko, Electronic mail: naboko@felix.math.uab.edu
Department of Mathematical Physics, Institute for Physics, St Petersburg State University, Ulyanovskaya 1, St Petersburg 198904, Russia

Professor B S Pavlov, Electronic mail: pavlov@aitken.scitec.auckland.ac.nz
Department of Mathematical Physics, Institute for Physics, St Petersburg State University, Ulyanovskaya 1, St Petersburg 198904, Russia
Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
Professor D B Pearson, *Electronic mail*: d.b.pearson@hull.ac.uk
Department of Mathematics, University of Hull, Hull HU6 7RX, UK

Professor Dr M Plum, *Electronic mail*: michael.plum@math.uni-kiarlsruhe.de
Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Dipl.-Math R Pohler, *Electronic mail*: rudi@ma1euler.mathematik.uni-kiarlsruhe.de
Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Dr A Pushnitski, *Electronic mail*: A.B.Pushnitski@lboro.ac.uk
Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK

Dr Wolfgang Reichel, *Electronic mail*: reichel@math.unibas.ch
Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland

Dr Norbert Röhrl, *Electronic mail*: ngr@vorteb.math.uab.edu
Department of Mathematics, The University of Alabama at Birmingham, Campbell Hall, Birmingham, AL 35294-1170, USA

Dipl.-Math J Rohe, *Electronic mail*: uafx@rz.uni-kiarlsruhe.de
Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Dr R Romanov, *Electronic mail*: R.Romanov@cs.cardiff.ac.uk
Department of Computer Science, Cardiff University, PO Box 916, Cardiff, CF24 3XF, UK

V S Samko, *Electronic mail*: V.Samko@cs.cardiff.ac.uk
Department of Computer Science, Cardiff University, PO Box 916, Cardiff, CF24 3XF, UK

Dipl.-Math M Schäfer, *Electronic mail*: mschaefer@uni-duisburg.de
Gerhard-Mercator-Universität, Fakultät 4 (Mathematik), D-47048 Duisburg, Germany

Dr Karl Michael Schmidt, *Electronic mail*: SchmidtKM@cardiff.ac.uk
School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4YH, UK

Professor A A Shkalikov, *Electronic mail*: ashkalikov@yahoo.com
Department of Mechanics and Mathematics, Moscow Lomonosov State University, Moscow, 198 899, Russia
Ian Sorell, *Electronic mail*: i.sorell@lboro.ac.uk
Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK

Professor Gunter Stoltz, *Electronic mail*: stolz@vorteb.math.uab.edu
Department of Mathematics, University of Alabama at Birmingham, University Station, Birmingham AL 35294, USA

Professor Dr Christiane Tretter, *Electronic mail*: ctretter@math.uni-bremen.de
FB 3 - Mathematik, Universität Bremen, Bibliothekstrasse 1, D-28359 Bremen, Germany

Dr A Watson, *Electronic mail*: WatsonA1@cardiff.ac.uk
School of Engineering, Cardiff University, PO Box 925, Cardiff, CF24 0YF, UK

Professor R Weikard, *Electronic mail*: rudi@math.uab.edu
Department of Mathematics, University of Alabama at Birmingham, University Station, Birmingham AL 35294, USA

Dr Robin Williams, *Electronic mail*: Robin.Williams@astro.cf.ac.uk
Department of Physics and Astronomy, Cardiff University, PO Box 913, Cardiff, CF24 3YB, UK

Professor A Zettl, *Electronic mail*: zettl@math.niu.edu
Department of Mathematical Sciences, Northern Illinois University, Dekalb, Illinois 60115, USA
This meeting is organised by B M Brown and W D Evans and is in part sponsored by the Department of Computer Science, Cardiff University and the London Mathematical Society.