A HARDY-LITTLEWOOD-TYPE INEQUALITY FOR THE
\(\text{p-Laplacian} \)

K M SCHMIDT
Cardiff School of Mathematics
Cardiff University
Senghennydd Road
Cardiff CF24 4AG
Wales, UK

Hardy and Littlewood’s inequality

\[
\int_0^\infty |f'|^2 \leq 2 \sqrt{\int_0^\infty |f''|^2} \sqrt{\int_0^\infty |f|^2}
\]

has been generalised to the family of HELP inequalities, where the second derivative on the r.h.s. is replaced by a more general linear second-order differential operator.

This talk reports on recent joint work with S. Aumann and B.M. Brown, establishing an analogous integro-differential inequality for the (non-linear) \(p \)-Laplacian on the half-line, including an estimate for the optimal constant.