

THE SCOTT CORRECTION FOR ATOMS ACCORDING TO BROWN AND RAVENHALL

H SIEDENTOP Mathematisches Institut Ludwig-Maximilians-Universität München Theresienstraße 39 80333 München, Germany

The talk presents recent joint work with Ruper Frank and Simone Warzel. We prove Scott's conjecture for the Brown-Ravenhall operator $B_{c,Z}$ of heavy, i.e., relativistic, neutral atoms of atomic number Z. More specifically we will show that – uniformly in $c/Z \in [0, 2/(\pi/2 + 2/\pi)]$ and $Z \geq 1$ – the following asymptotic expansion holds:

$$\inf \sigma(B_{c,Z}) = E_{\rm TF}(Z) + (1/2 - s(c/Z)) Z^2 + O(Z^{47/24}).$$

Here, $E_{\rm TF}(Z)$ is the atomic Thomas-Fermi energy, $s(\kappa) = \kappa^{-2} \sum_{\nu=1}^{\infty} (e_{\nu}^{S} - e_{\nu}^{B})$, i.e., the sum of the differences of the hydrogenic Schrödinger eigenvalues and the hydrogenic Brown-Ravenhall eigenvalues; c is a parameter, physically the velocity of light.