CMO0343 - Large Individual Project
(CARDIFF

UNIVERSITY

PRIFYSGOL

(ARRDY

Olympic Diving Results
Information System

Interim Report

Matthew Aish (0918770)
14/14/2012

Supervisor: Dr. J. Shao

Moderator: Prof. D. Marshall

Abstract

This report details the current progress of my project- designing and implementing an Olympic
Diving Results Information System. The system is a dynamic web based application, powered by the
Olympic Data Feed: sets of XML messages that are processed live to a database to reflect
competition standings and statistics. Building upon existing solutions, the application will include the
integration of user interaction features such as score prediction. At this point in the project, | have
developed requirements, analysed this to form a design and implemented a very basic prototype to
demonstrate the feasibility of the proposed solution. Conclusions show that this is an approach that
can be developed into a full application that will meet the aims, objectives and requirements set.

Contents

T dgoTe [¥To1 AT] o HUU T T T TR OUPTOUOTOPPTO 1
OVEBIVIBW ..ttt ettt ettt ettt e s et e e s e et e e s eab et e e s aab et e e s aab e e e e s aabe e e e s saneeeeesaneeeessneeeessnseeessaneneessanee 1
R AT a Y=Y o o] [Tor= Y 4o o -3 TP 1
DEIIVEIADIES. ...ttt e h e h e s a ettt b e b b e nbeesbe e eae e e e eteen 4
AUIBINCE ...ttt et b e s b e s bt e sae e st e st e e bt e bt e e beesbeesme e eat e et e enbeesbeenaeesanena 5
F AN o] T o T o o USRS 5

2ol <=4 o TU T o PPN 6
B YAV o - OO PP PP PPPTOUPTPPRRPOR 6
ReSUILS INFOrmMation SYSTEIMS ...cccuiiiiecciie ettt e s e e e st e e e et e e e e eeabe e e s enbaeeeennbeeeeennsenas 6
(017 o o Tol D - | = T a1 =T=T PRSIt 7

e o (=Tt Y] o PPNt 8

B LT 1= o OO PP PP PSP PPPPPRPORt 9
(00T o T o 1A o] o] e - o] [PPSR 9
REGUITEIMENTS. ...uiiiiiiei ettt ettt e e e s s s s bbbt e e e e e s sesaabtaaeeeesssasasbeaaeeeesssanssbeaaeeeesssnnnnnnns 9
REQUINEMENTS ANAIYSIS...iiiiiiiiei ittt e et e e e et e e e e et e e e e ebeee e e abaeeeesabeeeeesabeeeeesnsenaeennsenas 10
N (oI (=] ¢ W o Y o T] 1= o) 5Nt 11
YA =T 0 T = (o TSP 15
Data STIUCTUIES ..eviiiiiiiiiii i ba e aba s 21
Basic Navigation @and LaYOULueiiiciiiii ettt e e e s bee e s e arae e e ennreeas 25

[Lo o]0V o 1T PPP PP PP PPPPPPPPPPPPPPPPRE 29
(015 Y=T3 Lo [T PO P PP PPPTOPPROTRN 30
DATADASE .ttt e b e bt s h e st e bt e be e e bt e ehe e e ab e et e e teenbeesheesaeeea 34
o L = Y- =N 35
RESUIES ..ttt b e sttt e bt e bt e s bt e s bt st s bt e b e e be e e re e e ae e e et et e e nreesneenane e 36

(6e] 3Tl (D13 o) o ISRV P PP PRRPRR 39
RESUIES ...ttt e s e e he e e st e s bt e e s bt e e b et e s r e e s be e e s b e e s neeeaneeesreeennnes 39
N Tt =T o F RN 39
Project Approach EVAlUQtioneuiiiiiiii ittt e e e e e e e s e e aae e e e e e e as 40
(0T a T o 1A o] o] e - [l o[PS 40

23] o] Lo =T o] o1V 41

Introduction

Overview

Beginning in July 2011, through to the end of the Games of the XXX Olympiad, | worked for LOCOG
(London Organising Committee of the Olympic and Paralympic Games) where my role was a Test
Analyst and Deputy Results Manager for Diving. A large portion of this role involved testing the
various components of the Diving results systems, including:

e The LOCOG games-time website —a web based application providing live results for 109
million unique users (Balfour, 2012) during the games.

e (IS (Commentator Information System) — A system providing live results and statistics to
commentators and journalists through touch-screen technology.

e Info -a web application acting as the information hub of the games for accredited media,
sports officials and athletes.

The driving force behind these applications is an XML feed known as ODF (Olympic Data Feed). XML
messages are sent to these applications by timing and scoring systems located on venue. These
messages include data such as participant information, start lists and medallists, but are also used
during competition to reflect the current rankings and statistics.

My aim for this project is to implement my own Results Information System for Diving, powered by
ODF. The main differing aspect between my project and the real systems implemented at the
Olympic Games is that | will be focussing on integrating user interaction (e.g. Allowing users to
predict scores) in to the system, where as the real systems were purely designed for information
absorption.

Existing Applications

Atos Commentator Information System

(More information at uk.atos.net/en-
uk/olympic_games/what_we_deliver/information_diffusion_systems/default.htm)

Atos’ CIS was used at the Olympic Games to provide broadcasters and journalists with real time
results and statistics. Unfortunately, due to the private nature of this product | am unable to provide
any screenshots of it in use. For diving, users are presented with a schedule of the day’s events. They
then select one and can view either the start list or results for the event. A table is used to display
the current rankings and dive scores as the event progresses, and above, 2 boxes are used to display
athlete data- one to present the athlete before a dive, and the second to show the athletes detailed
scores after a dive.

Positives

e Results update in real time (seconds behind the real event).
e Simple navigation- users simply click on an event and can see all relevant data on one
screen.

Negatives

Page | 1

Detailed scoring is only shown when a result is given- after this the breakdown of each
judge’s score is unavailable.

e CIS will only show results for events on a single day at a time- information about previous
days or future events is unavailable.

e When an athlete receives a score, the box their presentation data was in is empty but is still
visible.
e No user interaction.

Locog Games Time Website
(See london2012.com/diving)

The LOCOG games time website was used at the Olympic Games for users across the world to visit
and get the latest news and events. The specific part to focus on in relation to this project is the live
results aspect. Similarly to CIS, results are updated live, however, the website allows information to
be seen about all events, rather than just those on that day.

Positives

e Can look up all events.
e Detailed information (such as breakdown of scores) is available, but is hidden in expansions,
keeping the layout clear but not losing the extra data.

Negatives

e The only user interaction is the ability to share the page via social networking websites.

Olympic
A 38 Qympi Photo highlights > I
Olympic Games 27 July - 12 August Last gold !‘ *
Official London 2012 website medal & | B Asadauskaite L.
L1 All medals

Results | Medals | Sportsv | Athletes | Countries | Join in | Venues | Torch Relay | Ceremonies | News = About us ﬁgg::l;ysmpic

About | Eventsy | Schedule & Results | Medals | Athletes | News | Photos

Women's Synchronised 10m Platform

m

Final - Aguatics Cenfre - Tuesday. 31 July 2012 15:00 Results
Timetable
Medallists Competition format
Bl cuu 1st -l mex 2nd [« can
More
ﬂ H =ik
v CANAN\ CANANK
CHENR WIANG H ESPINOSA OROZCO LO. BENFEITOM FILIONR
89 3
Rank | Team Result | + 12 3
1 |Gl CHEN Ruolin / WANG Hao 6840 @) Hlike || W Tweet| +1
2 -] ESPNOSA SANCHEZ Pacla / OROZCO LOZA Alejandra 34332 @
You need to be legged into Facebook to
BENFEIO Meaghan / FILION Roseli
L) eagnan oseine 33752 | enable social sharing on London2012.com [[EE0Y
4 WIBGNS Loudy / BUGG Rachel 355 @
5 EJ= BARROW Sarah/COUCH Tonia 2172 @
& [SUBSCHINSKINora/ STEUER Christin 276 Results
7 [ES LEONG Mun Yes { PAMG Pandelela Rinong 52) | 11Avg Men's 10m Platform - Final 4
3 WM pROKOPCHUK lulia / POTYEKHINA Vikoriya 20964 @ 11 Aug Men's 10m Platform - Semifinal

Results Page

Bl cHn Q‘ 1st -l MEx Q(

1200

More
L L] Metric | Imperial
CANANK
CHENR VWANG H ESPINOSA OROZCO LO. BENFEITOM FILIONR EoEEver
189 3
Rank | Team Result | + 12 31
1 [l CHEN Ruolin / WANG Hao 36840 — Eluke | |wrTweet| J +1 m
CHENR WANG H
You need to be logged into Facebook to
03 © £r3 © enable social sharing on London2012.com [N
[t Height 1.58m Height 156m
Weight 47Kg Weight 50Kg
Results
11 Aug Men's 10m Platform - Final >
Dive Code | DD Description Position
; 2018 20 ReverssDive ok 11 Aug Men's 10m Platform - Semifinal »
10 Aug Men's 10m Platform - Preliminary Round »
E1 E2 E3 E4 E5 E6 DiveAvg Dive Pen Dive Score
&5 85 35 6 35 90 89 0.0 53.40
St s2 S3 s4 S5
&5 90 90 80 S8
2 2018 20 BackDwve Pike
E1 E2 E3 E4 E5 E6 DiveAvg Dive Pen Dive Score
5.0 &8 &5 85 85 &5 54 0.0 56.40
st s2 s34 s
&5 95 95 95 95
3 1078 30 Forward 3 1/2 Somersaut Pike
E1 E2 E3 E4 E5 E6 DiveAvg Dive Pen Dive Score AT |

Expansion to view score breakdown
Fantasy Premier League
(See fantasy.premierleague.com)

Fantasy premier league is an online game based on the English Football Premier League. It allows
users to pick a team of players, who are then awarded points as football matches progress
depending on what happens (points for goals scored, assists etc.). Users can see the match scores
updating as they see their own fantasy team points updating. Scores can be compared with other
users in fantasy leagues.

Positives

e Cansee current scores and fantasy points updating together.
e (Can participate in leagues to see how your points compare to others.

Negatives

e The actual results are placed underneath the fantasy scores so are far down the page. The
two entities are quite separate and could be integrated together more successfully.

m

Tottenham 15 26

(1L RY IV DATA VIEW

WestBrom 15
Biscanbauer FC - Gameweek 15 Everion e
Swansea 15
GAMEWEEK 15 POINTS .
+ Design your kit westham 15
AVERAGE wigrest o 1,384,549 Stoke 15
Transfers 2 oo
48pts 118pTs Points/Rankings Arsenal 15
SRR ED Overall Points 637 Liverpool .
Hshare points | | W Tweet Overall Rank 1,495,206 Horwich 15
Total Players 2,508,407 Fulham 15
Gamewesk Foints 45 Newcastle | 15 | 17

4 View Gameweek history Asonvila | 15| 14
igan 5 14
Sunderlnd 14 12

Southampton 15 12

Classic leagues

s The Redmen TV.com
M 2012113 Reading 4 9
& s Akinfenwa - H The Redmen TV.com 2012/13 | €

iike a Horse
» full table:

iew Club form guide
Head-to-Head leagues

Global leagues

& 95746 Liverpool
W 701,969 England

i i W 1282797 Gameweek 1
v

‘Yaya Toure
2

llA X . Create and join leagues
II o
= - The cup wil start in Gameweek 18.
i i
Benteke Long
2

1,495,205 Overall

» View eup history

- ~ Transfers & Finance
= =ned | * Total transfers 1

Gameweek transfers 1

Points are awarded for each player’s performance

» Notes

My Leagues

TABLE [Ezelili]

The Redmen TV.com 201213 FILTER

Man City 15 33
Team Manager GW TOT Chelsea S
Tottenham 15 26
> ATeam Alexander Thoupos 51 910 prrP—
» 2 Rich FC Rich Lloyd 16 880 Everion 15
» 3 Don Julio's bayas daragh memunn 58 856 Swansea 15 2
a 2 Steaua Meedarest Damien Foy 75 854 WesiHam | 19| 22
Stoke 15 22
a s merseyside fc Morten Offerdal 68 846 Arsensl T
L Return of Spartans Moin Ulhag 42 844 Liverpool 15| 19
v 7 Gunnmetal Newco Town peter gunn 51 842 Horwich 5] 19
Fulham 15 17
a 3 Hectic FC Anthony Hernandez 74 837 -
Newcastle 18 17
a 3 Caithness Thistle Mark Roberts 67 836 AsonVila 15 14
a 0 Enter team name FC Fraser Douglas i 835 igan 15 14
Sunderland 14 13
a 1 Yelaa Jaime Rabaca 53 835 uneeren
Seuthampton 15 12
a 12 YNWA jim donnelly 62 834 e —
a 13 Team DBG Dave Hendrick 69 832 arR 5 &
a 1 The Wet Draam Team johnathon whelan 57 831 v ull table:
wr Club form guide
» 15 theballbreakers tony baloni 54 831
a 5 The Masterplan Gareth Morris 63 830
a 17 Daniel LFC Daniel Str m 61 827
v 1B Ajax Derrykinnighbeg gerard treanor 44 827
v 19 Bonus Chips Andy Young 48 827
v 2 Souadra Jonas Docko 43 826
v 2 Whoppers Bethany T 28 822
- 22 Them arnnsara anain Clint Nemnaew R1 R21

Users can compete in leagues to compare their points to others

Deliverables
| have set myself the following deliverables for this project:

e Implement a dummy version of the Diving Olympic Data Feed so that messages can be sent
and received, and then processed. As the actual feed is no longer in operation, this will
simulate the sending of messages by selecting XML files from test data.

n

m

e Parse ODF messages and store the data contained in a database, to allow for meaningful use
in the main application.
e Provide a main application interface for users to view results information, including:
o Schedule information
o Participant information (entries, team composition, biographical data etc.)
o Start lists and results
o Medal winners and final rankings
e Provide results information (previous diver scores, current standings etc.) in real-time as
ODF messages are received during simulation of competition.
e Allow users to interact with the system during competition by predicting scores and
medallists.

Audience

The audience for the resulting application of this project focuses on sports fans interested in
following live results of sporting events. In this case, | am using Olympic Diving as an example due to
my experience at LOCOG (my experience being my knowledge of the competition format and rules
and knowledge of the data feed) in order to simplify the implementation of what could otherwise
become a massively complex project. However, | believe that the idea could be applied to many
other sports.

Live results, scores and statistics are hugely popular feeds of information, with thousands of web
and mobile applications dedicated to them. However, these applications mainly allow users to
absorb information- there is a lack of user interaction. | intend my application to appeal to current
users of sports results applications, but to demonstrate how user interaction can be increased, thus
also appealing to new users and providing a greater experience for existing ones.

Such an application could be developed to provide results for many different sports- in this case
particularly other judged sports similar to diving such as Gymnastics or Synchronised Swimming. The
provision of live results for these sports could help to increase coverage for their respective events,
but along with the inclusion of greater user interaction, could also help to promote interest. Sports
like Gymnastics and Synchronised Swimming often suffer in popularity outside of the Olympic
Games. As is evident, systems like this are implemented for large scale events such as the Olympic
Games, but greater user interaction could add a new dimension to those systems already in place.
Similar systems could also be implemented on a smaller event scale by their respective organisers,
thus giving greater accessibility to live information for their sporting events.

Approach

In terms of my approach to this project, | think the best way to subdivide it is into four main areas:

e Simulating the ODF message feed.

e Processing messages and inserting the data into a database.
e Creating a dynamic user interface.

e Integrating user interaction into the user interface.

| plan to take a waterfall approach to development on each of these four areas- designing and
implementing one before moving on to the next. | think this is the most sensible approach to take to

implementation, as each area is largely dependent on the success of its predecessor. For example,
until I have implemented the sending of XML messages, it is difficult to know exactly how to process
them and insert the data into a database. Until the database is complete, it will be difficult to know
how to build the user interface. And without a baseline user interface, it will be impossible to
incorporate the user interaction features. | therefore see these four areas as the places throughout
the project timeline where there is the greatest likelihood that the project direction may change (for
example, needing to change my approach to implementation, new ideas for the use of the
application etc.). By completing these core elements before beginning work on the next, | believe |
will minimise the risk that the direction will change drastically, resulting in completing redundant
work, and ultimately minimise risk of project failure. A detailed Gantt chart with a breakdown of
tasks and their estimated durations can be found in Appendix A.

Background

Diving

For those unfamiliar with the sport, it may be useful to understand the basic rules of diving in order
to fully appreciate and understand the design and implementation of this project. A basic
introduction to diving (from www.london2012.com) follows, and for those interested, a complete
set of rules and regulations can be found on the website of FINA- the international swimming
federation (www.fina.org).

Divers submit in advance the dives which they will perform. The more difficult a dive, the higher the
potential score if it is executed correctly: judges award a score out of 10 for each dive, which is
multiplied by the dive’s degree of difficulty. In the Synchronised Diving events, pairs of athletes dive in
tandem and are assessed for their execution and synchronisation by separate groups of judges — a
judge never assesses both execution and synchronisation. The higher the judges’ score, the higher the
diver/team is placed.

Judges (seven for the individual events and 11 for the Synchronised) assess all phases of the dive,
including the level of synchronisation. Each judge awards a score out of 10. Divers may score zero on
a dive for double-bouncing on the end of the board, performing a dive other than the one they stated
or taking too long to dive. Divers also have marks taken off for restarting a dive or armstand.

Dives are divided into four stages — the starting position, the take-off, the dive itself and the entry
into the water. Each of these is judged against a strict set of criteria and the winning divers perform
difficult and ambitious dives where every part is as near to perfection as possible. Divers aim to enter
the water vertically with as little splash as possible. If you see a diver make no splash at all, you can
expect very high marks. In the Synchronised events, the two divers must dive in perfect harmony with
each other. (LOCOG, 2012)

Results Information Systems

Results information systems are key components of today’s modern, data driven sports events.
Sports data is constantly changing and customers need to know about these changes immediately.
Results information systems collect, store, process and send this data. The scale of these systems
varies drastically depending on the event in question. Smaller events may contract a single company,

purely to provide reliable timing and scoring and statistics, where as an event such as the Olympic

Games requires multiple companies providing a wide variety of systems that encompass timing and

scoring, live results, weather conditions, media conferences and much more.

Results information systems and services are most often provided by specialist companies to

sporting event organisers. For example:

e Swiss Timing (www.swisstiming.com): Specialising in timing, scoring, data handling and
broadcast solutions to major sports events throughout the world. They provide
systems such as venue results systems, accreditation management systems, central
database systems storing schedules, participants, start and results lists and medallists
as well as sub systems providing clients with an interface to access to this data

e Deltatre (www.deltatre.com): Deltatre offer many different systems to cover all areas
of a sporting event including online digital media solutions, on-venue and broadcast
systems as well as backstage event management implementations.

In terms of this project, | believe that it may be able to provide a basis for future results information

systems and could be developed in to a viable business solution. If this project is successful, it will
hopefully demonstrate the possibilities and benefits of integrating live results and user score
prediction. The use of ODF is purely as an example due to my experience with it, but we could see

similar XML feeds being applied across many other sporting events, with such applications as this

one at the front end for users.

Olympic Data Feed

ODF messages form the foundation of this project. They are sent from results systems based on the
venue to consuming systems. There are different types of messages to represent different parts of
competition data. Some are sent prior to competition, and others are sent during the competition to
reflect the live standings of the event. The messages are then forwarded to central systems off the

venue, where they are then forwarded to in house systems as well as external clients.

The table below gives a basic explanation of the types of messages that will be used in this project,
the data contained in them and when they are triggered/ sent. Detailed documentation as well as
sample data can be found at http://odf.olympictech.org. Samples of the messages below can be

found in appendix B.

Message Type

Data Contained

Trigger

DT_SCHEDULE /
DT_SCHEDULE UPDATE

DT_PARTIC/

DT_PARTIC_UPDATE

DT_PARTIC_TEAMS/
DT_PARTIC_TEAMS_UPDATE

Schedule information for
events, including start dates,
start times etc. A flag is used to
indicate the status of the event
(e.g. scheduled, in progress,
official)

Information about all
participants in the discipline
(names, country, date of birth
etc.)

Contains names and lists of
athletes that form each team.

Sent once prior to competition.
Schedule updates are then sent
whenever there is a change.

Sent once prior to competition.
Participant updates are then
sent whenever there is a
change.

Sent once prior to competition.
Updates are then sent

whenever there is a change.

DT_START_LIST Contains the start list for an Sent when the start order has
event including dive lists for been drawn, and then again
each competitor. when all dive lists have been

submitted.

DT_RT_RESULT Sends the current ranking and Is sent on presentation of an
score information for a athlete (i.e. the athlete is about
competitor, and sets the to dive) to send current dive
current and previous athlete information, and sent when the
flags. dive is complete to send scores,

rank and total.

DT_MEDALLISTS List the medallists of an event Sent when results are official.

Project Scope
After careful consideration of my aims and the background, it is important to define the scope of this
project.

My aim is to make a working prototype and not a feature-packed application that is ready to be used
in the real world. Being based on the Olympic Games, the application has the potential to take an
extremely long amount of time, which would be impractical given the time restrictions on this
project and that it is only myself working on it. It took over a year to simply test the real results
applications, so it would be impossible and impractical to create a complete application here.
However, | need to define a scope that still demonstrates that the aims of the project can be met.

| believe a suitable scope for the project is as follows:

e Toimplement the system using synchronised events only. There are less competitors and
phases so this will make it quicker to implement. There is a slightly different structure
between synchronised and individual ODF messages, so to implement everything would
require a large amount of work which is unnecessary for this prototype.

e Results are the most important aspect of the data. Therefore it is not completely necessary
to implement some items | specified in the initial plan. For example: Entry lists, biographies,
judge lists. Although this data is important, its implementation would be long and
superfluous in this case.

¢ The key part of the project | want to focus on is creating a form of live results feed that a
user can interact with during competition. It is important for me to keep this as the main aim
and to not go on a tangent of developing a huge results information system with large
quantities of data. The feed contains a large amount of data, which all has value, however |
will only be taking the most important data in to my own database for the purpose of this
project.

¢ | will only focus on happy path scenarios. Introducing unhappy scenarios into events such as
late changes in start lists, withdrawals, disqualifications, event postponement etc. will
massively over complicate the proposed system. These kinds of scenarios are very unlikely in
real events, and as stated earlier, took over a year to fully test for the Olympic Games. It

would be impossible to complete a system that took all of these eventualities into account
given the time and resources available.

Design

Changes in Approach
Following the definition of the project scope, and given chance to reflect on my approach, | have
decided that the approach | described in the introduction and initial plan is not suitable.

| think that the waterfall like approach is not the best way to develop this application, and that it
would be much more sensible to work iteratively. | now plan to begin by creating a very simple
prototype to test the feasibility of my design, and if this is successful, to then iteratively develop
each aspect of it. Although | was correct in identifying that there are four main components to
implementation, these are all heavily interlinked. Therefore it is much more suitable to develop each
in parallel, allowing me to test and make necessary changes before the project moves too far ahead.
If changes need to be made to the fundamental elements of the application, then it will pose a much
greater difficulty to do this when some have already been completed. | believe this new approach
will minimise the risk of project failure, and will help me to identify risks and changes that need to be
made much quicker, with a much smaller impact on the overall project.

Upon reviewing my project plan, | think that | took a naive approach in the beginning. Immediately, |
think much more time needs to be spent on the basic design. A detailed design and plan is crucial to
a successful project, and | feel that | definitely need to scope more time on this. Although this does
leave me with less time for implementation, | believe that with a well thought plan | will not need as
much time for this as | am less likely to make mistakes.

| have decided that my aim for the end of this report is to have designed and implemented the basic
prototype, after | have completed the basic design steps for the whole application. This will allow me
to test the feasibility of my design and give plenty of time to make adjustments to the project if need
be. If the prototype is successful, then this will provide me with a strong platform to build the whole
application in the New Year.

Adjustments to the project plan Gantt chart can be found in Appendix C.

Requirements
From my aims, and given the background research, | have set the following requirements for my
system:

e The application must provide an interface to simulate the sending of ODF messages.

e The application must process the ODF messages needed and store the relevant data.

e The application must provide the ability to view data for all synchronised events at any time.

e The application must be able to retrieve data stored from ODF messages.

e The application must generate and display schedule information.

e The application must generate and display start lists, including dive lists.

e The application must generate and display live results, updating when a change is made to
the results data.

e The application must display medallists when available.

e On request, the application must display detailed scoring information.

e The application must allow users to register, sign in and sign out.

e The application must allow signed in users to predict scores as competition progresses.

e The application must award a points score for correct predictions and track a total for the
event.

e The application must integrate streaming video (I have decided to include this so that users
can fully interact with the system whilst still being able to watch the event).

e The application must be able to show users results of their prediction (i.e. a breakdown of
the points gained).

e The application must be able to show a user their ranking in a league table compared to
other users.

Requirements Analysis
From the requirements stated above, | have developed the uses cases shown below for a user faced
with the front-end of the application. Detailed descriptions of each use case follows.

s e N7
— ——
———— ———
r——— i |
—

A user should be able to select one of the diving events (in this case a synchronised event) to view its
current state i.e. the start list, results or medallists depending on how far the event has progressed

View Schedule:
A user should be able to view a schedule of the events including basic information such as start
times, end times, and if the event is currently running.

View Start List:
A user should be able to view the start list for an event and view basic information such as the teams

and start order and the dives they will be performing.

View Results (Live and Static):

During competition, a user should be able to view live results to show the current standings. The
screen should then update as the competition progresses. When complete, a user should be able to
view a static screen containing the complete results for that event

View Detailed Scores:

Often in diving, results are displayed as overall totals or totals for each dive. A user should be able to
find these totals and view a breakdown of each total by each judges score and any penalties that
were awarded.

View Medallists:
A user should be able to view the medal winners for an event.

Register:
In order to use prediction features, a user will be able to register- creating a username and
password.

Log In/Out:
As users can have a user account, the user should be able to log in and out when desired.

Predict Score:
During competition, a user should be able to input a score prediction that they would award for a
given dive.

View Prediction Points:
A user should be able to view the “points” they have attained by correctly predicting the scores
awarded by the judges and which athletes will win medals.

Watch Stream:
A user should be able to view a stream of the event/phase in question when it is in progress.

Basic System Components
| now need to design the basic components of the system and how they will interact, as well as the
technologies | will use.

Architecture
| believe that | have three architectures to choose from:
Option 1

The ODF Sender sends messages and stores them on a server. The message is then retrieved and
processed by the ODF Processor and data is inserted in to the database. The results application then
reads from the database in order to display information.

ODF
Sender

ODF
Processor

|
Results Application

Server

/
\ 4

Advantages:

e The system makes logical sense- the data can be separately stored and managed and the
components only manipulate this data

Disadvantages:
e The system is complex as it has many different components working in parallel
Option 2

The database is removed, and instead the data is fed directly to the results application by the ODF
processor as messages are processed.

ODF
Sender

ODF
Processor

|
Results Application

Advantages:
e We remove the need for a database so overhead is decreased

Disadvantages:

e The results application will need to be running in order for updates to be made- with a
database this does not need to happen

o It will be difficult to store information about previous and upcoming events without a
database

e Although the architecture becomes simpler, the implementation becomes much more
complex

Option 3

The ODF Sender and Processor are combined, so that when messages are “sent” they are simply
processed and the data is sent to the database.

ODF Sender and
Processor

Server

Results Application

Advantages:

e Combining the send and processor makes the architecture simpler and removes the need to
use the server to communicate between them

e AsI’'m not using the real feed, it just needs to be simulated and this seems a simpler way to
do so

Technologies

| will now look at the potential technologies for each element of the application.

ODF Sender and Processor

1. The sender and processor could be implemented using Java. | have implemented a small
XML parser before using a text book so may be able to reuse elements of that program. It is
also simple to implement a simple graphical user interface to select and send a file.

2. PHP has a lot of inbuilt XML support, and it also makes it simple to interact with a server as it
is a server based language. However, the application would need to be run in a browser
which may not be the simplest interface to use and implement.

3. JavaScript could also be used, which has the same benefits and disadvantages as PHP as it is
also a browser based scripting language.
Database
1. MySQL is open source, can be run on the server and provides all the basic functionality | will
need. Java, PHP and JavaScript can all connect and interact with these types of databases.
2. | could continue to work in Java. Although this would make it easier to communicate with

the ODF Sender and Processor if that is in Java as well, it would mean implementing data
structures from scratch. | feel this would be too complex and time consuming.

Results Application

1.

Server

If I continued with Java, and implemented everything in Java, it would again simplify
interaction between the different components. However, | think this is unsuitable as
implementing a complex GUI in Java will take a lot of time and learning.

PHP will allow me to perform queries on a MySQL database with relative ease and provides
many options for processing the results.

JavaScript could also be used to access data, however this is bad practice as it is a client side
scripting language. PHP is much more suitable as it is a server side scripting language.
However, features of JavaScript can be combined with PHP, which may be useful for
implementing the GUL.

AJAX can be used refresh the live results elements of pages without having to refresh the
whole page.

Creating a server using free software is relatively simple and can also easily be integrated
with PHP and MySQL. Apache is a frequently used piece of free server software that matches
this description.

Video Streaming

1.

After searching, | have discovered that full streams of the Olympic events are available on
YouTube, so it will be simple to embed this streaming media inside PHP pages. An example is
here: http://www.youtube.com/watch?v=_ImT4WIK7G0

If the videos are removed from YouTube, for the purpose of this project, video clips can be
stored on the server and then accessed by users using free software such as JWPlayer- a
JavaScript streaming video player. (Avilable at http://www.longtailvideo.com/jw-player/)

Decision

| have decided that the best choice for this project is option 3. | will implement a small Java

application to send and process ODF messages, reusing parts of a previous application | have worked

with. This will then insert the data into a MySQL database running on an Apache server. The results

application will then be browser based, and using PHP pages will access the database to generate

pages. The pages will incorporate JavaScript to create a fully functional graphical user interface (yet

to be designed) and live pages will update asynchronously using AJAX. Streaming video will be
embedded from YouTube.

System Flow

For each of the use cases described earlier, | have modelled the flow of the system between its
components. The activity diagrams below show how the system will logically progress in order to
achieve the results of each use case.

Get Schedule

The user chooses to view the schedule information. The application then connects to the database
and retrieves the information for the events in question, and displays this to the user.

User Results Application

View E Connect
Schedul i to DB
| Y
! Get Schedule
' Info
E v
Page i Build
Displayed i Page

Select Event

A user chooses an event to view. The application then connects to the database and checks the
schedule status of the event in question. If it is scheduled then it will show the start list, if it is in
progress it will show the current live results, and if official it will show the final results along with the
medallists. The page is then built and displayed to the user.

User Results Application

Choose i Connect
Event : to DB
i [Scheduled] L[Ofﬁcial]
X [In Progress/Unofficial]
| v v v
i Get Start Get Get Results and
E List Results Medallists
E |
i Y
Page E Build
Displayed i Page

Connect to DB

The application requests to connect to the database. The request is received and either fails or
succeeds, returning the outcome to the results application.

Results Application | Database
|
1
1
Connect E Process

to DB E Request
1
|
1

Error ! Send [Failure]
. L] <—

Received ! Error [Success]
\
]
1
l
]

Connection : Send

Established i Success
‘
|
1

Update Live Results

The application regularly checks the database to see if there has been an update to the results. If
there has been an update, the current standings are returned. The page is then built and displayed
to the user.

User Results Application

Check DB for
Updates

[No Update]

Get
Results
v
Page Build
Displayed Page
Register

A user inputs their registration information, and if the data is complete the application connects to
the database. It then checks if the email address and username specified are already in use, and if
not creates the user and notifies them that registration was successful.

User Results Application

Input

A 4

Registration
Data

|

Connect
[Incomplete Data] = [Data Complete] to DB
Email
[Email Registered]
already |«
registered [Email Not Registered]
Username
in use -
) [Username Taken] [Username Available]
v
Create
User

Registration

Successful

Login

The user inputs their login details. If the details are complete, the application connects to the
database and validates the input credentials. The outcome is then returned to the user.

I User Results Application
Input Login
Details

)

[Data Incomplete] [Data Complete]

A 4

Connect
to DB

A

Login Failed

®

Login

[Failure] [[Success]

Successful

5

Predict Score

The application requests a score prediction. The user can choose not to, in which case nothing
happens. If the user does input a prediction then this is compared to the actual scores and a points
total is calculated. This is then displayed to the user and their total points are updated in the

Points Gained
Display Points Update total
Total in DB

database.
1
User ' Results Application
1
! I
1
|
1
Input P ' Request
Score E Prediction

1
1

[Prediction Made]! | Get Actual
1 »

[No Prediction] ! Dive Score
1
1
|
1
1 y
1
1
! Calculate
1
1
1
1

View Points Total

A user requests to view their total points. The application connects to the database and gets the
total points gained in each event and returns this to the user.

User Results Application

View : Connect
Points , to DB
i Y
i Get Total Points
i from Each Event
| v
Page | Build
Displayed | Page

Watch Stream

The user chooses to play the live stream, the video is then retrieved and if this is successful, the
content plays.

®

User ' Results Application

.
,

Play : Retrieve Video

Video i from Server

Error < :

? ' [Failure] | [Success]
1
,
Stream |
Content |
I
1
1

Sending ODF Messages

In order to send ODF messages, a directory containing the messages is selected. The file is then

chosen and sent. The XML is parsed and if the message is the correct format the data is inserted into

the database. Success or failure is returned back to the sender.

Select
Directory

A

Send File

Incorrect

Parse XML

A 4

A

Format

5

Message

[Non-ODF Format] | [ODF Format]

Connect
to DB

y

Sent

Data Structures

Insert Data

From the requirements, | have decided on the data | will need to obtain from the ODF messages and

the data that will come from user input. The table below shows the data | will be storing in the

database and its source:

Data Description Message
Event Code A unique identifier for each Initially populated from
event (e.g. DVM202101 — DT_SCHEDULE. Each message
Men’s 10m synchronised) has an event identifier
(DocCode) in the header to
specify the event it relates to
Event Date Date the event starts DT_SCHEDULE

Event Start Time
Event End Time
Event Status

Athlete Code

Athlete Family Name

Time the event starts

Time the event ends

Flag to indicate if the event is
schedule, in progress, official
etc.

A unique identifier for each
athlete

Family name of the athlete

DT_SCHEDULE
DT_SCHEDULE

Initially from DT_SCHEDULE,
updated by
DT_SCHEDULE_UPDATE
DT_PARTIC

DT_PARTIC

Athlete Given Name
Athlete Gender
Athlete Date of Birth
Athlete NOC

Team Code

Team NOC

Team Name
Team Athlete 1
Team Athlete 2
Result Competitor
Result Event

Start Order
Current

Previous

Rank
Equal Rank

Sort Order

Total

Medal

Dive Number

Dive Code

Dive Description
Dive Difficulty

Given name of the athlete
Gender of the athlete

Date of birth of the athlete
The National Olympic
Committee that athlete
represents (i.e. the nation they
are competing for)

A unique identifier for each
team that specifies the event
they are competing in (e.g.
DVMZ201CANO1 Canada’s Men’s
3m Synchronised Team.

The National Olympic
Committee the team
represents

The name of the team (in this
case the full name of the NOC)
The ID of the first athlete in the
team

The ID of the second athlete in
the team

The ID of the team a result
relates to

The ID of the event a result
relates to

The start order of the team in
an event

Flag to indicate if the team is
the current team diving

Flag to indicate if the team was
the last team to receive a score
The current ranking of a team
A flag to indicate if the teams
rank is equal (e.g. =2)

The order that teams are sorted
by (used in the case that ranks
are equal so we can still sort all
the teams)

The current total score of a
team

A flag set to indicate the medal,
if any, associated with an
team’s rank at the end of
competition

A number used to identify
which number the dive is in a
team’s dive list

A code used to identify the
different dives (e.g. 407B)

A text description of the dive
The difficulty rating of the dive

DT_PARTIC
DT_PARTIC
DT_PARTIC
DT_PARTIC

DT_PARTIC_TEAMS

DT_PARTIC_TEAMS

DT_PARTIC_TEAMS
DT_PARTIC_TEAMS
DT_PARTIC_TEAMS
DT_START_LIST, then updates
from DT_RT_RESULT
DT_START_LIST, then updates
from DT_RT_RESULT
DT_START_LIST
DT_RT_RESULT
DT_RT_RESULT

DT_RT_RESULT
DT_RT_RESULT

DT_RT_RESULT

DT_RT_RESULT

DT_MEDALLISTS

DT_START_LIST

DT_START_LIST

DT_START_LIST
DT_START_LIST

Dive Scores (E1...E6, S1...S5)

Total
Average
Penalty

Username
Password
Email Address

Points Total

Predicted score
Actual score

The scores for each dive
awarded by each judge (scores
will be stored individually)
Total score for the dive
Average score for the dive
Penalty awarded, if any, for the
dive

A users chosen username

A users chosen password

A users registered email
address

A users total points gained
through predictions

The predicted score by a user
Used to compare predicted
scores for feedback

DT_RT_RESULT

DT_RT_RESULT
DT_RT_RESULT
DT_RT_RESULT

Form input
Form input
Form input

Calculated by application
Input by user

RT_RESULT (same as average
score)

From this, | have modelled the following class diagram to show the relationship between the data.

Event

-Code
-Date

*

Athlete

-StartTime
-EndTime
-Status

ResultEntry

-Code
-FamilyName
-GivenName
-Gender
-DOB

-NOC

Prediction

-CompetitorCode
-StartOrder
-Current
-Previous

-Rank
-EqualRank
-SortOrder

-Total

-Medal

Team

-Code
-Name
-NOC
-Athletel
-Athlete2

-Score

User

-Username
-Password
-Email
-PointsTotal

When it comes to implementing these relationships in the database, it will be better to implement

Dive

-Number
-Code
-Description
-Difficulty
-E1Score

-E6Score
-S1Score

-S5Score
-Total
-Average
-Penalty

*

them using the relational model rather than an object-oriented model because:

e There is mostly numerical data (scores and ranks) and related data (names and descriptions)
so storing this kind of data in tuples is a widely adopted practice.
e The database will be largely used for looking up values- using keys is a very efficient way to

do this.

e The data is not really based on a real world object as it is mostly statistical and numerical
e Data persistence is not important as records will be accessed and changed frequently

So a relational model of this gives the following tables (Primary Keys underlined, Foreign Keys Bold):

Events (Code, Date, StartTime, EndTime, Status)

Athletes (Code, FamilyName, GivenName, Gender, DOB, NOC)
Teams (Code, NOC, Name, Athletel, Athlete2)

Results (Competitor, Event, StartOrder, Current, Previous, Rank, EqualRank, SortOrder, Total, Medal)

Dives (Competitor, Number, Code, Description, Difficulty, E1Score....S55core, Total, Average,
Pentalty)

Users (Username, Password, Email, PointsTotal)

Predictions (Username, Competitior, Number, Score, Actual)

Basic Navigation and Layout

To help visualise the application, | will begin planning the basic layout and navigation of the user-
facing front end. This will aid in creating the overall image of the application, and is a good place to
start building the user interface. These plans are very basic, but provide a platform to begin full
design and development of the user interface at a later date.

ODF Sender

The ODF Sender will be a very basic tool, simply to simulate sending messages by processing XML
files and inserting data into the database. This part of the application will be a simple window with a
drop down list to select files, a button to open a file chooser window and select a directory, and a
button to send the selected file. There will also be a text log to show a history of sent files and if the
sending was successful or not. There is a button to clear the text log if the sender desires.

Drop down list » DT Result.xml D Send < Button
of XML files in - “sends” the
directory selected file

Log to report when messages are sent and processed
Button opens
successfully

a File Chooser
to select

directory

Button clears
Clear Log

A 4

the text log

Results Application Pages and Navigation

For the user-facing, web-based part of the results application, | believe | will need to include the
following pages:

e A home page, to act as the index

e An “About” page, to describe the application and how prediction works

e A page describing the rules of diving for those unfamiliar
o A page for each event to display start lists, results and medallists

e A predictions page where users can view a breakdown of their predictions and points gained

e A page for users to register on

Each page will share a header that will allow access to all other pages, and will also include a section

to log in/ register if the user is not logged in. A menu in the header will allow all the pages to be

accessible from any other page.

Header and Home Page Layout

The header features at the top of every page. It contains links to every other page- the links to event
pages are under a drop down menu. The main content of the home page will be textual. The link to

the register page is contained in the sign in box.

Title | |

(Links to Home Page) | |
Header Sign In Register

Home About Diving Rules | Events Predictions

T

Links to
corresponding

pages T

Drop down list
with links to

each event

Register Page

Registered users
cansignin, or
click the link to
“register” page

Only shown
when no user is
logged in

The register page provides users with a familiar form to complete to allow them to register and use

the prediction features.

Header

Email

Confirm Email

Username If registration is

successful, will

Password navigate back to

the home page

Confirm Password

Otherwise the

Submit .
error will be

A

shown here

Event Page

The event pages contain the information for the current diver and the fields to predict scores at the
top of the page. As the application aims to focus on user interaction | think that the top of the page
is the area where this will be noticed the most and is therefore most encouraging for users to use.
Below this is the streaming video of the event- this remains near the top of the page as users will not
want to scroll in order to predict scores and still watch the event. Below this is the score information
for the previous diver- so the user should be able to view these main 3 elements (and the most
important elements) without scrolling. The user can then scroll down to see a detailed ranking
standings table.

Header

Current diver info

Input Prediction

Submit

Video Stream

Previous diver info

Standings

Prediction and
submit button
only available
to logged in
users

Predictions Page

Header
Clicking an Event 1 League table
event opens a .) —) showing users
drop down table List of detailed predictions and points current
of detailed ranking

predictions and

points gained
for the user Event 2

Event 3

Event 4

Other Pages

The “About” and “Diving Rules” pages will have the same structure as the home page, as they will
only contain textual content in the main body.

Prototype
| am now going to implement a very basic prototype in order to test the feasibility of my design and
as a basis to then continue the development into the complete application.

My aim for the prototype is to implement a basic PHP page that can display a start list to screen,
with dive information for each team. This will require me to implement the ODF Sender, process
DT_PARTIC, DT_PARTIC_TEAMS and DT_START_LIST messages, insert this data into the database and
then retrieve and print this data to a browser using PHP.

| think this will be a suitable prototype because it tests communication between the main
components of the application that are fundamental to its correct operation. Although this
prototype will not include any of the prediction features and graphical user interface of the results
application, | do not feel these features are completely necessary to include as they do not need as
proof of functionality- we know a graphical user interface can be applied to a PHP page using CSS,
and that PHP can capture form input from users. Once | can confirm that connecting to and querying
the database works correctly, | am confident that these prediction features can be implemented and
that stylistic elements can be applied. At this point, | think the functionality is the most important
thing to focus on, because if it fails then the design may need a lot of readjustment.

ODF Sender

The ODF Sender is divided into 3 main functions. The message is sent from the GUI, then parsed into
a tree of ODF Elements, which is then processed by the ODF Processor class to get the required data
and is inserted into the database. ODF Element is my own class, which is comprised of the element
name, and a vector containing ODF Attributes. Each attribute is a pair of strings- the name of the
attribute and its value. The pseudo code and explanations below gives more detail on the
implementation (complete code listings can be found in Appendix D):

ODF Sender

If (SendButton)
Get Selected File
Add Filename to Log
Create SAXTreeViewer
Tree = SAXTreeViewer.init (File)
Create ODFProcessor
ODFProcessor.Process (tree)

End if

If the send button is pressed, the application gets the file that is selected and adds its details to the
log. A SAXTreeViewer is then created (more below about this class), and is initialized on the file. This
returns a tree of OdfElements. An ODFProcessor is then created which processes the tree.

SAX Tree Viewer

StartElement ()
Get Current Tree Node
Get Name of Element at Current Tree Node
New ODFElement (Element Name)
For each attribute
New ODFAttribute
Add attribute to ODFElement
End For
Create tree node containing ODFElement
Add node to tree
End StartElement ()

EndElement ()
Go back to parent node
End EndElement ()

The SAXTreeViewer is a class created by Brett McLaughlin and is demonstrated in the book “Java &
XML”. The original application uses SAX (Simple API for XML), a free Java library that provides XML
parsing support (available at.saxproject.org). It allows us to instantiate a reader, which is then
instructed to parse an XML document. The SAX parser has content handlers registered to it, which
allow application code to be executed as the XML data is being parsed. The handlers that are of most
interest here are the StartElement() and EndElement() handlers, which are executed whenever the
parses encounters the start of an element and the corresponding ending. The original application
builds a default tree model. When it sees the start of an element it creates a tree node containing
the element name and adds sibling nodes for all of the attributes. When the tree model is created it
is then turned into a JTree and displayed in a frame.

| have changed the application slightly. It creates the tree model, however, when the start of the
element is found, it creates a new ODFElement from the element name, and then loops through the

array of attributes returned by the parser. In this loop it creates an ODFAttribute for each attribute,
and adds it to the ODFElement. The ODF Element is then added to a tree node, which is added to the
tree When the element ends, we move back up the tree so we can add the next element. Instead of
creating a JTree, the tree model is returned so that it can be processed by ODFProcessor.

ODF Element

OdfElement (String Name, Vector<OdfAttribute> Attributes)
AddAttribute (OdfAttribute)
Add OdfAttribute to Vector
End AddAttribute ()

GetElementName ()
Return name of Element
End GetElementName ()

GetAttValue (SearchTerm)
For every attribute in Vector
Get Attribute Name
If Name == SearchTerm
Get Attribute Value
Break For Loop
End If
End For
Return Attribute Value
EndGettAttValue ()
End OdfElement

The OdfElement class is my own class, used to store and access information about OdfElements. The
Element is made up of a name and a Vector containing OdfAttributes. Its methods allow us to add an
attribute to the vector, return the name of the element, and return the value of a given attribute.
The latter is achieved by searching through the attributes, and if the name of an attribute matches
the attribute we are searching for then the value of that attribute is returned.

ODF Attribute

OdfAttribute (String Name, String Value)
GetAttributeName ()
Return Name
End GetAttributeName ()

GetAttributeValue ()
Return Value
End GetAttributeValue ()
End OdfAttribute

The OdfAttribute class is simply a pair of strings- the name of the attribute and the value of the
attribute. It has a method to return each of these values.

ODF Processor

Processor.init ()
Connect to Database
End init

Processor.process (tree)
Set root node
Go to ODFBody
Get DocType and and DodCode

When the processor is initialised, it makes a connection to the database. The process method then
takes the tree model supplied to it and gets the Document Type and Document Code from the
ODFBody Element. This tells us what type of message it is and what event it relates to. The processor
then checks the DocType, and executes different methods depending on which message type it is, as
they all have a different structure.

If DocType == DT PARTIC
Go to competition element
Go to participant element
For all participants
If participant is accredited and function is athlete
Get id, family name, given name, noc, gender and dob
Insert into athletes table
End If
End For
End If

If the message is DT_PARTIC, we navigate to the participant element, and then loop through all sister
nodes on the tree. This allows is to loop through all the participants, where we can get their data
(provided it is an accredited athlete, there is data for other “participants” in the message such as
coaches and officials) and then insert it into the database using the connection that was made
earlier in the class.

[XML Document: C:\Users\MaltiDesktop\DV Message Sets\Olympic Messages\DV Initial Download\DW20120723\20120723DV0000000 DT_PARTIC.
¢ [OdfBody- DocumentCode: DVOD00D000, Serial: 457605, Time: 045646457, Date: 20120723, FeedFlag: P, LogicalDate: 20120723, DocumentType: DT_PARTIC, Version: 3,
¢ 3 Competition- Code: 032012,
o~ (] Participant- Code: 1015808, Parent 1015808, Status: CANCEL, GivenName: Valerii, FamilyName: Bazhin, PrintName: BAZHIN Valerii, PrintinitialName: BAZHIN V, TVI
o= 3 Participant- Code: 1015810, Parent. 1015810, Status: ACCRED, GivenName: Raisa, FamilyName: Galperina, PrintName: GALPERINA Raisa, PrinflnitialName: GALPE
o~ [Participant- Code: 1015811, Parent: 1015811, Status: ACCRED, GivenName: Oleg, FamilyName: Zaytsev, PrintName: ZAYTSEY Oleq, PrintinitialName: ZAYTSEV O, T
o= [Participant- Code: 1015812, Parent: 1015812, Status: ACCRED, GivenName: Tatiana, FamilyMame: Korobko, PrintMame: KOROBKQ Tatiana, PrintlnitialName: KOROE
o [Participant- Code: 1015813, Parent: 1015813, Status: CANCEL, Givenhame: Tatiana, FamilyName: Lukash, PrintName: LUKASH Tatiana, PrintinitialName: LUKASH T|
o= [Participant- Code: 1015815, Parent 1015815, Status: ACCRED, GivenName: Svetlana, FamilyWame: Moiseeva, Printame: MOISEEVA Svetlana, PrintinitialName: MOl
o~ [Participant- Code: 1015817, Parent: 1015817, Status: ACCRED, GivenName: Valentina, FamilyName: Reshetnyak, PrintMame: RESHETNYAK Valentina, PrintinitialMar
o=] Participant- Code: 1015820, Parent: 1015820, Status: ACCRED, GivenName: Nina, FamilyName: Savkina, Printhame: SAVKINA Mina, PrintinitialMame: SAVKINA M, TVI
o [Participant- Code: 1015822, Parent 1015822, Status: CANCEL, GivenName: Anatoly, FamilyName: Teplyakov, PrintName: TEPLYAKOV Anatoly, PrintinitialName: TEPL
o~ [Participant- Code 1016548, Parent 1016548, Status' ACCRED, GivenName: Zhuliang, FamilyMame: Yang, PrinthName’ YANG Zhuliang, PrintinitialName: YANG Z, TV
o~ 3 Participant- Code: 1016603, Parent: 1016603, Status: ACCRED, GivenName: Nadezda, FamilyName: Bazhina, Printame: BAZHINA Nadezda, PrintinitialName: BAZHI
o= [Participant- Code: 1016604, Parent: 1016604, Status: ACCRED, GivenName: Gleb, FamilyMame: Galperin, PrintName: GALPERIN Gleb, PrintinitialName: GALPERIN
o= 7 Participant- Code: 1016605, Parent: 1016605, Status: CAMNCEL, GivenName: Daria, FamilyMame: Govor, PrintMame: GOVOR Daria, PrintlnitialName: GOVOR D, TVMa
o (] Participant- Code 1016606, Parent 1016606, Status: CANCEL, GiveniName: Natalia, FamilyName Goncharova, Printiame: GONCHAROVA Natalia, PrintlnitialName:
o~ 3 Participant- Code: 1016607, Parent: 1016607, Status: ACCRED, GivenName: llya, FamilyMame: Zakharov, PrintName: ZAKHAROV llya, PrintlnitialName: ZAKHAROV 1, 7
o= [Participant- Code: 1016608, Parent: 1016608, Status: ACCRED, GivenName: Yulia, FamilyMame: Koltunova, PrintMame: KOLTUNOVA Yulia, PrintinitialName: KOLTU!
o= 7 Participant- Code: 1016609, Parent: 1016609, Status: CANCEL, GivenName: Alexey, FamilyMame: Kravchenko, Printhlame: KRAVCHENKO Alexey, PrintinitialName: KR
o (] Participant- Code: 1016510, Parent 1016510, Status: ACCRED, GivenName: Evgeny, Familyame: Kuznetsov, Printhame: KUZNETSOV Evgeny, PrintinitialName: KUZ
o ﬁ\F’arlicwpant—Cude 1016611, Parent. 1016611, Status: ACCRED, Giveniame: Victor, FamilyName: Minibaev, Printhame: MINIBAEY Victor, PrintinitialName: MINIBAEY
[l

Graphical version of the tree structure created from DT_PARTIC

If DocType == DT PARTIC TEAMS
Go to ODFBody element
Go to Compeition element
Go to Team element
For all Teams
Get code, organization and name
Go to composition
Go to athlete
Get athlete 1 and athlete 2
Insert data into teams table
End For
End If

If the message is DT_PARTIC_TEAMS, we go to the team element and loop through all sibling nodes.
We then get the team name, organisation and code, and then step down the tree to retrieve the
athlete codes. This is then inserted in to the database.

[] XML Document: C\Users\MatfiDeskiop\DV Message Sets\Olympic Messages\DV Initial Download\DVi201207 23\ edited) 20120723DV0000000, DT_PARTIC_TEAMS
¢] OdBody- DocumentCode: DVO0D0000, Serial: 457606, Time: 045726019, Date: 20120723, FeedFlag: P, LogicalDate: 20120723, DocumentType: DT_PARTIC_TEAMS, Version: 3,
¢ [Competition- Code: 0G2012,
¢ [J Team- Code: DVM201CAND1, Organisation: CAN, Number: 1, Name: Canada, Gender: M, Current: true,
¢ [Composition-
D Athlete- Code: 1076596, Order: 2,
D Athlete- Code: 1107755, Order: 1,

o [Discipline- Code: DV,

o= [Team- Code: DVM201CHNO1, Organisation: CHN, Number: 1, Name: China, Gender: M, Current: trug,

o= [Team- Code: DVM201GBRO1, Organisation: GBR, Number: 1, Name: Great Britain, Gender: M, Current: trug,
o= (9 Team- Code: DVM201MAS01, Organisation: MAS, Number: 1, Name: Malaysia, Gender: M, Current: true,

6=] Team- Code: DVM201MEX01, Organisation: MEX, Number: 1, Name: Mexico, Gender. M, Current: true,

o= [[] Team- Code: DVM201RUS0, Organisation: RUS, Number: 1, Name: Russia, Gender: M, Current: true,

& [Team- Code: DVM201UKRO1, Organisation: UKR, Number: 1, Name: Ukraine, Gender: M, Current: true,

o= [Team- Code: DVM201USA01, Organisation: USA, Number: 1, Name: United States, Gender: M, Current: true,

1l

Graphical version of the tree structure created from DT_PARTIC_TEAMS

If DocType == DT START LIST
Go to UnitInfos Element
For all sibling nodes
If Element name == Start
Get StartOrder
Go to Competitor Element
Get Team Code
Insert Start Order and Team Code into Results Table
Go to EventUnitEntry
For all eventunitentry
Get Difficulty, Code, Number and Desc. for each
dive
Insert Dive Information into Dives Table
End For
End If
End For
End If

If the message is a start list, we go to the UnitInfos element which has siblings which are Start
elements. We loop through all the sibling nodes, and if it is a Start element then we get the start
order. Next we go to the competitor element to get the team code- these 2 pieces of data can now
be inserted in the results table (and we add the event code from the DocCode we got earlier). After
this we get the dive information by going to EventUnitEntry and looping through all the sibling
nodes, then inserting the data into the database.

1 XML Document: C:\Users\MattiDesktop\DY Message Sets\Olympic Messages\28 Juln00154_12-07-28_17-16-31-323_DT_START_LIST.xml
¢ [CJ OdfBody- DocumentType: DT_START_LIST, Date: 20120728, Time: 171831323, LogicalDate: 20120728, Venue: AQC, Language: ENG, FeedFlag: P, DocumentCode: DVW201101, Version: 1, Serial: 5,
¢ [CJ Competition- Code: 0G2012,
o= 3 Unitinfos-
o= [Officials-
¢ [Start- StartOrder: 1, SortOrder: 1,
¢ [Competitor- Code: DVIW201ITAO, Type: T,
D EventUnitEntry- Type: EUE_DIVE, Code: DV_NUMBER, Pos: 1, Value: 101B,
D EventUnitEntry- Type: EUE_DIVE, Code: DV_DD, Pos: 1, Value: 2.0,
D EventUnitEntry- Type: EUE_DIVE, Code: DV_DESCRIPTION, Pos: 1, Value: Forward Dive ,
D EventUnitEntry- Type: EUE_DIVE, Code: DV_POSITION, Pos: 1, Value: B,
D EventUnitentry- Type: EUE_DIVE, Code: DV_NUMBER, Pos: 2, Value: 301B,
D EventUnitEntry- Type: EUE_DIVE, Code: DV_DD, Pos: 2, Value: 2.0,
D EventUnitEntry- Type: EUE_DIVE, Code: DV_DESCRIPTION, Pos: 2, Value: Reverse Dive ,
D EventUnitEntry- Type: EUE_DIVE, Code: DV_POSITION, Pos: 2, Value: B,
D EventUnitEntry- Type: EUE_DIVE, Code: DV_NUMBER, Pos: 3, Value: 2058,
D EventUnitEntry- Type: EUE_DIVE, Code: DV_DD, Pos: 3, Value: 3.0,
=

Graphical version of the tree structure created from DT_START_LIST

Database

In order to ease the management of my database, | installed PhpMyAdmin on the server, a free and
open source tool written in PHP, intended to handle the administration of MySQL databases through
a browser (available at phpmyadmin.net/home_page/index.php). The following screenshots show
the partial implementation of the tables | defined earlier. These are the tables and fields needed for
the prototype and will be added to later to create the full application.

Athletes

CHlocalhost » @ odf » B8 athletes

[=l Browse = A4 Structure = L[] SQL = 4 Search ¥ Insert [&& Export

Name Type Collation Attributes Null Default Extra
[1 code char(7) latin1_swedish_ci Mo None
[[1 2 family_name varchar(50) latin1_swedish_ci No None
[3 given_name varchar(50} latin1_swedish_ci Mo None
[4 gender char(1) latin1_swedish_ci No None
[& dob date Mo Neone
[6 noc char(3) latin1_swedish_ci No None

t Check All / Uncheck All With selected: =] Browse 7 Change @ [

Teams

Chlocalhost » @ odf » B teams

[E] Browse | 34 Structure |] SQL | & Search | ¥ Insert [& E

Name Type Collation Attributes Null Default Extra
[1 code varchar(11) latin1_swedish_ci Mo None
[2 noc char(3) latin1_swedish_ci No None
[[] 3 name varchar(30) latin1_swedish_ci Mo MNone
[] 4 athlete1 char(7) latin1_swedish_ci Mo MNore
[] & athlete2 char(7) latin1_swedish_ci Mo None

+ Check All / Uncheck All With selected. [Browse & Change

Results

CHl localhost » B odf » B results

[= Browse = 34 Structure | L] SQL | 4 Search %t Insert [& Expc

Name Type Collation Attributes Null Default Extra
[1 event varchar(9) latin1_swedish_ci Mo None
[[] 2 competitor varchar(11) latin1_swedish_ci Mo None
[[] 3 start_order int(2) Mo None

1t Check All / Uncheck All With selected. & Browse 7 Change @

Dives

Eillocalhost » @ odf » B dives

[E| Browse = 34 Structure | L] SQL | 4 Search | ¥t Insert [Export

HName Type Collation Attributes Null Default Extra
[1 competitor varchar(11) latin1_swedish_ci No None
[2 dive number int{1} Mo None
[3 dive_code char(g) latin1_swedish_ci No None
[4 description text latin1_swedish_ci Yes NULL
[& difficulty char(3) latin1_swedish_ci No None
[6E1 char(4) latin1_swedish_ci Yes NULL
B TE2 char(4) latin1_swedish_ci Yes NULL
[8E3 char(4) latin1_swedish_ci Yes NULL
[9E4 char(4) latin1_swedish_ci Yes NULL
[10 E5 char(d) latin1_swedish_ci Yes NULL
] 11 E6 char(4) latin1_swedish_ci Yes NULL
0 12 51 char(4) latin1_swedish_ci Yes NULL
[13 52 char(4) latin1_swedish_ci Yes NULL
[14 53 char(4) latin1_swedish_ci Yes NULL
[15 54 char(4) latin1_swedish_ci Yes NULL
[16 55 char(4) latin1_swedish_ci Yes NULL
[17 pen char(4) latin1_swedish_ci Yes NULL
[18 avg char(4) latin1_swedish_ci Yes NULL
[19 score char(B) latin1_swedish_ci Yes NULL

t Check All / Uncheck All With selected: =] Browse 47 Change @ Dr

PHP Page
The following pseudo code describes the implementation of the PHP page to generate a start list
with dives in a browser window. Full code listings can be found in Appendix E.

Connect to database
Select competitors from results where event = this event
If rows returned ==
Print “no start list available”
End If
Else

Select name, order, noc and athletes names from results where event =
this event
While (rows returned)
Print team information
Select dive information from dives where competitor = this
competitor
End while
While (rows returned)
Print dive information
End while
End else

The PHP page first connects to the database. We then select competitors from results which have
the same event the page is for. If this returns 0 rows, then we know there is no start list sent yet.
Otherwise we get the all team information and the athletes names for the event in question. We
then use a while loop to go through every row of the tuples returned, echoing the data to the page.
For each row, we then perform a query to return all of the dive information for that team, and echo
this to screen as well.

Results

The prototype is run and works correctly using the following steps:

1. DT_PARTIC and DT_PARTIC_TEAMS are sent from ODF Sender
(ig,'iomf St | |

201207230V DT_PARTIC_TEAMS, 00003P__20120723045726018000.xml |v|| = || send |
20120723DV0000000 DT_PARTIC, -
Success! |
(edited) 20120723DV0000000 DT_PARTIC_TEAMS
Success!
< Il I 1]

2. The datais populated in the database
phpMuAdmin | I

) i [E Browse | 34 Structure | [SQL | ‘4 Search | ¢ Insert [Export | 5} Import | &°
o 8H 300 ¢

+ Options
— ¥ code family name given_name gender dob noc
(Recent tables) .. [l & Edit 32 Copy @ Delete 1016603| Bazhina Nadezda 1987-12-29| RUS
odf El & Edit % Copy @ Delete 1016604 Galpenn Gleb 1985-05-25 RUS
&7 Edit 3e Copy @ Delete 1016607 | Zakharov Itya 1991-05-02 | RUS
(] athietas 7 Edit 3¢ Copy @ Delete 1016608 Koltunova Yulia 1989-05-04 | RUS
| dives -
j i &7 Edit % Copy @ Delete 1016610 | Kuznetsov Evgeny 1990-04-12 | RUS
results =
] teams &~ Edit 3 Copy @ Delete 1016611 Minibaev Victar 1991-07-18 RUS

1985-12-11 RUS
1990-06-30 MAS
1993-03-02 | MAS
1987-04-07 | JPN
1987-07-12 | BLR
1986-01-04 BLR
1991-03-12 | UKR
1993-10-25 UKR
1988-03-05 | UKR
1993-05-14 | UKR
1986-02-13 | UKR
1991-07-18 | UKR
1986-11-14 | UKR
1986-10-23 UKR
1987-06-25 | UKR
1953-04-30 MAS

1020.NA20 | W

&7 Edit 3¢ Copy @ Delete 1016615 | Pozdniakova | Anastasiia

& Edit % Copy @ Delete 1013758 Lomas Bryan Mickson
&7 Edit 3e Copy @ Delete 1019761 | Pamg Pandelela Rinong
&~ Edit 3¢ Copy @ Delete 1023639 Nakagawa Mai

&7 Edit 3e Copy @ Delete 1036236 | Kaptur Vadim

&~ Edit 3& Copy @ Delete 1036241 Hordeichik Timaofei

&7 Edit 3¢ Copy @ Delete 1038861 Pysmenska | Anna

& Edit % Copy @ Delete 1033862 Bondar Oleksandr

&7 Edit 3e Copy @ Delete 1038863 Kvasha lllya

&~ Edit 3¢ Copy @ Delete 1038866 Potyekhina | Viktoriya

&7 Edit $e Copy @ Delete 1038868 | Zakharov Anton

o~ Edit 3e Copy @ Delete 1038872 Gorshkovozov | Oleksandr

&7 Edit 3¢ Copy @ Delete 1038873 | Fedorova Clena

& Edit % Copy @ Delete 1038874 | Prokopchuk | lulia

&7 Edit 3e Copy @ Delete 1038875 | Prygorov Oleksiy

o Edit 3¢ Copy @ Delete 1043855 Yeoh Ken MNee

? Rt B Mame & Nalata 1NEANIE | Feldleenn Mhrictnfar

() Create table

o s i s s i s Y i
= = s s=2=s==z==s=z==ss==s=z==z=z=-:=

=
=

phngAdﬂ'lfn L localhiost » @ odf » [te

) [E Browse 34 Structure | [] SQL 4 Search 3¢ Insert [Export [} Import
S8 30900 ¢

+ Options
| A bizs) | +—T— ¥ code noc name athlete1 athlete?
ecent tables) .. -

47 Edit 3¢ Copy @ Delete DVM201CANO1 | CAN Canada 1076596 | 1107755
| odf |z|| & Edit 3£ Copy @ Delete DVM201CHNO1 | CHN | China 1072156 | 1072157
{2 athletes &7 Edit 3 Copy @ Delete DVM201GBR01 | GBR | Great Britain | 1079034 | 1079036
] dives o Edit 3£ Copy @ Delete DVM201MAS01 MAS Malaysia 1019758 | 1122352
[results &7 Edit 3£ Copy @ Delete DVM20IMEX01 | MEX | Mexico 1083937 | 1083957
7] teams 47 Edit & Copy @ Delete DVM201RUS01 | RUS | Russia 1016607 | 1016610

&7 Edit
& Edit
7 Edit
&7 Edit
& Edit
& Edit
& Edit
7 Edit
&7 Edit
& Edit
7 Edit
&7 Edit
& Edit
&7 Edit
& Edit
7 Edit

¢ Copy @ Delete DVM201UKRO1 |UKR | Ukraine 10358863 | 1038875
¢ Copy (@ Delete DVM201USADT |USA United States 1132374 | 1132778
¢ Copy @ Delete DVM202CHNO1 | CHN | China 1072184 | 1072165
¢ Copy @ Delete DVM202CUB01 |CUB Cuba 1079361 | 1079363
¢ Copy @ Delete DVM202GBR0O1 | GBR | Great Britain | 1079028 | 1176898
¢ Copy @ Delete DVM202GERC1 | GER Germany 1122280 | 1122288
¢ Copy @ Delete DVM202MEXDT | MEX | Mexico 1083948 | 1083951
¢ Copy @ Delete DVM202RUS01 |RUS Russia 1016607 | 1016611
¢ Copy @ Delete DVM202UKR01 |UKR | Ukraine 10358862 | 1038872
¢ Copy (@ Delete DVM202USADT |USA United States 1131218 | 1133319
¢ Copy @ Delete DVIW201AUS01 | AUS | Australia 1090476 | 1090477
¢ Copy @ Delete DVW201CANO1 | CAN | Canada 1102652 | 1107754
¢ Copy @ Delete DVW201CHNO1 | CHN | China 1072143 | 1072144
¢ Copy @ Delete DVW201GBR01 | GBR Great Britain 1079025 | 1079030
¢ Copy @ Delete DVW201ITADT |ITA | ltaly 1062459 | 1062466
¢ Copy @ Delete DVIW201MASOT | MAS Malaysia 1019761 | 1123025

() Create table

0 i o
|t g Ll LYl Lt Lt L) Lighl LIt Ll LAl Ll Lt gt Ligll Ligll LAt Ll Lgdl Lighl Ly

3. If we look at the PHP page, there is currently no start list

VL) e, >
€& - C A [localhost/Diving/prototype.php
E] Facebook S Twitter BX BBEC Sport W BBC Football lii‘Thisis;\?\m‘ield A This is Plymouth # Ultimate Guitar [YouTube

No start list available at this time

4. We send DT_START_LIST from ODF Sender
V%] ODF Sender =1

‘ 00209_12-07-29_16-16-56-662_DT_PDF.xml

Sending log:

1201207230V0000000 DT_PARTIC
Success!

(edited) 201207230V0000000 DT_PARTIC_TEAMS
Success!
00208_12-07-29_16-16-40-423_DT_START_LIST xml sent...
Success!

5. The data is populated in the database

phpMyAdmin
o E =390 ¢

[E Browse 34 Structure [SQL = 4 Search | ¥t Insert [Export [5} Import = 4° Of

“RBCEHHEMBS)'" |2|| Show : Start row: \I\ Number of rows: Headers every raws

[odf =]

[E athletes

[E dives + Options

|=] results +— ¥ event competitor start_order
|=| teams &7 Edit 3¢ Copy @ Delete DVM202101| DVM202CHNO1

&~ Edit %&¢ Copy @ Delete DVM202101 DVM202CUB01
&7 Edit 3¢ Copy @ Delete DVM202101| DVM202GBR01
&~ Edit 3¢ Copy @ Delete DVM202101 DVM202GER01
&7 Edit 3¢ Copy @ Delete DVM202101| DVM202MEX01
&~ Edit 3¢ Copy @ Delete DVM202101 DVM202RUS01
&7 Edit 3¢ Copy @ Delete DVM202101| DVM202UKRO1
&~ Edit 3¢ Copy @ Delete DVM202101 DVM202USA01

{ '@ Create table

*+ Check All / Uncheck All With selected: # Change @ Delete & Export

B e o W = @ M

phpMyAdmin
) o [E Browse | 34 Structure [SQL 4 Search Insert [Export =[5} Import & Operations
@8 3 @0 ¢
+ Options
—] — ¥ competitor dive_number dive_code description difficulty E1 E2 E3
(Recent tables) .. El T = - - g 1y
& Edit 3¢ Copy @ Delete DVM202CHNO1 1101B Forward 20 NULL| NULL| NULL
odf El Dive
& Edit 3¢ Copy @ Delete DVM202CHNO1 2 401B Inward Dive | 2.0 NULL| NULL| NULL
] athletes &7 Edit %& Copy @ Delete DVM202CHN01 352538 Back 2 1/2 |32 NULL| NULL| NULL
=] dives Somersault
(] results 11/2 Twists
] teams & Edit 3¢ Copy @ Delete DVM202CHNO1 4 307C Reverse 3 | 3.3 NULL| NULL| NULL
12
= Somersault
 FFECEIELT J & Edit $£ Copy @ Delete DVM202CHNO1 5 2078 Back 31/2 |36 NULL| NULL| NULL
Somersault
&7 Edit 3£ Copy @ Delete DVM202CHNO1 6 52558 Back 2 12 |36 NULL| NULL| NULL
Somersault
2 1/2 Twists
& Edit 3¢ Copy @ Delete DVM202CLIB01 1/103B Forward 1 |2.0 NULL| NULL| NULL
172
Somersault
& Edit 3¢ Copy @ Delete DVM202CUB01 2 201C Back Dive | 2.0 NULL| NULL| NULL
& Edit 3¢ Copy @ Delete DVM202CLIB01 3/ 5253B Back 2 1/2 |32 NULL| NULL | NULL
Somersault
1142 Twists
o Edit 3¢ Copy @ Delete DVM202CUB01 4 407C Inward 3 1/2| 3.2 NULL| NULL | NULL
Somersault
& Edit 3¢ Copy @ Delete DVM202CUB01 5307C Reverse 3 | 3.3 NULL| NULL| NULL
172
Somersault
&~ Edit 3¢ Copy @ Delete DVM202CUB01 6 52558 Back2 172 3.6 NULL| NULL| NULL
Somersault

localhost/phpmyadmin/sql.php?db=odf&token=2126cbf2d72ed16067 ebdd d8555b3cfdBitable=dives&ipos=0| [I[}

6. The PHP Page now shows the start list and dive list for each team

/ 4 localhost / localhost / odf x Y [localhost/Diving/prototyy % _
<« C A | [localhost/Diving/prototype.php
Facebook ¥ Twitter B8 BBC Sport [BBC Football @) Thisis Anfield 3 This is Plymouth Ultimate Guitar
P Iy

Russia - Zalkharov - Minibaev

1-201B - Back Dive - 2.0

2-103B - Forward 1 1/2 Somersault - 2.0

3-407C - Inward 3 1/2 Somersanlt - 3.2

4 -307C - Reverse 3 1/2 Somersault - 3.3

5 - 5255B - Back 2 1/2 Somersault 2 1/2 Twists - 3.6
6 - 109C - Forward 4 1/2 Somersault - 3.7

China - Cao - Zhang

1-101B - Forward Dive - 2.0

2-401B - Inward Dive - 2.0

3 - 5253B - Back 2 1/2 Somersault 1 1/2 Twists - 3.2
4-307C - Reverse 3 1/2 Somersault - 3.3

5-207B - Back 3 1/2 Somersault - 3.6

6 - 5255B - Back 2 1/2 Somersault 2 1/2 Twists - 3.6
Germany - Hausding - Klein

1-103B - Forward 1 1/2 Somersault - 2.0

2-401B - Inward Dive - 2.0

3 - 5253B - Back 2 1/2 Somersault 1 1/2 Twists - 3.2
4-207B - Back 3 1/2 Somersault - 3.6

5-307C - Reverse 3 1/2 Somersault - 3.3

6 - 52558 - Back 2 1/2 Somersault 2 1/2 Twists - 3.6
United States - Mccrory - Boudia

1-401B - Inward Dive - 2.0

2-201B - Back Dive - 2.0

3-407C - Inward 3 1/2 Somersanlt - 3.2

4-109C - Forward 4 1/2 Somersault - 3.7

5 -307C - Reverse 3 1/2 Somersanlt - 3.3

6 - 3255B - Back 2 1/2 Somersault 2 1/2 Twists - 3.6
Mesxico - Sanchez Sanchez - Garcia Navarro
1-401B - Inward Dive - 2.0

2-201B - Back Dive - 2.0

3-109C - Forward 4 1/2 Somersanlt - 3 7

Conclusions

Results

| believe that the project is currently on track to meet the aims deliverables | set out. So far | have
managed to specify a basic design concept and the technologies | will use to achieve this, including
specifying the intricacies of data flow through the system and a resulting user interface concept.
After building a basic prototype based on this design, | believe that my design ideas have been
justified as the prototype has been successful- meeting the aims | set for it and proving that the
design is a feasible one. | think this prototype has provided a strong platform to build the full
application from as | continue the design and implementation processes. However, it is important to
acknowledge that my design and prototype are so far very basic, and represent a very small portion
of the overall system. There is still a lot of more detailed design work to complete, and the final
implementation will be far more complex than what | have achieved so far. | could easily run into a
lot of problems in the future and have to make changes to the project, however, | feel that my work
so far has definitely proven that the core functionality of my system is viable and | am confident this
can be continued and adapted into a full system to meet my aims.

Next Steps

Now that the prototype has confirmed the viability of my design, the project can move forward into
implementing the full system. This will involve iteratively developing the results application
functionality, along with its graphical user interface and incorporating user prediction. Although this
implementation will now make up the majority of the project, it is vital that | recognise the
importance of design. Up to this point, | feel that the extra time spent on background and design is

largely what has lead to a successful prototype. | need to make sure that | continue to design the
more detailed parts of the implementation, rather than going straight into building as | believe that
good design will lead to a much more successful outcome. So immediately, the next step is to begin
designing the more detailed elements of the application, such as detailed layouts, user interface,
how the sure prediction will work etc. | will also need to complete implementing the database and
message processing before | begin implementing the main application as the main application
cannot function properly without complete data.

Project Approach Evaluation

In terms of my approach to managing the project, | feel that my initial approach was naive. Because
of my experience at the Olympics with the real systems, | think | initially acted as if | knew exactly
what to do for the project, and how to go about it so did not pay a lot of attention to how | would
approach it. This was evidently a poor move and | soon changed my mind as | began designing. It
became quickly apparent that | was allowing my past experience to drive the project rather than
stopping and thinking about it myself. Although this was an early mistake, | feel | did well to rectify
this quickly and change my approach. Once | had taken time to step back and think about the aims
and the scope of the project | recognised the flaw in my approach, and | believe changing this has so
far been successful. | now feel that | have a strong plan for the next steps of the project and have a
much better whole picture of how the project will progress.

| would’ve liked to have added more features and implementation to my prototype, however, the
scope | could set for it was greatly affected by the amount of time available. Because | needed to
complete my basic design and background research before beginning the prototype, there was not a
great amount of time left to complete it for this report. It would have been nice to include a small
part of user interaction and a basic graphical user interface, however, | don’t think this could have
been achieved for this report. However, | do feel that building the basic prototype was successful in
determining the feasibility of my design by showing that the core functionality will suffice to meet
my aims.

Changes in Approach

As | mentioned above, | would’ve liked to have included more features in the prototype but did not
have the necessary time to do so, so | am now going to re-assess my project plan again to ensure |
have made the greatest use of the time available in the coming month:s.

Originally | planned not to continue working into the Christmas break, however, | feel it may be
necessary to use some of this period towards this project. As | mentioned previously, | think it is
extremely important to continue design work throughout the project, therefore | feel that | should
allocate more time to detailed design. However, this is hard to fit into the project plan, so | think
making more time available is the best solution. I've also noticed that at no point have | planned to
get any user feedback. Considering a large bulk of the application is user-orineted, | am going to add
a user test and heuristic evaluation into the development lifecycle to make sure my designs
demonstrate good human computer interaction. These additions can be seen in the latest version of
the project plan in Appendix F.

Bibliography

Atos, n.d. Information Diffusion Systems. [Online]

Available at: http://uk.atos.net/en-

uk/olympic_games/what _we _deliver/information diffusion systems/default.htm
[Accessed 4 December 2012].

Balfour, A., 2012. London 2012 Olympic and Parlympic Games-Time Digital Report. [Online]
Available at: http://www.slideshare.net/balf/london-2012com-olympic-games-digital-round-up-13-

august-2012
[Accessed 4 December 2012].

Deltatre, 2012. Deltatre. [Online]
Available at: www.deltatre.com
[Accessed 6 December 2012].

International Olympic Committee, 2012. Diving - Sync. - Women - 3m - London 2012 Olympic Games.
[Online]

Available at: http://www.youtube.com/watch?v=_ImT4WIK7G0

[Accessed 28 October 2012].

International Olympic Committee, 2012. Olympic Data Feed. [Online]
Available at: http://odf.olympictech.org/
[Accessed 26 October 2012].

LOCOG, 2012. Olympic Diving. [Online]
Available at: http://www.london2012.com/diving/
[Accessed 2 December 2012].

LOCOG, 2012. Olympic Diving - Information, History, Rules. [Online]
Available at: http://www.london2012.com/diving/about/
[Accessed 4 December 2012].

Long Tail Video, 2012. JW-Player Overview. [Online]
Available at: http://www.longtailvideo.com/jw-player/
[Accessed 28 November 2012].

McLaughlin, B., 2001. Java & XML. 2nd ed. Sebastopol: O' Reilly.

Megginson, D., 2004. SAX. [Online]
Available at: http://www.saxproject.org/
[Accessed 12 November 2012].

phpMyAdmin, 2012. phpMyAdmin. [Online]
Available at: http://www.phpmyadmin.net/home page/index.php
[Accessed 28 November 2012].

Premier League, 2012. Fantasy Premier League. [Online]
Available at: http://fantasy.premierleague.com/
[Accessed 3 December 2012].

Swiss Timing, 2012. Swiss Timing. [Online]
Available at: www.swisstiming.com
[Accessed 7 December 2012].

