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Abstract

With the ever-increasing popularity of the current cloud-based Internet of Things (IoT) model
there has been a tremendous shift towards smart, connected devices which constantly relay
data in an attempt to provide better, more insightful services, ranging from smart home
automation to industrial applications. Resulting from this data deluge is the notion of Fog and
Edge Computing which attempts to bridge the gap between the benefits of cloud computing
services and the demand for high bandwidth, low latency, location aware, mobility
applications. As defined [14] the Fog nodes in the Fog computing notion, are located as close
to the source of information as possible, usually one hop away from Edge nodes which come
in the form of sensors, mobile devices, end users, vehicles etc.

Time-sensitive services are hosted at the frontier of the network subsequently improving
quality of service, reducing latency and increasing end-user satisfaction. This new paradigm
is ideal for becoming an enabling technology for emerging applications such as autonomous
vehicles, wearable technologies and augmented reality that demand real-time, near-fixed
latency response times. The project at hand explores the implications and advantages of this
new paradigm and puts them into practice by devising a prototype simulated connected
vehicle in a Fog and Edge environment that aims to improve road safety and collision
avoidance in the ever-more connected world.



Acknowledgements

I would like to personally thank my supervisor, Prof. Omer Rana, for providing me and the
project with guidance, ideas and feedback from the very start until its submission.

I would also like to give credit to Open Source software and technologies as I am a strong
believer that software and knowledge should be shared and made available for everyone to
benefit. Without software companies such as the Qt Company and the Linux Foundation, this
simulator would not have been possible.

Most of all I would like to thank my family and close friends for supporting me throughout
the entire duration of my degree.



Table of Contents

Abstract
Acknowledgements
Table of Figures

1. Introduction
1.1. Project Outline
1.2. Aims and Objectives
1.3. Scope of Project
1.4. Project Importance
1.5. Audience
1.6. Approach
1.7. Assumptions
1.8. Project Outcomes

2. Background

2.1. Problem Context

2.2. Constraints

2.3. Theory

2.4. Existing Solutions
2.4.1. IEEE 802.11p and Dedicated Short-range Communications (DSRC)
2.4.2. Cellular Networks and 5G

2.5. Methods and Tools Used
2.5.1. Controller Area Network (CAN) Bus and SocketCan
2.5.2. Qtand QML

2.6. Hardware

2.7. Research Questions

3. Specification and Design

3.1. System Overview
3.1.1. Requirements
3.1.2. Design and Architecture
3.1.3. Use Case

3.2. CAN Bus Simulator
3.2.1. Requirements
3.2.2. Design

3.3. Instrument Cluster
3.3.1. Requirements

O 0 9 N &

10
10
12
12

13
13
14
14
15
16
17
18
18
20
22
23

24
24
24
25
29
31
31
32
33
33



3.3.2. Design

3.4. Fog Network
3.4.1. Requirements
3.4.2. Design

4. Implementation
4.1. Changes to Initial Plan

4.2. CAN Bus Simulator Implementation

4.2.1. Configuration
4.2.2. Implementation

4.3. Instrument Cluster Implementation

4.3.1. Configuration
4.3.2. Implementation

4.4. Fog Network Implementation

4.4.1. Configuration
4.4.2. Implementation
4.5. Overall System
4.6. Successes and Failures

5. Evaluation and Results
5.1. Testing
5.2. Progress against Objectives

6. Future Development
7. Conclusions

8. Reflection on Learning
8.1. Personal Skills
8.2. Progress against SFIA

Table of Abbreviations
Appendices

References

35
37
37
38

40
40
43
43
44
48
48
50
52
52
53
55
56

57
57
61

64
66

67
67
68

70
72
74



Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:

Vehicle)

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:

Table of Figures

‘Feature Driven Development’ cycle (FDD)

Fog Network Overview

Future V2V and V2I Communications

Future 5G V2X connected network

CAN Bus Frame structure

CAN Bus virtual interface in a Linux environment

SocketCAN communication layers

Visual Representation of the Instrument Cluster

Hardware layout of the simulated system

System design iteration steps

Flowchart of the whole system (Fog Node,Connected Vehicle and Collision

Entity-relationship diagram of the components

Diagram of a collision use-case scenario

Use Case Diagram #1, collision notification (V2V)

Use Case Diagram #2, internal vehicle signal

CAN Bus flowchart and data propagation

Instrument Cluster flowchart and data propagation
Instrument cluster design representation

Fog node flowchart and data propagation

CAN Bus: Overridden keyboard input class

CAN Bus: Key press iteration

CAN Bus: Key pressed handling

CAN Bus: Message sending

CAN Bus: SSL configuration

CAN Bus: Server threading

CAN Bus: Relaying message

Qt Creator IDE

Instrument Cluster running in Qt Creator IDE
Instrument Cluster: listener for CAN Bus and Fog Node connections
Instrument Cluster: On connection with CAN Bus
Instrument Cluster: Checking message types

Instrument Cluster: Collision data checking

Fog Node: Listening for vehicle connections

Instrument Cluster: Handling connections and their data
Fog Node: Collision Checking and Notification sending
Vehicle Collision notification script

Hardware Fog Node and Connected vehicle Simulator representation

10
15
16
17
19
19

19
20
22
26
27

28
29
30
30
32
35
36
39
45
45
46
46
47
48
48
49
49
50
51
51
52
53
53
54
54
55



1. Introduction

The influx of data usage in the field of information and communication technology,
largely attributed to the recent popularity of the Internet of Things (IoT), poses a challenge
for established cloud computing services. For latency-sensitive applications, network
congestion and the distance between end devices and the cloud are increasingly becoming an
issue which is especially true for content delivery applications. It is also fast becoming
difficult for service providers to keep up with their Service level agreements (SLA) which
forces building of new data centers at new locations in order to keep up with demand[1].

Another particularly relevant problem is the gaining popularity of connected,
semi-autonomous and in the near future, fully autonomous vehicles, which are predicted to
generate and consume roughly 4 terabytes of data, every eight hours of driving[2]. Supporting
the vast number of vehicles predicted to be on the roads of the future requires a novel, more
decentralised approach at networking and it is “Fog and Edge Computing” which will be in
the forefront of solving this data deluge.

In addition, automotive manufacturers are trying to pack more and more features, sensors and
devices into their connected and autonomous vehicles that production prices are rapidly
increasing with the more specialised hardware and software they have to use. This becomes a
major problem in prototyping and developing vehicles as the complexity increases[3], new,
more flexible approaches must be taken. This is where a revolutionary internal network
vehicle simulator can help to facilitate rapid conceptualising and prototyping of vehicular
features and services.

1.1. Project Outline

The overall focus of this project is to study and explore the implications of Fog and Edge
computing in the field of vehicular services in order to improve existing cloud-centric
services. By creating a prototype simulation of a vehicle in a Fog network environment, the
implications of the Fog theory can be evaluated using a real example.

One of the prime use case examples for showcasing the potential of the technology would be
collision avoidance. The project proposes having Fog based safety service, to which a
connected car is subscribed and sends a notification of a collision if one has occurred in
proximity of the vehicle. The service receives the initial notification from other connected
participants on the road that have been involved in the incident. The use case is especially
valid if the collision has happened in front of the vehicle where it has not been detected by
the car’s onboard sensors, because of obstructions or limitations in visibility. The connected
car driver, after being notified can approach driving with higher cautiousness and trigger



application of the brakes to slow their speed down and prevent further multi-vehicle

incidents. This use-case can be mainly applied to high speed driving, on a motorway or speed
road, where cars are normally driving with a speed upwards of 50Mp/h and braking distances
are significant, especially in bad weather and road conditions and driver visibility is affected.

Shorter range collision avoidance is already handled by on-board car sensors. This fusion of
information for short and long range collision avoidance will lead to safer road conditions.

Bringing this use case into a functioning system requires three major components to be
developed:
- A Connected Car Simulator, to allow for the evaluation and testing of the Fog and
Edge services in simulated target vehicle environment.

- A Vehicle Digital Instrument Cluster Head Unit, to visualise the results of the
simulation and secure communication between the vehicle and the network.

- A Fog Network, a simulated network of Fog nodes which facilitate real-time vehicular
services that communicate with edge devices (vehicles).

Developers would benefit from this project by not having to test the service on a real,
physical platform. Current automakers have a deliberate process in developing new platforms
for vehicles and that takes time and resources. Providing the automakers with an integration
of some of the basic building blocks would help them add additional features and rapidly
prototype their own integrations and shorten the time from concept to a fully working
product.

1.2. Aims and Objectives

The aim of this project is to design and develop a functional prototype simulator of a
connected car and a simulated fog environment in which it can operate. This simulator will be
used in the context of a very relevant use case of collision avoidance in vehicular systems.
The environment would try to mimic as closely as possible a use case scenario in which there
are multiple cars on a busy public road or motorway and one of the geo-located connected
vehicles would get into an incident. The main objectives of the project are:

Objective 1: Create a connected vehicle simulator prototype that mimics as
closely as possible a connected car’s internal network

e Research, devise and develop a virtualized internal car network to send vehicular data
and read from.

e Secure the inter-vehicle communication to prevent packet sniffing or spoofing.



Objective 2: Visualise the simulated connected car’s functionality using an
automotive instrument cluster

e Design and develop an instrument cluster to visualise the data on the internal car
network.

Objective 3: Create a Fog Network in supporting vehicular services

e Design and implement a Fog network of nodes for receiving and processing
location-based information sent by a fleet of connected vehicles.

e Simulate a use case scenario of alerting the network participants of a vehicle involved
in an accident.

Another key problem, solving of which would make the project more accessible to the
audience, is hardware inaccessibility and this project aims to address that by building the
vehicular edge network of internal Electronic Control Units (ECUs) using ‘Raspberry P1’
System on a chip boards. Unlike other automotive projects, this project does not require
specialist hardware to develop for. This involves:

e Assembly of a low-power, high-availability, prototype hardware internal car network
of ECUs.

e Configuration of hardware and software modules to support the appropriate
technologies used to simulate the fog environment.

By having all of the participants connected to the Fog network, a Fog service would be able
to process transmitted information from the vehicles on the road and act upon it by sending
location-agnostic notifications to the vehicles in the area of the accident, alerting them of a

possible danger to avoid further multi-vehicle incidents.

1.3. Scope of Project

Creating a Fog network is a broad research area that can be explored to a great extent and
degree of complexity. With respect to the project time constraints, it is vital to limit and focus
the scope of the project towards solving the major problems.

- The outcome of the project does not aim to create a fully functioning,
production-ready application, but the focus will be mainly on devising and developing
the foundation of the main features in an extensible and modular architecture to
enable car manufacturers, developers, automotive enthusiasts and researchers alike to
build on top of this basis and simulate and test different environments and scenarios.



- In order to meet the project demands a connected car simulator will be developed with
respect to the most relevant technologies in connected and semi-autonomous cars of
today.

- The project does not make use or have access to any physical vehicle hardware and
will be based on research into the workings of such technologies and simulating them
using readily available hardware devices for the purposes of demonstrations.

There are currently no existing solutions to the problem of complete software vehicle
simulation for the internal car network. This is mainly attributed to the fact that each
automotive manufacturers keep their internal car network development in-house and there are
almost no attempts at outsourcing the technology. For vehicle developers and enthusiasts this
is a problem because it leaves them no other choice but to reverse-engineer proprietary car
networks to understand how they work.

The core component of the project would be the connected car simulator used for simulating
an internal vehicle network and instrument cluster and communicate with a Fog node to
receive valuable traffic and road information. The purpose of the simulator is to create a
platform with which automotive manufacturers or developers can simulate and test the
behaviour of a connected car influenced by external events. They can use the platform to
quickly prototype and test various connected car use cases in the field of car safety such as
collision avoidance and any other future developments in the vehicle services space.

1.4. Project Importance

Having said that there are currently no existing vehicle network simulators and all current
technology is proprietary, leaving developers with no options, which results in stagnation and
an unused potential for the technology and the industry in general. This is a major factor and
the automotive industry can be of benefit from such a tool. Open source vehicle software
projects such as Automotive Grade Linux (AGL)[4], which aim to standardise automotive
technology, have gained major adoption and are currently being deployed in newly developed
vehicles by some automotive manufacturers such as Toyota[5].

Another major importance that this project has is demonstrating the unrealised potential of
road safety developments. By notifying and keeping track of participants’ locations on the
road, and notifying vehicle drivers of possible incidents, this project plays a role in the work
towards “Vision Zero”[6], to eliminate all accidents on the roads and consequently save lives.

Furthermore the project aims to help set a basis for future advancements in the field of Fog
and Edge computing by providing a practical example for the implications and possibilities of
this newly emerged technology.



1.5. Audience

The intended users of the simulator and implementation are connected car manufacturers,
automotive developers and hobbyists that require a tool to simulate an internal car network,
visualise car parameters and create new fog network scenarios and use cases. An assumption
is made that the users have technical abilities and are familiar with car and network
topologies in general, having experience in deploying custom software environments.

Whilst there is no age restriction as to whom can use the prototype, it is necessary for them to
have the technical abilities and understanding of the programming languages, the software is
written in.

The benefit for the target user is that this simulator will provide a platform which will make it
easier to rapidly develop and prototype any new connected car services and features.

1.6. Approach

The project can be split into three major parts: ‘Connected Car simulator’, ‘Instrument
Cluster’ and ‘Fog Network’. By doing this, it becomes easier to define the problems each of
the parts poses and separating the features the system needs to support. Consequently, I have
found that the software methodology that best fits the development of this project is Feature
Driven Development (FDD).

FDD is an ‘Agile’ methodology that can be represented into five stages, beginning with
developing a base-overall model, setting a features list, planning the project by the separate
features and ending with incrementally designing and building feature by feature[Fig. 1].
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Figure 1: ‘Feature Driven Development’ cycle (FDD)[7]
This methodology best compliments the aim of the project: to enable an extensible

architecture and application, by making use of multiple short development stages, it allows
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for reducing costly and lengthy changes in the requirements during project development
which is usually a pitfall in other development methodologies. It is essential, given the short
time frame, for any changes in requirements to not majorly affect the development process
and consequently, the outcome of the project.

Being an ‘Agile’ methodology FDD usually encourages that there are multiple members in a
team that collaborate, each with their own domain of expertise, to structure a high level scope
of the application. However, being an individual project, these aspects of the model could not
be followed and the overall model was formed using the specific requirements and use case
of the system at hand.

By separating the project into separate, individual parts, a high-level overall model and
features list of the system was formed. This was done by creating sequence and flow
diagrams of the system, describing what the basic parts are, participants, end points,
processing nodes and listing their interactions. This provided a comprehensive feature list
grouped into subject areas and subsets. A development plan was then carried out to assign a
time frame in which every individual feature would need to be completed and with respect to
the available project time span.

Following from there, the order in which the features of the implementation would be
conducted was chosen and was influenced by the difficulty of the task to solve. The next step
was designing and implementing each separate part of the feature set from the
aforementioned stage to create an overall system. Testing of what was developed was also
necessary to assure that other components of the system would not need changing and to flow
any new content and ideas back to the overall model. During development there was a lot of
new content that could be added but the time frame of the project could not allow for their
development which was put into the Future Developments section. In a team, the feature
development load would be spread out and would be more flexible to any similar changes.

To track the development progress, the ‘Trello’ task organization and management platform
was used which allows for creating the tasks required by the feature list, assigning them to the
main sections, setting percentage completion and time-frames which, as a whole, allowed to
better judge the workload. By having regular meetings with the supervisor throughout the
project and keeping them updated on the progress, receiving feedback and getting guidance,
keeping on top of the project was possible.

11



1.7. Assumptions

The project adheres to the following assumptions:

o That the target audience have technical abilities and are familiar with vehicle and
network topologies.

e Fog and Edge Computing is a new area of study and there is no existing conclusive
architecture for supporting vehicular communications and the work in this paper is
focused on the implemeresearch from various fields such as cellular communication.

e The project implementation assumes there is a GPS unit to provide location data to
the simulator.

e There is an active wireless connection between the Fog node and Edge nodes.

e There is an active bridged ethernet connection between the car Instrument Cluster
ECU and the internal network ECU.

e The project assumes that the system is configured correctly on implementation
testing.

1.8. Project Outcomes

The main outcome of the project is most notably the implementation, as it is one of the few
demonstrations of how this new arising technology might be put into practice. With powerful
processors and hardware becoming ever so ubiquitous and accessible, to even fit in our
pockets, being constantly connected, sending and receiving data, begs the question, why the
same is not yet done for vehicles.

With some joint effort and standardisation of technologies, and automotive manufacturers
being more willing to cooperate with each other, there can be true connectedness in the
automotive industry. Smart services similar to the one prototyped in the implementation of
this project can become part of our everyday lives and improve our living conditions.

12



2. Background

2.1. Problem Context

The current state of cloud computing is facing many challenges to keep up with demand and
ensuring a good quality of service, so cloud service providers are forced into searching for
better solutions to support the future connected society. There is much research on improving
cloud computing performance and throughput but in the near future it is predicted for a
normal user to consume gigabytes of information per day [8] and with the increasing number
of connected devices, the current network infrastructure will be facing difficulties. It is
estimated that there are over 1.2 billion motor vehicles in use worldwide. By 2018, connected
car shipments are expected to hit 48 million units[9] and will continue to increase in an
alarming pace every year. The network infrastructure and roads of the future need to be
equipped to support this fast-approaching problem.

Instead of moving big data for the cloud to process, Fog and Edge computing provides a
novel approach where computation is brought closer to the source, in micro data centres
located right at the edge of the network. It is expected such architecture to be embedded into
the already well-established communication infrastructures, in road-side units and cellular
towers as well as in vehicles themselves[10]. This method allows for a drastic reduction in
communication latency particularly in time-sensitive services such as navigation-related
services, car sharing, smart city applications, traffic monitoring, vehicle safety systems,
emergency assistance, autonomous driving and any other current and future capabilities
which would otherwise heavily rely on cloud or back-office connectivity.

Furthermore, British road traffic related death and casualty rates have been in stagnation for
the last 7 years as reported by the ‘Department of Transport’ [11]. This is largely due to the
fact that no new technologies have been introduced as mandatory in vehicles. With the
introduction and mandate of airbags and safety belts in vehicles, public roads have seen a
tremendous decline in casualties. A new technology is necessary to bring the fatality rates
further down or even eradicate them.

This project aims to evaluate the advantages and limitations of using Fog and Edge
computing in tackling the problem of sending real-time traffic and incident information to
support the safer roads of the future by creating a connected car simulator in a Fog and Edge
environment and address the different complexity and security challenges associated with the
approach.

13



2.2. Constraints

While we might imagine and dream of a word without road incidents, this will not be easy to

achieve and comes with some constraints:

The time required to develop this novel approach to a production-ready solution can
and most likely take much more time and effort than is available in the scope of this
project. This is why the main focus will be on establishing the basis in an extensible
manner and working towards building on top of it in the future.

Specialised hardware that is currently being developed and offered by Hewlett
Packard to support enterprise Edge network systems[12] is available and would be
best to simulate and test fleets of vehicle connections, however this is not within reach
or accessibility of the personal financial investment and budget for the project and
will not be necessary to test the conceptual features of the system.

Fog and Edge computing, being a new and arising technology has not yet been widely
adopted and is only recently becoming more known. It does not have a vast amount of
research available and scientists are just now conducting comprehensive surveys on
the technology.[44]

For the past few years new cars come equipped with the capabilities of
communicating to cell towers via popular 3G/4G networks[13] However, to deploy
the implementation to existing cell tower and road-side units, would require a costly
investment by governments in order to make this technology available to the public.
This includes installing micro-data centers or small servers in base stations near all
public roads.

2.3. Theory

The concept of Fog computing suggests that Fog nodes represent micro-data centers or

servers installed near the source of information (edge of the network)[14] such as cell towers

and road-side units and have the ability to process large quantities of sensor and device data

in real-time environments. The Fog nodes serve as an intermediary between edge nodes (in

this case connected vehicles) and backbone, cloud infrastructure, receiving, processing and

forwarding only concise, insightful information to the cloud systems for further processing.

Cloud and Fog computing provide the same storage, applications and data to end-users,

however Fog computing differentiates with its better geographical distribution and proximity

to end-users.
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Fog Computing Architecture

Cloud

/ L\

loT Devices / Sensors

Figure 2: Fog Network Overview[15]

Compared to the cloud, Fog computing provides an intermediate level of computing power,
in a less dense and medium-weight package. This new coined method alleviates the network
load from congestion down the enterprise infrastructure lines and provides a novel approach
at solving the problem of big data.

2.4. Existing Solutions

As of writing this report, there currently exist no commercial nor open-source solutions that
are trying to tackle the problem of simulating future connected car services in a Fog and Edge
environment. However, there exist enabling technologies that aim towards establishing
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Everything (V2X)
communications that lie under the common banner of Vehicular Communications Systems
(VCS) and try to solve the problem of eliminating road traffic incidents, which is also
relevant for the scope of the project. They are not commercial products but rather, well
established development standards, however they do not completely solve the problem of
road safety on their own due to their design specifications or usage and more about that will
be delved into below.

Vehicular mesh networks are a key technology to cater the needs of transportation data

sharing by connecting road participants and neighbouring infrastructure in transient, ad-hoc
networks[16].
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2.4.1. IEEE 802.11p and Dedicated Short-range Communications (DSRC)

The de-facto standard for V2X is Dedicated Short Range Communications (DSRC) wireless
technology, which is based on the IEEE 802.11p standard, the Wireless Access in Vehicular
Environments (WAVE) protocol in the U.S., and the European Telecommunications
Standards Institute (ETSI) Intelligent Transportation Systems (ITS) European standards [17].
Moving objects have always posed a problem for any type of wireless connection and this is
especially true for vehicles that travel at high speeds, as the communication link between
them and roadside infrastructure might exist only for a short period of time. 802.11p does not
need to establish a basic service set (association and authentication) before beginning to
transmit and exchange data. It operates in the licensed ITS band of 5.85-5.925 GHz and is an
enabling wireless technology for short-range data exchange in V2X communication.

Big Data a a
. Other Road Users
@Infrastructure-'- ﬂ —
2 . Po ~

Figure 3: Future V2V and V2I Communications[18]

e The benefits of the standard are that a specific spectrum of radio frequency has been
assigned for it to operate without signal interference from other wireless
communications.

e The downsides are that there is trouble in achieving consensus for the spectrum
available for this technology and thus the range of the communication varies. For
instance, communication range is 30 meters in Japan, 15-20 meters in Europe and,
1km (max) in USA and the throughput is simply not enough for any other applications
apart from safety-critical ones[19].

e The other immediate limitation of this technology is apparent, it requires specialised
hardware to operate and thus increases the cost to produce.
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2.4.2. Cellular Networks and 5G

Widespread connectivity demands have made cellular networks commonplace and has
pushed carriers to improve hardware and increase bandwidth. This makes the technology a
primary enabler for vehicular communications. Cellular networking facilitates parallel data
streams that would allow a vehicle or user not only to consume content but also have free,
additional bandwidth for use in time-sensitive, safety-critical applications.

5G (5th generation wireless systems) is the next step in mobile communications, and the
supposed bandwidth that 5G might offer could be upwards of 1Gb/s up to tens of Gb/s. 5G
not only brings improvements to bandwidth, but also a suite of new technologies: ‘small
cells’, ‘millimeter waves’, Massive Multiple-input Multiple-output (MIMO), beamforming
and full duplex[20].

The combined implications of these technologies make 5G a prime enabler in the future V2X
connectivity and will become a key growth driver. Future connected cars will have the ability
to exchange sensor data, traffic information and multimedia content with each other using the
mentioned low-latency technologies as well as communicating with the existing
infrastructure. The aim of the technology is to provide complete connectivity between
devices, vehicles, infrastructure and open the path for previously unseen and beneficial
use-cases.

The downsides of this new communication method are that deployment is just beginning
around various cities in the USA and has just recently passed tests in the UK. It is predicted it
will not see widespread adoption until early 2020°s[21]. It will not be until the middle of
2025 that we see a high percentage of vehicles and users with 5G enabled device transceivers.
Another pressing issue, similar to IEEE 802.11p, is establishing the consensus around the
frequency bands available to 5G in different regions around the world[22].
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Figure 4: Future 5G V2X connected network[15]
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This project assumes making use of the existing cell tower infrastructure which is 4G enabled
(See Assumptions section). With the evolution of the technology into 5G, the use case of the
project has the possibility of performing even better, having the ability to not only rely on
cellular infrastructure but also send signals in an ad-hoc manner to other road participants,
acting as a relay of information. The future implications of 5G are impressive, however this
does not mean that existing cloud-based services will be able to cope with the load carried
over consistent gigabit connections and data used by every vehicle and user. As can be seen
later, use case examples do not always require a back-office connection in a Fog and Edge
environment.

2.5. Methods and Tools Used

In order to create a functional system, several tools, methods and technologies were used in
the development of the system which were selected from the requirements and design
specification section for creating a simulator of a connected car in a Fog and Edge computing
environment and the following section will provide some background information about
those technologies, necessary for understanding the implementation.

2.5.1. Controller Area Network (CAN) Bus and SocketCan

All modern vehicles use an internal network to facilitate communications between
microcontrollers and sensors without the necessity of a central host computer (SCV), namely
the Controller Area Network (CAN) Bus. Communication inside the vehicle, between control
units, sensors and electronics alike is critical for the operation of the vehicle.

The modern automobile could contain as many as 100 Electronic Control units (ECU) in
order to manage various subsystems which can include the drivetrain, airbags, power
steering, windows, mirrors, anti-lock braking and the list goes on[22]. In some cases
independent subsystems are formed but the majority need to communicate amongst each
other and may need to receive feedback from sensors or send signals to actuators. This
networking of the car has allowed for a wide range of vehicle systems to be developed in
software that would otherwise be complex and costly to implement if they were ‘hard-wired’
using traditional automotive electrics[22].

The bus is a simple Data Link layer, part of the OSI (Open Systems Interconnection)
model[23], there are no MAC or Node addresses, ARP, Routing etc. The CAN follows the
simple bus network topology where all participants are connected to the same wire and they
can be either both listeners and/or senders. There is no security implemented or specific
protocols used and CAN frames (messages) are simply broadcasted, can operate in loop mode
making them cyclic and are also multiplex (containing an ID for specifying different data
payload types)[24].

18



The CAN frame has a very basic structure. A single packet mainly contains a CAN identifier
(CAN-ID, 11/29 Bit) used for content addressing, Data Length Code (DLC, 4 Bit) that
specifies the number of bytes of payload data transmitted, and a Data (0 to 8 Bytes long) field
containing the payload as seen in Fig. 5.

Bil]r D|A|D
Tlo|e DATA | crecksum ||| | EOF
R|E|s (08 Byte) (1580 1y (k|| (78

v ~ " ' . v
Arbitration Control Data Check Acknowledge

Figure 5: CAN Bus Frame structure [24]

As of Linux kernel version 2.6.25 there exists a virtual CAN network device driver:
SocketCan[25] which eliminates the need for real CAN hardware and allows for creation of
virtual CAN interfaces [Fig. 6].
)-00-00-00-00-00 txqueuelen 1000 (UNSPEC)
frame @

ped @ overruns @ carrier @ collisions @

pi@raspberrypi:~ % ifcon fig|

Figure 6: CAN Bus virtual interface in a Linux environment

SocketCan uses the PF_ CAN protocol family[25] specifically defined for creating virtual
CAN interfaces and is built on top of the Linux Socket Layer[26] which allows for using of
the well-established socket programming interfaces in the operating system, the existing
network driver model for networking hardware (e.g Ethernet cards) and protocols as well as
routing inside the OS e.g. TCP/IP protocols[24]. The project later shows in the
implementation section, bridging of a CAN socket with a regular TCP/IP socket. Raw
packets can then be directly captured and processed at the application level.

Application Application
I User
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Protocol

Socket Layer

| ) . Character
'8’ Protocol family |IProtocol family | ....q ]
i 9 = o Device
| x CAN Internet Space .
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| >
= Network Device Drivers
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Figure 7: SocketCAN communication layers [25]
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By having access to raw CAN frames, programming becomes similar to regular, known
programming interfaces, using the CAN identifier to filter frames, working with their
timestamps and allows for easy software deployment and migration, asynchronous reading
and writing for multiple independent applications.

To make programming and development even more convenient many tools and libraries have
been developed with the official suite being from the Automotive Linux Foundation:
‘can-utils’[27]. The CAN Bus Simulator, described in Section 3.2 was built using Python3
and a library called ‘python-can’[28] for simpler and more readable code than using raw
frame filtering and parsing.

2.5.2. Qt and QML

Another one of the tasks set out to be completed in the scope of the project was to visualise
the problem being solved. This meant extending the data the connected car produced from the
CAN bus and Fog network into an automotive and familiar graphical interface which is the
Instrument Cluster as described in Section 3.3. Cars these days make use of many embedded
devices for all types of purposes, this includes speed, temperature, oil, tire pressure, other
sensor information and in general, the state of the vehicle. The device which displays
mission-critical car information to the driver in a nice, visual way is called the Instrument
Cluster as seen in Fig.8.

Figure 8: Visual Representation of the Instrument Cluster

In more recent years car manufacturers have started using digital display technology for their
instrument clusters [45] which allows for infinite configuration in design and functionality
and is only limited to the features the car supports. This information is usually concise and is
displayed in a visually appealing and understandable manner. However, using and sourcing
specialised embedded devices and controllers is difficult for developers such as small car
manufacturing companies or general hobbyists willing to develop for vehicles. These devices
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come with proprietary drivers, kernels and are not ready to develop for out of the box, which
makes it a time consuming and cost ineffective process.

In the search for the right language to develop the initial version of the Instrument Cluster, I
found existing Python-based GUI libraries such as PyGame to be cumbersome. Web
visualisation languages such as jQuery were promising, however when it came to working
with native sockets and listening to the constant flood of data and parsing it in real time
crashed the target hardware’s browser. Another issue was that web technologies are not
readily supported by embedded devices. C++ gave promising results but the visualisation
libraries lacked in quality and were difficult to work with. Continuing the search gave fruit
and Qt and QML addressed exactly these issues.

Qt is a cross-platform application framework and widget toolkit for creating embedded
graphical user interfaces and applications that can run on any software and hardware
platforms with little to no changes on the underlying codebase, while still maintaining a
native application with native capabilities and performance[29]. This is especially useful for
developing applications on low-power devices such as the Raspberry Pis this project is based
around which do not have a typical desktop system architecture. Qt also supports
cross-compilation for target platforms such as the Raspberry Pi, so compilation can be done
on more powerful, external hardware. For the development of this project it would have taken
a lot more time to compile the software on the low-voltage processor of the Raspberry Pis.

Qt is written in C++ and the programming languages it officially supports are C++ and QML
as well as third party language bindings for Python, Rust, C#, NodeJS and others. Qt provides
a C++ class library with rich application building blocks for C++ and is specialised in giving
the developer the flexibility and communication with advanced GUI developments. QML is a
declarative, JavaScript-based language for describing user interfaces of programs. A Ul is
built almost in the same fashion as how a JSON object is defined, with objects and properties.
The benefits come in the usability of the language as HTML, CSS and JavaScript knowledge
is enough to create complete applications. The language can be extended with C++ to allow
for more advanced developments.

21



2.6. Hardware

The hardware that will be used in the making of this project, as stated in the Constraints
section, has to be cost-effective, readily accessible and adhere to the requirements the
problem. Two ‘Raspberry Pi” SoC development boards will be used for replicating the

connected car internal network. A generic laptop with a Linux operating system will be used

for creating the Fog network to which the ‘car’, represented by the Raspberry Pis, will

connect to. The hardware has been purchased from Adafruit[30], a popular computer and IoT

hobbyist online shop and has been configured using the documentation available on the
official Raspberry Pi website [31].

—
Instrument - -y ™
Cluster Display Phe
-
-
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Cluster ECU ECU

Car control

Figure 9: Hardware layout of the simulated system

The list of hardware equipment is as follows:
- A Raspberry Pi 3 Board (WiFi enabled) (Represents the Instrument Cluster ECU)
- A Raspberry Pi 2 B+ Board (no WiFi, Ethernet bridge) (Represents the CAN Bus
ECU)
- A Laptop
- 2x MicroSD cards for the Raspberry Pi’s
- 2x MicroUSB power supplies for the Raspberry Pi’s
- An Ethernet cable to bridge the Raspberry Pi’s
- An HDMI enabled Monitor to visualise the Instrument Cluster ECU
- A keyboard to send commands to the CAN Bus ECU

In a real connected car, there is usually more than one CAN Bus but for the purpose of this
prototype there are no inherent advantages or disadvantages to using more than one.
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2.7. Research Questions

The overall aim of this project is to understand the concept of Fog and Edge computing and
provide a prototype recommendation for a network architecture in which vehicular edge
nodes can operate and receive application specific information in the field of vehicle safety,
without the need of a cloud service and evaluate the feasibility of this approach. The research
questions this project is attempting to answer mirror the aim of the project.

The first immediate question is, what sort of data will be exchanged within the system?

- It is necessary to research the types of parameters and information that would be
found in an internal vehicle network to answer this question. Having an appropriate
idea of the data exchanged within the environment makes the selection of components
and requirements for the system possible.

The next question is a direct consequence from the first: How can this data be simulated as
closely as possible?

- To answer this, insight into the participants of the system is needed. By knowing that
the target end-devices are connected vehicles, we can best simulate the parameters
and information by creating a connected car simulator. This project answers the two
questions by doing exactly that.

The last question comes from the general requirement, to create a fog network: How do we
evaluate the prototype network architecture?
- By not only simulating the participants, but also prototyping the Fog network
architecture itself we can run tests to evaluate the performance and implications of a
possible similar, real system.
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3. Specification and Design

Prior to beginning development towards the implementation of the project, a comprehensive
specification and architecture design is needed. With the intent of being extensible and
modular, the development approach needs to be carefully planned. The following section
addresses the requirements, design and architecture of the system and additionally discusses
and justifies the decisions taken during this process.

Apart from looking at the system as a whole, in order to more thoroughly assess the
capabilities and design aspects required, a closer look at the individual component
requirements for the project must also be carried out. For ordering and prioritisation of the
system requirements, the MoSCoW methodology[32] was used which splits requirements
into four categories: Must have, Should have, Could have and Won’t have.

3.1. System Overview

As initially said in Section 1.1, the system can be split into three Major components. Each
individual component has its characteristics and distinctive features and can function as their
own separate entities. In order to solve the problem of Fog networking and vehicle
notifications, these components must function as a whole.

3.1.1. Requirements

To define the purpose of this system and what it does we first need to specify the overall
requirements and give supporting justifications.

Functional Requirements
Must Have:

< Facilitate a Fog network environment

> This comes from the aims of the project, to have a Fog & Edge computing
network.

< Simulate a connected vehicle in a Fog network

> Again the requirement comes from the use case and aim, to emulate a
connected vehicle as an edge node in a fog environment.

< A method to simulate a collision

> In order to notify existing participants of the network, a collision has to be
simulated.

Could Have:
< Sending vehicle diagnostics information to a cloud service
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> In a typical fog and edge environment, the fog nodes can aggregate data and
send it to cloud services for further assessment.
Should Have:
< Encryption and authentication methods in place
> The consequences of a breach in a system which transports people could be
catastrophic, hence security measures should be put in place.
< A visual representation of the vehicle information and status
> It would be beneficial to have a display of the internal vehicle information so
that actions and changes can be visually perceived.
Won’t Have:
< A fully working, deployable system
> The constraints (See Section 2.2.) of the system give a clear justification as to
why this is not feasible.

Non-functional Requirements
Must Have

< High throughput
> The system needs to function even at high load. This is needed in order to
satisfy the use case.
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High availability
> The use case does not permit components having less than 99.9% downtime.
< Fault tolerant connection
> The connection between the fog network and the CAN Bus must continue
even though there is a problem with a component.
Seamless handover
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> Upon disconnection from a Fog network node, the Instrument Cluster head
unit must reconnect to a subsequent network node.
Could Have
< Modular and extensible design
> To allow future expansion of the system.
Should Have
< Language agnostic interfaces
> So as to interface the system from any language without using proprietary and
special interfaces.

3.1.2. Design and Architecture

Following from the above mentioned requirements and especially the modularity aspects of
the system, it can be clearly seen that the system, at a very high level, would consist of at
least two major components: the Connected Car Simulator and the Fog network. Throughout
the project timeline, various design decisions were made which led to the eventual split of the
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Connected Car Simulator component into further two more: the CAN Bus Simulator and the
Instrument Cluster, which allows for even greater modulatory of the system. This way, the
individual components could function on their own, without hindering the rest of the system,
however, in order to implement the use case, they must function together as a whole, linked
system. Future expandability is also possible for the three individual components, again
noting the independence of each component from the rest.

The initial design of the system was first envisioned to have a single Fog node and a single
Connected Vehicle in the system. Over the course of the project, it went through several
revisions and iterations to come to the final network structure.

To briefly summarize the structure and its iterations, UML diagrams have been used. Initially
it was designed for the CAN Bus to be connected directly to the Fog Node as seen on
Iteration #1 in Fig. 10, however this approach is not technically sufficient to support the use
case of simulating a connected vehicle. The vehicle driver would also not have a visual
reference of the inputs they are making such as pressing the throttle.

Iteration #1 lteration #2
Connected Car
Connected Car
Fog Node (Instrument Cluster & Fog Mode
(CAN Bus)
CAM Bus)
lteration #3 Iteration #4
Connected Car
({Instrument Cluster & Fog Node Instrument Cluster Fog Node
CAN Bus)
Connected Car CAN Bus Connected Car
(GPS Coordinates and _ (GPS Coordinates and
Collision Information) Collision Information)

Figure 10: System design iteration steps

This led to revising the design and implementation for having an Instrument Cluster act as the
intermediary between the CAN Bus and the Fog node which would also aid in visualising the
information sent both from the CAN bus and the Fog node which can be seen in the second
iteration of Fig.10. Further to improve the design of the system, in order to have an
evaluation and testing method to see whether the vehicle receives notifications from other
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participants in the Fog network, another connected car was added which sends location data
as well as a collision alerts to the Fog Node so that the instrument cluster can be tested
whether it receives the notification and displays it. This was addressed in iteration #3 of the
same figure.

The final design of the overall system was influenced by all the factors mentioned in the
previous iterations in addition to the security, integrity, modularity and extensibility
requirements of the system. This meant decoupling the CAN Bus and Instrument Cluster
integrations and making them separate entities, continuing operation even if one fails.
Ultimately, if a component fails, the system will not serve its purpose as intended by the use
case scenario, however other components will not seize operation. By separating the CAN
Bus and Instrument cluster we also achieve the intent of simulating as closely as possible
how a connected vehicle works internally, which, having made the research is exactly how an
internal vehicle network functions. The Instrument Cluster is the only point of
communication to the Fog Node and can only read information from the CAN. This way, it
becomes impossible for an attacker from an outside network such as the Fog network, to
reach and send malicious commands to the CAN Bus to override the vehicle functions and do
any harm.

From the viewpoint of how the data flows through the system, a further diagram explains this
below.

Vehicle Driver
Inputs Signal

CAN Bus «| | Convert signal CAN
Simulator 71 | to CAN frame Bus

Collision & CAN ﬁ ”- :‘: Read & Relay
Erame Data Instrument Cluster € CAN Frames CAN frames

h 4 /

Visualise Data Location Data/ f Collision Data  /

Y /
END Fog Node < Collision & /‘ Connected

Location Data Dummy Vehicle
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Figure 11: Flowchart of the whole system (Fog Node,
Connected Vehicle and Collision Vehicle)

The general flow of the system starts with the Vehicle driver sending a signal to the CAN Bus
simulator, this can be in the form of a pressing the pedal or sending a turn left/right signal.
The CAN Bus simulator, listening for these signals converts them into CAN frames and
writes them to the bus. A separate process listens for CAN bus frames and relays them to the
Instrument Cluster. Once the message data arrives, it gets visualised to the vehicle driver. The
Fog node part of the system receives location and collision data from another vehicle and
having also received location data also from the Instrument Cluster (assuming there is a GPS
Unit to provide it) determines based on these parameters whether a notification of a collision
should be sent to the Instrument Cluster. If one is received, the Instrument Cluster will show
the given notification on the vehicle display.

From an entity-relationship standpoint the system is designed as follows:

Fog Node Instrument Cluster CAN Bus

+ Connected Clients List + Latitude

+ Clients Location ~1 + Longitude

+ Clients Status ~1 + Speed (From CAN)

+ Clients Speed + RPM (From CAN) + Turn Signals
+ etr. + efc.

Figure 12: Entity-relationship diagram of the components

There is a one to many relationship between the Fog node and the Instrument Cluster which
means that there could be many vehicles connected to one Fog Node. The Instrument Cluster
has a mandatory one to one connection and an optional one to many connection with the
CAN Bus. This means that there can be optionally many CAN buses used in the vehicle,
while this is not a must requirement, the system should technically support it. In terms of
what Data is facilitated in the different components of the system, the Fog Node contains a
list of active vehicle connections and their properties such as location, status and speed where
status can be whether the vehicle has been involved in a collision. On the Instrument Cluster,
the Latitude and Longitude data points come from a GPS signal and are relayed to the Fog
node. The instrument cluster also receives speed, RPM and other vehicle data from the CAN
Bus, the CAN bus generates this data when signals are input by the vehicle driver. The list of
vehicle, CAN Bus parameters, simulated is given in Appendix A.
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3.1.3. Use Case

As mentioned in Section 1.2., the goal of the project is to create a use case of managing
vehicle collision notifications in a Fog and Edge environment. The Following Use Case
Diagram gives an overview of the events that the system has to support:

Cloud servers

T
) 2

cell Towers () ~ R (@) ('I:eIITh(;w(;er!
Fog Node - > og e
VA T

Figure 13: Diagram of a collision use-case scenario

When vehicles are travelling on a motorway at ~70Mph speed, and there is fog, rain, driving
conditions are poor and visibility is limited, there are other vehicles upfront and braking
distances are not short, multi-vehicle collisions can unfortunately occur. By notifying
incoming vehicles of a potential incident, they can react and slow down their vehicles to
avoid further accidents. In Fig. 13 when a collision has happened, the connected vehicles
sensors send a signal to the Head Unit which subsequently notifies the nearby Fog Node of
the incident and its location (1). The notification is then processed and propagated through
the Fog network by the Fog node to alert nearby drivers of the accidents and sends a signal to
their Head Units which subsequently display a warning message (2,3). After that is done,
Cloud, back-office response teams can be notified of the incident and immediately send
assistance (4). This way lives can be saved and the use case gives us the implications of the
Fog and Edge computing notion.
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The use case can be split into further two sub-use cases which would make it more clear as to
what functionalities have to be later implemented in the solution.

A

Vehicle #2

Use Case #1:

Send Collision Collision Notification

Signal

Instrument

Bog Blode Cluster

Notify Collision

Collision
Data

Visualise
Data

A

Vehicle #1

Figure 14: Use Case Diagram #1, collision notification (V2V)

The above use case diagram, Fig.14, illustrates the collision notification functionality of the

system. Vehicle #2 Sends a Collision signal to the Fog Node which then sends a notification
to Vehicle #1°s Instrument Cluster and subsequently visualises the data on the display for the
vehicle driver to see.

Use Case #2:
Internal Vehicle
Signal

Write Data
CAN Bus

) 4

Send Signal

Relay to
Instrument
Cluster

N

Vehicle #1

CAN Data Instrument

Cluster
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Data
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Figure 15: Use Case Diagram #2, internal vehicle signal

Use case diagram #2 demonstrates the event sequence, when a vehicle driver inputs a signal
such as throttle, turn signal etc. The CAN Bus Receives the signal and relays it to the
Instrument Cluster. That same CAN data is then visualised by the Instrument Cluster to the
user. This use case comes from the general idea to simulate a connected vehicle and has been
based on research made in the Background section as to how to structure the components in
the system.
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3.2. CAN Bus Simulator

The CAN Bus Simulator is a crucial component of the system as it emulates the internal
network in the connected car, namely the CAN Bus. Below are the functional and
non-functional requirements that specify what features and behaviour the Simulator has to
support.

3.2.1. Requirements

Functional Requirements
Must Have:

< A virtual CAN interface

> This comes from the intent to simulate the internal network of the car.
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Ability to send and read information from a virtual CAN interface

> In order to be able to work with the CAN interface, we need to have read and
write methods.

Method to access information on the CAN Bus from an outside source
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> Justifying this is the overall system need for a visualisation method which
should be able to connect to the CAN Bus Simulator.
Authenticate outside connections
> No other parties should be able to connect to the CAN Bus apart from the
permissioned ones.
Could Have:
< Ability to read and write data from/to the CAN Bus asynchronously
> This could be beneficial as we will be working with kilobytes per second data
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that can lead to problems if being overwritten multiple times.
< Have an On-board Diagnostics (OBD) port
> This could be used for linking straight to the CAN bus but not necessarily
writing to it.
Should Have:
< Encrypt data in transit being accessed from an outside source
> The data should be encrypted in transit to prevent malicious attacks.
< Support up to 10 connections at any given time
> In a real vehicle there are usually multiple ECUs listening to the same CAN
Bus.
Won’t Have:
% A direct visual interface for displaying the information or connections
> In reality this is not necessary as the CAN Bus is ‘headless’.
< The ability to communicate with the Fog network directly
> This is a measure for security and to simulate a connected car as closely as
possible.

31



Non-functional Requirements
Must Have

< High availability and no dropped connections
> Whilst driving it is dangerous to suddenly have critical systems disconnect
from the CAN bus.
< High throughput
> The CAN bus must not be flooded with too much information that would
make it inoperable.
Should Have
< Modular, allowing for future extensibility.
> This is necessary to allow for future development.

Referring back to the Initial report (See Appendix C), some requirements have not been
included as during the project design and development phases they have become redundant
and have been listed in the Implementation Section 4.1.

3.2.2. Design

Having made the requirements for the CAN Bus Simulator clear, we can design the structure
and define the functionalities it needs to support. The initial plan is to have every single
component in the system function as a standalone entity. This means that components have to
be loosely coupled and function independently.
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Figure 16: CAN Bus flowchart and data propagation
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To best describe the design and functionality of the CAN Bus Simulator component, a
flowchart has been made showing the different data, processes and decisions that it needs to
make in order to fulfill the needs of the project seen. This diagram can be seen in Fig.16.

As defined by the Overall System design and the above mentioned requirements, the CAN
Bus Simulator has to communicate with the Instrument Cluster and have an interface for the
user in order for them to input data. As well as this, the Simulator must be able to process the
user input against a predefined set of parameters that represent the internal functionalities the
vehicle supports, which is also defined in the component requirements.

The flow begins by taking in user input which can be throttle, turn signals and any supported
vehicle signals, which are then converted to their appropriate parameter counterparts. A
check then runs to see whether the value of the given parameter is different. This is because
inputs from the vehicle driver might be repeated without their value changing such as turn
signal indication and the CAN bus can then become flooded with signals to above of its
specified capacity. After the check, the parameter and its value are converted into a CAN
specific frame and sent to the Bus. A listener inside the simulator for signals on the CAN bus
will read the frames and subsequently relay them to the Instrument Cluster. The design
decisions have been made in line with the component requirements as well as from how the
CAN Bus physically works.

3.3. Instrument Cluster

The Instrument Cluster is a necessary component for the system in order to provide a visual
representation of the information that is propagated through the network. Below is a list of
functional and non-functional requirements it has to support.

3.3.1. Requirements

Functional Requirements
Must Have

< The Instrument Cluster must have the ability to connect and receive data from the
CAN Bus.
> This is necessary to support the intentions of having a visualisation method.
< It must be able to display the CAN Bus data in an appropriate and visually pleasant
way.
> The vehicle driver needs to be visually aware of the useful car information.
< The Instrument Cluster must be able to receive and send vehicular service information
from/to the Fog network and display it nicely.
> This comes from the use case, to be able to send positioning data and receive
notifications of a Fog-enabled collision avoidance service.
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Could Have
< The Instrument Cluster could have a method to specify information to be forwarded to
a Cloud endpoint.
> This could be necessary if the use case demands it.
Should Have
% The Instrument Cluster should have and encrypted and authenticated connection with
the CAN Bus.
> The data should be encrypted and authenticated in transit to prevent malicious
attacks.
< The Instrument Cluster should have and encrypted and authenticated connection with
the Fog Network.
> The data should be encrypted and authenticated in transit to prevent bogus
information from impersonators.
Won’t Have
< The Instrument Cluster won’t have the ability to send information to the CAN Bus.
> The CAN Bus ECU should be the only party that can write to the Bus.

Non-functional requirements
Must Have

< Modular and extensible design
> To allow future expansion of the Instrument Cluster.
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Integrity
> The Instrument Cluster must not drop connections to the fog network when
there are obstructions.
< High throughput
> It needs to process all of the data it reads from the CAN Bus.
< High availability
> The Instrument Cluster needs to be available as it displays all the vital vehicle
information.
< Fault tolerant connection
> The connection between the Fog network and the CAN Bust must continue
even though there is a problem with a component.
% Seamless handover
> Upon disconnection from a Fog network node, the Instrument Cluster head
unit must reconnect to a subsequent network node without dropping the
connection.
Could Have
% The Instrument Cluster could receive notifications and CAN data asynchronously
> This would improve performance and time to display incoming data
Should Have
< Integrity at speed
> [t should not drop connections when the vehicle is moving
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3.3.2. Design

Working towards the non-functional requirement of loose coupledness, the Instrument Cluster
can again be defined as a standalone component, however in order to support the use cases it
must connect to the CAN Bus Simulator and Fog Nodes. The following flow chart describes
that connection and the intended structure and functionality of the Instrument Cluster.
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Figure 17: Instrument Cluster flowchart and data propagation

The decisions as to how exactly to depict the Instrument cluster were dictated by both the
requirements and the aims of the project. Here, unlike the CAN Bus, the way the Instrument
Cluster processes data is standard and does not need conversion. It should store the received
CAN Bus frames and if any, collision or incident notifications and put them in a data
structure of a queue as can be seen in Fig. 17. This queue of data is then iteratively processed
until there is no data left.

The Instrument Cluster design has a decision check to see whether there is data in the queue
and appropriately handle it by its type. Higher priority is given to the collision notifications
and if they are detected, they get pushed to the front of the queue and visually displayed on
the instrument cluster as seen on the diagram. The decision for this comes from the general
importance of the incident notification itself. Data related to the CAN Bus is then fed back
and rearranged so it is processed immediately after that and displayed appropriately
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depending on its function. The approach assumes there is no asynchrony in the processing of
the input data as this is a ‘could’ requirement. This design goes in line with the requirements
of the Instrument Cluster, overall system functionality, aims and use case for the project.

Being a user interface, it needed to have visual cues as to what information is being displayed
to the user. The approach chosen was to make use of the very familiar and popular vehicular
instrument cluster which contains gauges that can be populated with the car data. When the
CAN Bus data changes value it is reflected on the digital instrument cluster. The initial render
of the digital instrument cluster, Fig 18. depicts less of the information that is actually
implemented on the CAN Bus, later seen in the Implementation section. Design cues have
been taken from existing vehicle instrument clusters.
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Figure 18: Instrument cluster design representation

The vehicle instrument cluster contains a visual reference about speed, engine RPM, fuel
level, location data as well as information about vehicle status such as engine warning lights,
ABS warning, oil temperature, light malfunctions, seat belt usage etc. What has been added
on top of this design is the Warning Notification section in the centre of the display. This
section is populated with information when the Fog Node sends the vehicle a warning about
an incident in the vicinity. This tells the driver to slow down or be at alert for incoming
dangers. This is especially effective at high speeds and low visibility of the road and other
vehicles and can aid in preventing further collisions and casualties.
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3.4. Fog Network

The Fog Network is another necessary component for the system in order to facilitate
real-time vehicular communications. Below is a list of functional and non-functional
requirements it has to support.

3.4.1. Requirements

Functional requirements
Must Have

< Semi-long range ambidirectional wireless connectivity (up to 500m-1km range)
> The requirement comes from supporting vehicles that are constantly mobile
and can change their proximity to the source.
< A method to send vehicular service information
> A Fog node should send information to all edge participants connected to it as
per the use case of the project.
<+ A method to receive vehicular service information
> A Fog node should be able to receive information about collisions, and similar
types of information as per the use case of the project.
% The network needs to have encryption and authentication methods in place
> This is because the network is expected to be protected from snooping or
impersonations.
< A method to store the connected vehicles to the node
> This requirement comes from the need to know which vehicle to notify in the
event of incident data received as defined by the use case.
Could Have
< Support for up to 1000+ edge connections
> The network could have at any given time thousands of connections and it
needs to be able to process their information.
Should Have
< Support a unified protocol
> The network should make use of popular connectivity protocols such as
TCP/IP
Won’t Have
< A method to visualise connections to the Fog node
> This is not necessary as it will be a command line application
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Non-functional requirements
Must Have

< High availability
> The system must have high availability and no dropped connections.
< Fault tolerant connection
> When a fault in a component in the network happens, it should continue
transmitting.
% Seamless handover
> When a vehicle disconnects from a fog node, reconnection should happen
seamlessly.
Could Have
< Integrity at speed
> Support connections of fast moving vehicles.
< High Throughput
> The network could have at any given time thousands of connections and it
needs to be able to handle them.
Should Have
< Modularity and extensibility
> The fog network and node should be written in a modular and extensible way.
< Signal Integrity in obstructions
> The signal should not be lost when there are obstructions between receiving
vehicle and fog node.

3.4.2. Design

As the technology is not yet mature, it is difficult to predict and estimate exactly which
methods and tools would best fit the purpose of this new and emerging technology in
production scenarios. By comparing and contrasting possible solutions, a few promising
methods for supporting the creation of the prototype can be deduced.

To satisfy the requirement of wireless connectivity, a wireless network needs to be
established with available and existing technologies. Wi-Fi [33] first comes to mind as it is
well-established and there is lots of research made into its implications. It does not suffice at
semi-long range connectivity as the technical range is up to 100m in ambidirectional
mode[33], integrity at speed and fault tolerant connections. In other cases it is sufficient.

4G connectivity covers all of the problems Wi-Fi did not address however it is costly to
operate and requires government authority approval to operate. In addition to this, the
technology is not readily available for developers to access and would slow down the process
of prototyping and rolling out the implementation. Another option is using Dedicated Short
Range Communications (DSRC) however it does not satisfy the range and obstructions
requirements and as well as not being readily accessible. This leaves Wi-Fi connectivity as
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the only viable option for the sake of this prototype and in future, long term development, use
of 4G or even 5G would be necessary.

The design of the Fog Network and more specifically, the Fog Node follows the overall aims,
objectives and technology description of Fog and Edge Computing. The Fog node is usually
described as an intermediary between the edge devices and the Cloud environment. With all
this in mind as well as the requirements and assumptions for the system, the below Design
flow chart was created as seen in Fig.19.

| START I
Y

Connected
Car Inputs

Y

Address Inputs &

Inputs to Client

Clients Addresse
Send ‘Any Vehicles

Incident Info
in Inputs?

Notifications
to Vehicles

near the
incident?

Figure 19: Fog node flowchart and data propagation

The flow chart describes how the Fog node receives inputs from connected vehicles which
can be in the form of speed, location data, status notification, incident reporting etc. and uses
the client’s physical address on the network they are using for communication, mapping and
identification to which participant this data belongs to. It then stores the data and checks
whether one of the entries contains collision information or incident input. In order to keep
track of all the vehicles connected to the Fog Node a data store method is needed as per
functional requirements. The Fog node should have a processing method which decides
whether and to which connected clients it should send notifications to if there is an incident

detected by one of them. This should be based on location and closeness to the originating
warning.
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4. Implementation

The following section describes the system implementation, delving into a lower level of
detail, using code examples to explore the realisation of the concepts and ideas developed in
the previous sections as well as attend to the successes and problems in creating the solution.
It will go into detail about how the design of the system has been realised and highlight the
important and interesting components and aspects of the system. Ultimately, with similar
projects, while time management is of utmost importance, stumbles can be encountered along
the development path, so this section will also address such time-keeping problems.

4.1. Changes to Initial Plan

Inevitably, during the course of the project design and development there are aspects that are
bound to have changes. In this table, a list of the initial plans from Appendix C and final
outcomes has been made so that it is clear what is and what is not being implemented.

Initial Plan

Actual Implementation

The system will be designed to collect or
emulate numerous sensor information such
as speed, acceleration, proximity, location
etc.

The vehicle sensory data is emulated
through keyboard presses which are then
interpreted into the appropriate vehicle
signals. There is no hardware GPS module
connected and so location data is emulated
internally.

Process this (vehicle) data locally using
distributed nodes in an attempt to reduce the
amount of information relayed to cloud
services and simulate as closely as possible
areal CAN bus

The vehicle data mentioned is processed
both on the vehicle and on the Fog network
front which does in turn fulfill the intent of
reducing the information relayed to
cloud-based services. The CAN Bus is also
emulated as closely as the constraints of the
project permit, seen later in the
implementation.

Issues around security, such as potential
attack patterns relevant to vehicles, privacy
in the context of this work.

The design and implementation of the
vehicular system has made use of popular
security methods which are outlined in this
section. However, attack surfaces and
privacy concerns have not been explored.
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Potential integration with Cardiff
University “Formula Student” race car [32]
will also be explored.

This has not been made possible because the
CAN Bus simulator is not fully ready and
code-complete for an integration with the
Cardiff University “Formula Student” race
car, this will be touched on in the Future
Work section.

To achieve the aim of the project,
“Raspberry Pi” System on a Chip (SoC)
boards will be used in conjunction with
various types of sensors, in order to mimic a
vehicle’s Electronic Control Units (ECUSs).

The project does make use of
readily-available “Raspberry Pi” boards,
however sensors have not been needed and
have been replaced by a keyboard in order
to mimic vehicle driver inputs. The only
sensor that this project might have benefited
from is a GPS location tracker, however
such hardware was not accessible and is part
of the constraints for the project.

Create a complete simulator of the car
network, with one “Raspberry Pi” acting as
a Central Vehicle Gateway (SCV) and
multiple others (ECUs) relaying to it data
collected from sensors.

While this has been accomplished, the
project has been limited to the use of two
“Raspberry Pis”, one acting as the vehicle
SCV and one other relaying the drivetrain,
and other vehicle functions data. More
details explaining what has been
accomplished can be found in the following
section.

The SCV uses this (sensor) data and
processes it locally, obtaining concise,
insightful information about the car’s e.g.
speed, location, proximity to other vehicles
and more, thus acting as an “Edge” node.

This has largely been accomplished,
however the internal processing is limited
and tied to only a few vehicle functions,
such as speed, location and (after having
received it from the Fog node)
collision/incident data. This will be further
explained in the below sections.

Some of this compiled and filtered (sensor)
information is then relayed to the
appropriate “Fog” nodes.

This has been accomplished and explained
in the below sections.

They (Fog nodes) then send the concise data
to cloud services (e.g. improving
geo-location data, traffic information,
accidents etc.).

This objective has not been met because of
the time constraints and the lack of
implementation of this will not affect the
main goal of the project: to fully understand
the implications of Fog and Edge
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computing.

Implement a simulator of a car’s CAN bus,
OBD (On-board diagnostics) and ECU’s

Every component apart from the OBD
connector has been implemented and can be
found explained below. Vehicles typically
use OBD as a diagnostics method and is the
only way to access and read real hardware
CAN Bus data. This project makes use of a
virtual CAN Bus, which I was not aware to
exist prior to writing of the Initial Plan.
Being virtual, the CAN Bus implemented in
this project is readily accessible at any point
and is just a matter of connecting to the
“Raspberry Pi” that has the CAN Bus
Simulator running, thus emulating the
purpose of the OBD connector.

Test the Automotive Grade Linux (AGL)
distribution.

During initial research into the topic of the
project, AGL seemed promising, however
limitations have been found and in
summary, at its current development state,
AGL is limited and specialized in vehicular
Heating, ventilation and air conditioning
systems (HVAC)[46] and development was
just being started for the drivetrain and
other, more mission-critical systems.
Further details of the choice to not use AGL
will be explained below in the Successes
and Failures section.

Use Java and any other necessary
languages/frameworks to develop a
framework for simulating the separate
ECUs and SCV gateway. Package it
appropriately so it can be extended in the
future.

As usual with Initial Plans and proposals,
the bar is normally set high and this is one
of the examples which could not be
executed within the time frame of the
project. During development, the
components of the system have been created
with the intent of flexibility and modularity,
however they could not be packaged into a
framework. While progress has been made
towards extensibility, for example, get/set
methods and other supporting functions,
they can not be imported into popular
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languages such as Python as a package with
the syntax “import packagename”. This will
be touched on in the Future development
section.

Supplement the framework with a The programme has a visualisation method,
web-based interface to nicely visualise the | however it does not make use of a
processed data from the individual nodes. web-based interface, but a much better,
vehicular specific approach which is
explained in the Instrument Cluster sections.

4.2. CAN Bus Simulator Implementation

This section will describe how the CAN Bus Simulator has been made from a configuration,
and implementation point of view as well as any issues that have occurred during
development are addressed.

4.2.1. Configuration

In order to use the CAN Bus simulator a few dependencies need to be first installed and
configured. The first thing that needs to be addressed is to check whether the Linux operating
system kernel supports CAN Bus interface drivers.

To check whether the SocketCan driver is loaded by the operating system:
$ modprobe vcan
To add the vcanO virtual interface:

$ sudo ip link add dev vcanO type vcan
$ sudo ip link set up vcanO

That is all that’s needed to setup the virtual CAN interface and now it is ready to receive
CAN frames.

In order to test that CAN Bus is setup correctly, a set of very useful command line tools

defined and created by the Linux kernel developers are ‘can-utils’[27] can be installed. They
can be used in the same fashion on real CAN busses as well.
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‘candump’ prints all the data received on the interface. In a terminal window run:

$ candump vcan0

From another window we can send a CAN frame with an identifier of 0x1A (which is 26 in
decimal) as well as 8 bytes of arbitrary data:

$ cansend vcan0 01a#1122334455667788

Which will appear on the first window that’s running ‘candump’:

vcan0O O01A [8] 11 22 33 44 55 66 77 88

After having set up the interface we can install the simulator dependencies.

It is assumed Python3 is installed on the target device. To install the required dependencies
run:

pip3 install pynput
Pip3 install python-can

‘Python-can’ is a simple python interface for the CAN bus which makes the code cleaner
when reading or writing to the bus but does not add any particular benefit to functionality.
‘Pynput’ defines a keyboard listener for key presses and registers them.

4.2.2. Implementation

The CAN bus simulator is written in Python3 and can be split into two main modules:
Electronic Control Unit and Server.

Electronic Control Unit

The ECU deals with all the information and signals inside the vehicle, this include vehicle
driver inputs as well as the static variables affected by other inputs such as tire pressure, seat
belt, oil pressure warnings and others.

The ECU contains a keyboard press listener which deals with interpreting the user keyboard
input into the appropriate CAN Bus frames. It makes use of the ‘pynput’ keyboard listener
library and overrides its ‘on_press’ and ‘on_release’ functions. During development, the
default keyboard listener could not interpret multiple key presses at the same time, mimicking
multiple user inputs such as using the turn signal and applying throttle at the same time. A
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custom class was built to override the functions and store the unique key presses in a ‘set’
data type of keys which are then parsed by the keyboard handler functions. The keyboard
handler functions detect the pressed keys from the keyset and translate them into CAN bus
signals. An example of this would be applying the throttle. When pressing the ‘up’ arrow key
on the keyboard connected to the ECU, a speed increase signal is sent to the CAN Bus. This
mimics exactly what happens in a real vehicle [35], where the real car ECU detects that the
throttle valve is being opened and uses that signal to increase the fuel rate to the engine. Of
course, not having a real engine, the controls for increasing airflow or fuel rate have been
omitted, however there is no problem adding these down the development line since the code
is built in a modular fashion.

The following series of code snippets represent what was just described but in a
programmatic way. Fig. 20 represents the overridden ‘MyListener’ keyboard class.

nic

self.on_release)

Figure 20: CAN Bus: Overridden keyboard input class

Every key is then iterated over to check its type in Fig. 21.

== True and started_pr
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Depending on the type of key pressed (alphanumeric or special key), different vehicle
parameters are changed as seen in Fig. 21 and 22.

it

start_car()

t()

:aF_statﬂs[keySet)

Figure 22: CAN Bus: Key pressed handling

In the above example in Fig. 22, on pressing the ‘Enter’ key, the car start and stop is toggled,
depending on whether the vehicle engine is on or off. The second condition is met if the right
arrow key is pressed, which turns on the right turn signal. All the vehicle signals follow the
same pattern: 1. Invoke ‘set” method for the parameter to change its value. 2. Send a message
to the CAN Bus, notifying all parties listening to the bus about the change. A function that
writes to the bus can be seen in Fig. 23.

brake():
e = ge e ()

arbitratign_id: ,data , 0, 8, 8, @, park_brake], extended_id=False)

nd(msgParkBrake)
+ str(park_brake) + .format(bus.channel_info))

can.CanError:
print( )

Figure 23: CAN Bus: Message sending

The function is self-explanatory, it sends the park brake status to the CAN bus. It begins by
retrieving the current ‘park brake’ hexadecimal value (for this parameter it is either 0x00 or
0x01) and places it in the ‘data’ field of the CAN Frame (which using python-can is defined
as Message). The ‘arbitration_id’ is the arbitration id field in the actual CAN Bus frame
which has to be unique for the different parameters we are sending on the bus. The
‘extended_id’ flag specifies the possibility for having a longer identifier, the default value is
11 bits, and the extended is 29 bits if the use case has many different types of messages. The
CAN Frame is then sent to the configured CAN Bus virtual interface, which in this case is
‘vcan(’. Technically, it is possible to setup a real, physical CAN bus and send the same data
to it. This is why the simulator can be used for rapid prototyping of vehicular services as
there is no overhead in testing it on real equipment after passing preliminary, virtual CAN
Bus tests.
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Server

The Server component’s purpose in the Simulator is to read data that is being sent on the
CAN bus and relay it to the Instrument Cluster using a Secure Sockets Layer (SSL). To
implement it, again, Python3 was used for its popularity and ease of readability. The main
functionality of the Server can be simply expressed as forwarding CAN Frames to the
Instrument Cluster. It does this by creating a secure sockets endpoint as seen in Fig. 24.

# for S
KEYFILE

initialisation
rt)
AF_INET, SOCK_STREAM)

)

cket, keyfile=KEYFILE,
RTFILE, server_side=True)

Figure 24: CAN Bus: SSL configuration

It sets the hostname port numbers and begins listening on the socket which is then wrapped in
SSL by the private key and the certificate. This way, encryption is guaranteed on the way and
only parties who have the certificate can take part in communication. This goes in line with
the requirements for security. The next important part is the actual forwarding method for the
CAN bus packets. The server creates a thread which listens for messages on the CAN bus and
immediately after that parses them and sends them as JSON format to the Instrument Cluster.
This approach alleviates the Instrument Cluster from having to do all the packet parsing
which would slow down displaying times, and have the data nicely served. Python provides
easier to use tools for parsing of bytes and hexes compared to C++ used in the Instrument
Cluster.
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The following snippet of code in Fig. 25 shows how the connection between the trusted party
and the Server is established

o the instrument cluster

ner re

ead.start_new_thread(can_sender, (ca

Figure 25: CAN Bus: Server threading

The following snippet in Fig. 26 shows how messages are received, parsed and sent to the
Instrument cluster.

byte)))

s({ : message.arbitration_id, : arr}).encode(

Figure 26: CAN Bus: Relaying message

4.3. Instrument Cluster Implementation

The purpose of the Instrument Cluster is to establish communication with the CAN Bus
Simulator and the Fog Network and visualise the data it receives. The following sections
explain how the Instrument Cluster was configured and implemented.

4.3.1. Configuration

Qt5 and QML were used in the creation of the Instrument cluster. The program was written
using the Qt5, QtCreator Studio IDE which makes prototyping, development and testing
easier as it provides the tools needed to debug Qt applications. The configuration steps will
not go into detail as to how to install Qt5 and QtCreator Studio, as the install is platform
dependent and documentation can be found on the Qt website [43]. The following steps will
go over how to run the Instrument Cluster project.

After having installed Qt5 and QtCreator, the project can be imported into the studio by
selecting File->Open File or project and selecting the ‘qtcluster-base.pro’ file from the
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system file explorer. This will import all the project directories into the IDE, ready to be
compiled or ran.

qtcluster-base - Qt Creator

{ File Edit Build Debug Analyze Tools Window Help

Projects +T.®HEE <no document> %

- [@ gtcluster-base
= qtcluster-base.pro
n Headers

»

+ [ Sources

+ [@ Resources * File > Open File or Project (Ctrl+0)
b [l QML

v [® Other files

w

Debug

General Messages

gtclustar-base Qt module build version.

Project MESSAGE: Running this project against other versions of the Qt modules may crash at
I:I 4 any arbitrary point.
Dabug Project MESSAGE: This is not a bug, but a result of using Qt internals. You have been warned!

P Projects

» [ gtcluster-base

LIl ~. Type to locate (Ctrl 1 Issues 2 Search Re.. 3 Applicatio.. 4 Compile O.. 5 Debugger.. 8 Test Results

Figure 27: Qt Creator IDE

By pressing Ctri+B or selecting Build->Build Project we can compile the project for our
platform. After that is done, by pressing Ctr/+R or Build->Run, the Instrument Cluster
display window should open and it should be automatically connected to the CAN Bus
Simulator and Fog Node (if they are running as well).

Project MESSAGE: This project is using private headers and will therefore be tied to this specific

i 1
qlist.h - Qt Creator x
File Edit Build Debug Analyze Tools Window Help
Projects | T e He < B qlisth X # QList<T>::at<T>(int) const: const ..+ | » B+ [(EI Value Type
» [ qtcluster [5.11] QT_RETHROW; » valueSour... object ValueSo
~ [@ qtcluster-base ~ QQuickVi.. object QQuicky
= qtcluster-base.pro » Proper... list
» [y Headers ename T> ~ QQuic.. object QQuickk
s QListeT>::iterator QList<T>:ierase(iterator it) » Pro.. list
~ [l Sources
: . o : . } o . + Das.. object Dashbos
e . ) _X(isvalidIterat s stiierase”, "The si ator a
circularindicator.cpp Q_ASSERT_X(isvalidIterator(it), "QList::erase”, "The specified iterator argument QQmiEn

- if (d->ref.isShared()) { » QQmIE... object

e« etcprovider.cop -
qtcluster

Figure 28: Instrument Cluster running in Qt Creator IDE
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4.3.2. Implementation

As stated in the background section Qt5 and QML were identified as best suited for the
Implementation of the Instrument Cluster. The Qt company is currently focused at
automotive manufacturers like Mercedes-Benz, Tesla and Rimac to enable better vehicle
interfaces[36]. This project, having the same target environment, fits perfectly with Qt and
their open source automotive tools. The design for the Instrument Cluster happens to be
open-sourced and used as a demonstration for the Qt and QML languages potential.

However while the demonstration might be pretty, it uses hard-coded values. For speed rpm
and is in no way dynamic or can simulate the connected vehicle. Allowing for modifications
and public use, the Qt automotive cluster demo is open-source[37]. By making use of a static
design and skeleton for the instrument cluster and implementing the features stated in the
design section, the requirements for the visualisation of the vehicle and Fog nodes
information were achieved.

The Instrument Cluster functionality implementation is divided into two main sections: CAN
Bus Listener and Fog Node Listener.

CAN Bus Listener
The CAN Bus Listener is a client that connects to the CAN Bus Server described in the
previous section and accepts incoming CAN Bus frames. The business logic can be seen in

the following snippet in Fig. 29:

[/ Can bus socket

[/ Check if certificate exists

QLatinl5tring rootCApath = QLatinlString("pubkey.pem");
QFileInfo check_file(rootCApath);

/ Load certificate
QList<QSslCertificater cert = QSslCertificate::fromPath(rootCApath, QSsl::Pem, QRegExp::Wildcard);

[/ Create an self-signed certificate error

[/ and add it to the S5L dgnore list

/ For a production system this won't be an dissue
Q5slError error(QSslError::SelfSignedCertificate, cert.at(@));
QList<Q5slError>» expectedSslErrors;
expectedSslErrors. append (error);
m_webSocket.ignoreSs1lErrors();

[/ Attach Q5s1Socket::encrypted signal
[/ to the onSslConnected method
connect (&m_webSocket, &Q5slSocket::encrypted, this, &QtIVIClusterData::onSslConnected);

{/ Do the same for when there is an error

[/ An call the onSslError function

typedef wvoid (Q5slSocket:: #sslErrorsSignal) (const QList<QSslError> &);

connect (&m_webSocket, static_cast<sslErrorsSignal>(&QSslSocket::sslErrors),
this, &QtIVIClusterData::onSslErrors);

[/ Connect to the CAN Bus with encrypton
m_webSocket.connectToHostEncrypted("169.254.22.105", 8082);

Figure 29: Instrument Cluster: listener for CAN Bus and
Fog Node connections
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In short, in the file ‘qtiviclusterdata.cpp’, the certificate created by the CAN Bus is Loaded
and using SSL sockets, an encrypted connection is established with the CAN Bus. The
connect statement on line 124 connects the OSslSocket::encrypted signal[38] with the
onSslConnected method. In this case m_webSocket is the object which emits this encrypted
signal and on line 133, the connection is begun, if it is successful, the onSs/Connected
method is called.

The onSsl/Connected function simply attaches the readyRead [39] device signal to the
checkMessages tunction which then checks the payload of the CAN Bus data transmitted on

the web socket as seen in Fig. 30.

* yoid QtIVIClusterData: :onSslConnected()

{
qbhebug() << "socket connected";
connect (&m_webSocket, &0Q5s1Socket::readyRead,
thi=, &QtIVIClusterData::checkMessages);
h

Figure 30: Instrument Cluster: On connection with CAN Bus

In the checkMessages function the JSON object payload transmitted by the CAN Bus server
is deserialized and the ID is appropriately checked against the arbitration IDs defined earlier
in the CAN Bus converted to decimal, e.g.speed is id #580, gear is #501 etc. as seen in Fig.
31.

* void QtIVIClusterData::checkMessages()

{
Q3tring message = m_webSocket.readline();
202 QJsonDocument jsonResp = QZsonDbcument:rFroTJson(message.toU:fE(}};
QJsonObject jsonObject = jsonResp.object();
int arbitration_id = jsonObject.value("id").toInt();
QJsonArray payload = jsonDbject.value("data").tohArray();
bool ok;
- if (arbitration_id == 588) {

//set speed
int speed = payload.at(3).toString().tolUInt(&ok, 1@);
onVehicleSpeedChanged(speed);
int nRpm = speed * 150;
onRpmChanged (nRpm) ;
- } else if (arbitration_id == 501) {
int gear = payload.at(3).toString().toUInt(&ok, 18);
onGearChanged(gear);

Figure 31: Instrument Cluster: Checking message types

The payload data is then converted and sent to the appropriate functions which then visualises
it in the instrument cluster appropriately.
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Fog Node Listener

The Fog node listener works in the same fashion as the CAN Bus listener with the only
difference that the connection is not encrypted. The reason for this is that the target devices
which will facilitate a network connection between each other will be in the real life scenario,
cell towers and cellular-technology enabled units using well-established encryption methods
such as 3DES and others to encrypt data in transit, thus this is not the main focus of the
implementation.

* void QtIVICLlusterData: :checkCollision()

186 |
Q5tring message = m_tcpSocket.readline();
QJsonDocument jsonResp = QJsonDocument::fromlson{message.toltfE());
Qlson0bject jsonObject = jsonResp.object();

- if{jsonObject.value("collision").toString() != ""){
onCollisionChanged(true);
1
1

Figure 32: Instrument Cluster: Collision data checking

The checkCollision function as seen in Fig. 32, checks whether the Fog node sends collision
data, and if so, displays the information on the Instrument Cluster. The Fog Node Listener
also periodically sends location data to the Fog node so that it can keep track of the vehicle’s
position.

4.4. Fog Network Implementation

The Fog network consists of Fog nodes which have the same functions, to receive location
and vehicle status information from vehicles connected to them. While Fog nodes should
typically be represented by server-grade hardware and cell towers, for the purpose of this
prototype, a laptop has been used to allow for similar features such as a semi-powerful
processor and wireless interfaces to which other nodes and vehicles can connect.

4.4.1. Configuration

The Fog Node does not have many specific configuration requirements apart from having
Python3 installed on the system. In order to allow other devices to connect to the system (in
this case a laptop), a shared wireless connection is required. Depending on the platform, this
can be done in different ways, but in most Linux systems with a Graphical interface it is a
matter of going into ‘Network Settings’ and turning on WiF1i hotspot sharing.
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4.4.2. Implementation

The Fog Node represents a simple server that accepts vehicle connections and their JSON
payloads which contain location and vehicle status information. In a similar fashion to the
CAN Bus Server it creates a server listener. The only difference is that it starts a thread to
handle the client connection while it is alive and allows for keeping track and addressing
multiple connections asynchronously. The current configuration of the Server accepts
location, speed and collision JSON data and saves the parameters in a dictionary assigned per

the client’s address. This can be seen in Fig. 33.
E in listening for connections
while True:
try:
print(
clien

t_new_thread(hs er, (clientsocket, clientaddr))

Figure 33: Fog Node: Listening for vehicle connections

In Fig. 33 ‘clients’ is a defined dictionary and the location and speed are assigned as empty
when initialising the connection and starting the thread. The next time the vehicle (in this
case the Instrument Cluster) sends location and speed data, the parameters will be saved
towards this dictionary together with the rest of the vehicles connected to the Fog Node.

print(
while True:

).rstrip()
if in data_ 0 == data_utfa:
print( clientaddr)
break

data = json.loads(data_utfs)

Figure 34: Instrument Cluster: Handling connections and
their data

The ‘handler’ function in Fig. 34 checks the data received by the connected client,
deserializes it and checks for the data types existent and assigns them appropriately.
For the collision data type, however, the process is slightly different as seen in Fig. 35.
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in clients:

1}).enc
1.split( )

lon = clients|c 1.split( )
l .

1}) .encode(

Figure 35: Fog Node: Collision Checking and
Notification sending

When a collision is detected, the program iterates over the list of known clients connected
and alerts each and everyone, whose position is within 200m of the collision in order to avoid
further incidents i.e. is the same within 3 decimal points, the default accepted latitude and
longitude format that the clients send uses 4 digits after decimal point which is accurate
within 3.6 feet or 1.1 meters [40]. Please consult with Appendix B to see what the
approximate accuracy is for latitude and longitude decimal notation. When a client
disconnects from the Fog node, the programme removes its entry from the dictionary to
prevent iterating over it.

In order to test the vehicle incident use case, a dummy, connected vehicle script was created
to simulate a vehicle sending a collision warning to the system. While this could be
implemented on another CAN Bus Simulator and Instrument Cluster with the respective
Raspberry Pi boards connected to the Fog node, this is unnecessary code duplication and use
of physical devices. The Python3 script simply sends its vehicle coordinates and after a
couple of seconds, sends a collision warning to the system as seen in Fig. 36.

: ' }
json.dumps(location).encode(
clientsocket.recv(buf). de( }.rstrip())

}

ollision).encode( ))
.recv(buf) .decode( J.rstrip())

Figure 36: Vehicle Collision notification script
This script will be used later in the Evaluation section to test the main use case of the system.
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4.5. Overall System

In order for the use case to be executed, the separate components need to be put together and
connect with each other to transmit the necessary vehicle/fog information.

Figure 37: Hardware Fog Node and Connected vehicle Simulator representation

The above image in Fig. 37 represents the final implementation of the system and its
components. The laptop on the right of the image is running the vehicle collision simulator
script and the Fog node, to which the red-coloured Raspberry Pi 1s wirelessly connected
which represents the Instrument cluster. A visual representation of the Instrument cluster can
be seen on the monitor to the left, also connected to the same Raspberry Pi, visualising the
Fog Node and CAN Bus inputs. The right-most Raspberry Pi represents the CAN Bus
Simulator and is connected to the Instrument Cluster via Ethernet. This is due to the fact that
a physical CAN Bus could not be created or sourced and so the alternative is to use Ethernet.
Connected to the headless CAN Bus Simulator is a keyboard which represents the vehicle
driver inputs e.g. throttle, turn signals etc. When an action is initiated through the keyboard,
the CAN Bus recognises the action and sends a signal to the Instrument Cluster which then
visualises it on the Monitor. Sending a Collision signal from the laptop results in the
Instrument Cluster Raspberry Pi to display the warning on the Monitor.
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4.6. Successes and Failures

Overall, looking at the system as a whole, the major aspects have been delivered, of course
not to the standards of a production-ready application, but as it stands, it can accommodate
expansions and patches for the missing pieces in the future. What is surprising is that not
many of the initial requirements have changed and really, only minor deviations have been
made for the sake of creating a better implementation.

However, the whole process was not as simple as it may seem. The time spent for initial
research into which technologies were actually used within cars of today and tomorrow was
disproportionate to the rest of the project because of the sheer mass of proprietary
technologies manufacturers use and do not disclose. Above all else was the complexity factor,
trying to mimic something which is implemented in electronics hardware has a steep research
and implementation curve.

Having managed to make a list of possible technologies it was really trial and error, with
many iterations on the different components in the system, especially for the Instrument
Cluster. Initially using a graphical C++ library, then turning to PyGame and then to Qt (being
mostly C++), took a substantial amount of time to implement. As a matter of fact it took a
whole week to only setup the Raspberry Pi to compile the Qt application and getting the
demonstration up and running. The platform was not officially supported by Qt which led to
the difficulties in setting the environment up for building the software. The Qt and QML
languages were not entirely new to myself, however it did take time to get back into grips
with programming it. Thankfully the documentation provided by the Qt Company was very
useful and up-to-date.

Another hurdle that was met was the vast amount of ideas and additions that came up during
the project development. These ideas will be covered in the Future developments section,
however I personally found them to be distracting and deviating from the originally set out
path, which in the long run consumes time available for the project.

As with most projects, initial ambitions are high, which is especially true in this case,
however I believe that through careful planning and lots of research it is possible to at least
come close to achieving your goals, which I believe is I have managed. A further reflection
on the project and the learning benefits it has contributed to, will be covered in the next
sections.
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5. Evaluation and Results

Having completed the system implementation, the next phase of the project is to check to
what extent we have achieved the goals of the project. This section will discuss the overall
outcome by carrying out tests and examining how well the aims have been realised as well as
the project learnings and achievements.

5.1. Testing

During development of the system, many tests were performed to check whether every
component fulfills the requirements. Continuous debugging and testing at each stage of the
project was needed to ensure the original objectives are met . The below table gives details
into the final test cases that were created to check whether the final implementation is in line
with the design specifications and requirements. The overall outcomes of the test cases show
whether the system implementation was a success. The test cases have been chosen to reflect
and demonstrate the main functionalities of the system, assuming it is configured correctly.
The below performed use case tests make sure the system works in the scope of the intended
functionalities and does not go in-depth into the more rigorous test approaches which will be

justified afterwards.

Test Cases

Description

Pre-Conditions

Expected Outcomes

Outcomes

1. Pressing the UP
arrow key on the CAN
Simulator.

N/A

The instrument
Cluster displays an
increase in speed.

The speedometer
needle moves up on
the Instrument
Cluster.

Success

2. Releasing UP arrow

UP arrow key was

The Instrument

The speedometer

key on the CAN pressed. Cluster displays the needle moves down
Simulator. speed lowering. on the Instrument
Cluster.
Success
3. Pressing the Enter N/A Parameters Battery The Instrument

Key on the CAN
Simulator.

level, Fuel Level,
Temperature level,
RPM should increase

Cluster Battery level,
Fuel Level,
Temperature level,
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on the instrument
cluster. To
appropriate amounts
effectively starting

RPM parameters
increase from 0 to a
preset level
effectively starting

the car the car.
Success
4. Pressing the Enter Enter Key was Parameters Battery The Battery level,
Key on the CAN pressed once before. | level, Fuel Level, Fuel Level,

Simulator again

Temperature level,
RPM, Speed, Gear
should go down to 0

Temperature level,
RPM, Speed, Gear
parameters on the

effectively stopping dashboard go down to
the car. 0 effectively stopping
the car
Success
5. Pressing the N/A Turn signals on the The Turn signals light
Right/Left arrow Key simulator should start | up.
on the CAN Simulator blinking. Success
6. Releasing the The Right/Left Turn signals should The Turn signals
Right/Left Arrow Key | arrow keys were continue blinking. continue blinking.
on the CAN Simulator | pressed before. Success
7. Pressing the N/A The selected gear The selected gear
0,1,2,3,4,5,9 keys on would change changes
the CAN Simulator appropriately. 0 is appropriately.
Neutral and 9 is Success
Reverse gears.
8. Pressing the ‘p’ N/A The icon on the The parking brake

button on the CAN
Simulator

instrument cluster
should light up and
show that the parking
brake is engaged

icon lights up on the
Instrument cluster

dashboard.
Success

9. Pressing the ‘p’
button again on the
CAN Simulator

The button was
pressed once before

The instrument
cluster parking brake
icon should turn off.

The icon turns off on
the instrument cluster
dashboard.

Success

10. Pressing the ‘I’

N/A

The ‘lights’ icon on

The ‘lights’ icon on
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button on the CAN
Simulator

the instrument cluster
should light up to
indicate the car lights
are on.

the Instrument cluster
dashboard lights up.
Success

11. Pressing the ‘I’
button on the CAN
Simulator again

The button was
pressed once before

The ‘lights’ icon on
the instrument cluster
should turn off
indicate the car lights
are on.

The ‘lights’ icon on
the Instrument cluster
dashboard turns off.
Success

12. Pressing the ‘s’
button on the CAN Bus
Simulator

N/A

The seat belt icon
would turn on the
instrument cluster.

The seat belt icon
lights up on the
instrument cluster.
Success

13. Pressing the ‘s’
button on the CAN Bus
Simulator again

The button was
pressed once before

The seat belt icon
would turn off the
instrument cluster.

The seat belt icon
turns off on the
instrument cluster.

Success
14. Pressing the ‘f” N/A The fuel level should | The fuel level
button on the CAN Bus begin to increase in increases on the
Simulator 1% increments on the | dashboard every time
Instrument Cluster the button is pushed.
Success
15. Pressing the ‘t’ N/A The temperature level | The temperature level
button on the CAN Bus should begin to increases on the
Simulator increase in 1% dashboard when the
increments on the button is pressed.
Instrument Cluster Success
16. Pressing the ‘b’ N/A The battery level The battery level
button on the CAN Bus should begin to increases on the
Simulator increase in 1% dashboard when the
increments on the button is pressed.
Instrument Cluster Success
17. Pressing the left N/A A door icon on the A door icon was not

‘shift’ button on the
CAN Bus

instrument cluster
should indicate the
doors are locked

implemented in the
Instrument cluster.
Failure.

59




18. Pressing the right N/A A door icon on the A door icon was not

‘shift” button on the instrument cluster implemented in the

CAN Bus should indicate the Instrument cluster.
doors are unlocked Failure.

19. Start the vehicle The Fog node and The vehicle A collision

collision simulator CAN Bus instrument cluster notification is shown

Simulators must be

shows a collision

on the instrument

active. notification. cluster display.
Success
20. Disconnect the The Instrument The Fog node should | The Fog node is still

Instrument cluster from

Cluster was

continue accepting

active and can

the Fog node connected to the Fog | connections. continue operation.
connection node. Success.
21. Disconnecting the | The CAN Bus was The Instrument The Instrument

CAN Bus from the

connected to the

cluster should

cluster continues

Instrument Cluster Instrument Cluster. | continue running. operation.
Success.
22. Disconnecting the | The Instrument The CAN Bus should | The CAN Bus is still
Instrument Cluster Cluster was continue accepting active and continues
from the CAN Bus. connected to the inputs. operation.
CAN Bus. Success.

23. Reconnecting the
Instrument Cluster to
the CAN Bus.

The Instrument
cluster was
disconnected to the
CAN Bus.

The Instrument
cluster should begin
to receive CAN Bus
inputs.

The Instrument
cluster receives CAN
Bus frames after
reconnecting and
displays them.
Success.

To gain further confidence in the completeness and robustness of the system, many different

classifications of tests can be executed which would be more rigorous, such as unit testing,

integration testing, component interface testing, acceptance testing, performance testing,

security testing etc. and would definitely be advantageous in identifying the weak points in

the system.

However, this being a project aimed at being flexible and extensible, allowing for other

developers to pick it up and further extend it i.e. it will continually be in development, the

above mentioned tests would be more suitable for a production-ready environment, which

this project does not have as a short-term aim. On top of this, such rigorous testing usually
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takes up half of the available development time, which is not a possibility for a feature-driven
project like this one. The further testing requirements have been considered for the Future
Development section of the project, and will definitely be necessary if the project takes a turn
for a production-ready environment such as automotive manufacturing companies.

5.2. Progress against Objectives

In order to critically evaluate the results of the system and the overall progress we have to
look into what was created and how it meets the expectations of the main project objectives.

Objective 1: Create a CAN Bus Simulator prototype that mimics as closely as
possible a connected car’s internal network

While a complete production-ready system has not been achieved, the intended
implementation of the prototype CAN Bus Simulator has been fulfilled and all of the ‘must
have’ requirements met. This can be reaffirmed from the above use case tests. The prototype
CAN Bus simulator provides, to a great extent, a look into the internal workings of a vehicle,
how parameters are being processed and exchanged between the different components. It can
definitely, with more time and effort be extended into a fully-featured production-ready
application which will be touched on in the Future Development section. In comparison to the
initial plan, what has been implemented, only has small details omitted or changed which are
not crucial or that completely change the functionality. Examples such as the lack of OBD
connector, for diagnostics, limitation to only two ECU’s and not using the AGL distribution
as outlined in the Changes to Initial Plan section are minor requirements that do not deviate
from the initial aims, but only complement them. As it stands at the moment it provides a
useful basis for other developers to simulate a multitude of different parameters, the ability to
add more functionality and features and flexibility and extensibility that would cater any
developments they might want to create. Overall, for the available time frame of the project,
the simulator has the complete feature set and is tested to work as intended in the use case
scenario.

Objective 2: Visualise the simulated connected car’s functionality using an
automotive Instrument Cluster

With one of the major aims of the project being, visualising the internal car networks’
parameters, the Instrument Cluster was not easy to conceptualise and implement. Having said
in the Initial Plan that there needs to be a form of a visualisation method, noting a web-based
interface, during the course of the project development this became not viable due to the
technical requirements for low-latency in the displaying of the inputs. This objective became
a major hurdle when researching and testing the different methods it could be implemented
with as stated in the Implementation section. Because of the necessity and diligence in
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completing this requirement it took a substantial amount of the project development time to
configure and implement the Instrument Cluster. The end result however was worth that
persistency. Showing from the use case testing above is that the requirements are all met for
the purpose of the Instrument Cluster and it displays both CAN Bus and Fog data without
issues. In fact, owing to the open-source Qt instrument cluster design and demonstration, I
believe that this component of the system is more feature-complete than the rest and does not
have as much room for improvement as the rest of the components. Despite this, ideas and
features have been listed for the Instrument Cluster in the Future Developments section. At
its current state, the visualisation component provides a useful method for seeing the real
advantages of the use case that is being simulated: collision avoidance. It is definitely more
‘production-ready’ than the rest of the system components, however it still needs further
rigorous component interface testing and many other testing approaches to be applied before
naming it that.

Objective 3: Create a Fog Network in supporting vehicular services

The Fog and Edge computing theory has not yet been explored and is just beginning to show
its full potential. This project merely scratches the surface of the possibilities that this
technology may bring to the world of communications and computing. The attempt here was
to create and simulate a Fog Network in the field of vehicular services. This proved to be a
challenge from the start as it would be for most people that explore a new, unknown to them
before notions and technologies. What was beneficial to the project and the implementation
was the availability of very up-to-date research articles done by professors, knowledge groups
and scientists alike, that really gave this project a good direction into this novel approach.
Having done the research, implementing the Fog network was still not an easy task to achieve
as there are no technology standards that have been selected as of yet. Being a new
technology, it is bound to be changing requirements in the future, as the public sees what
works and what does not. And this possible future change has also been taken into account in
the implementation, making it flexible, modular and extensible. Reflecting on the current
state of the Fog network component, there is much room to improve, especially in
establishing connections (at the moment it is a fixed port and IP address), as well as
processing more than the specified initial vehicle parameters. The possibilities of extending
the Fog network further have been mentioned in the Future Development section. In
retrospect I believe that the Fog network nodes support the main aim and use case of the
project well, showing the advantages of using this new and enabling technology. In my
opinion it would take time before the technology matures and this project could be a setting
stone in other Fog and Edge-driven vehicular services that could be realised in the coming
years.
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Overall Project Progress

Having used the Feature Driven Development methodology proved beneficial in that it
allowed to clearly define and develop the components in a step-by-step manner. Being
loosely coupled, the system made it easier to see and improve parts which did not support the
overall goal of the system. The choice to use popular programming languages such as Python
make the system more accessible for future expansion by other developers who are unfamiliar
with vehicular systems. Qt is not the most known of programming frameworks, however it
has incredible potential in the automotive industry, proven by the wide adoption by industry
leaders such as Tesla and Mercedes-Benz. Using the well-established network ‘sockets’
communication link, contributes to the already good accessibility of the project.

Apart from the above mentioned facts, there are strengths and weaknesses to using Fog &
Edge computing for this project. The immediate strong point is that, the project is part of a
growing research library of the implications of the technology. By doing more exploration
into the capabilities we can find new or existing use cases to implement this approach to.
Another strong point is the actual technology, by having vehicles and participants one
network hop away from the service, latency and throughput limitations are basically
eradicated.

In today’s world when computing power is becoming ever so cheaper, accessible and more
compact, the financial implications of the technology for deployment in enterprise
environments are not that huge. However the limitations come in with the socio-economic
adoption and installation of such computing Fog nodes on cell towers around the public
roads. The project has not explored the possible connection between the cell tower interface
and the actual Fog node link that is based at the cell tower. This would require more research
into how cellular networks work and would go too far off the topic of the project. This is
something that the companies which support existing cellular infrastructure need to address
and there probably will be many limitations until a possible solution is found.

Another downside to the project is that there is the possibility of vehicular Ethernet, to phase
out CAN Busses in cars. Ethernet technology is becoming cheaper and easier to implement
and allows gigabit speeds of throughput and with autonomous vehicle sensors such as
cameras and radar constantly sending data, the CAN bus will probably be used only for the
drivetrain of the vehicle. However there are limitations to every technology and vehicle
Ethernet is no exception as manufacturers are currently working on setting specific vehicular
protocols which would make the technology very proprietary and inaccessible, as can be seen
with Tesla[47].
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6. Future Development

The following sections will look into any ideas that have arisen during project development
and could not be explored in the given time frame as well as longer-term plans for the future
of the project.

Initially having a broad scope, the project could not deliver a production-ready application,
however a prototype implementation on which future developments can be made has been
firmly established.

Packaging the CAN Bus simulator

While progress has been made towards extensibility of the CAN Bus Simulator, for example
get/set methods and other supporting functions, they should be able to be imported into
popular languages such as Python as a package with the syntax ‘import packagename’ so that
individual functions and classes can be called. This will accelerate development and improve
developer adoption of the project. The long-term goal is to have this simulator as a useful tool
with which different internal vehicle functions can be prototyped, simulated and used in
various connected vehicle or transportation projects alike. By making the simulator this
flexible, it might not become automotive specific but could also be used in the prototyping
and simulation of projects in different fields such as food processing, nuclear physics,
spacecrafts, oil platforms, wind energy farms and in general, sensor-enabled environments.

Simulating more vehicular features and AGL integration

It is obvious that this prototype has not provided a simulation of all of the vehicular features
and it would be beneficial if more are added, to make a more detailed picture and simulation
of a vehicle’s internal network. The potential is there, to simulate more CAN Buses and link
them together, systems such as the Heating, ventilation and air conditioning (HVAC) system
can be operated in unicine. Automotive Grade Linux has already made a good simulation of
the HVAC systems[4] so a potential collaboration with AGL is possible, to bridge the two
projects together and make a uniform system. AGL foundation is currently experimenting
with providing support for the vehicle drivetrain, however their expertise is in complete
production-ready implementation, not simulation.

Fog node reconnection

When a vehicle becomes out of range from the Fog node it needs to reconnect to the next,
closer node to it. This requires the vehicle to always be scanning for the Fog nodes and to
connect to the one which has the best signal. This could be done by using the same SSID but
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this could not be implemented and tested in the available time. This addition would really
bring the project closer to a production system.

Communication between Fog nodes

Another aspect that needs to be worked on in the future to improve the system, is establishing
communication between Fog nodes, so they can relay service or any type of information. This
requires further research into how the cellular network works, down to the cable,
base-stations and general protocols. Distances, network topologies and security have to be
taken into account while devising the communication methods. It could be a possibility to
route data through the cloud servers where they have reach over the whole network but this
might bring latency to the system

Use real cell tower technology to simulate the V21 connection

Another possible future work that could be carried out is simulating cell tower technology in
a closed environment. However, this would require purchasing specialised equipment,
receivers and transceivers which have to be in line with existing standards. True simulation of
the environment and conditions in which connected vehicles operate can then be achieved.
Research into the protocols and technology for cellular communication from end-to-end will
be necessary and using that knowledge to replicate a use case on a smaller scale. By doing
this, performance, throughput and scalability can be tested.

Containerisation of the Fog service

A potential feature and benefit when creating a Fog service if it were containerised. At the
moment, the fog service emulated is simply a script running on a given machine. In the future
it will be advantageous if the Fog service becomes more fully-featured, with dedicated
storage methods, communication protocols and has its own operating environment to become
independent from the platform it is being installed on. This is the notion of containerisation
and technologies such as Docker [41]. This way, the service can be propagated through the
Fog network and installed on only the necessary Fog nodes and can be brought down or put
back up, depending on the needs of the system.
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7. Conclusions

Fog and Edge Computing is a novel approach at solving the future high-bandwidth,
low-latency needs of connected devices, Internet of Things, automation and vehicles alike.
The implications of the technology as conceptualised, prototyped and tested in this project are
substantial. Connected vehicles in the near future will most likely be the first ones to
experience the advantages of this technology. With the rise of collision prediction and
avoidance technologies, the use case shown using the connected car simulator and Fog
network here, could be a part of the whole industry movement toward “Vision Zero”[6]
accident roads. Due to these implications, the importance factor of the project is high.

Despite only being a partial implementation of a full, production-ready system, the project
testifies the advantages of creating a vehicle simulator and using it in a Fog environment.
Although each vehicle component could not be simulated, the majority of vehicular,
mission-critical systems have been shown to function as intended, with the only limitations to
expanding the list even further, being time and resources. What is important, the developed
system is extensible, can be built on and improved in the future to support different use cases
to the initial scope of this project.

The technologies used for the completion of the implementation have been specifically
chosen to allow for the best compatibility with what is existing in the internal vehicle
systems. This is especially true for the Instrument Cluster display which makes use of the
industry-leading framework ‘Qt’, which allows for deployment of the component on any
embedded systems and is crucial for the potential adoption of the project with the target
audience. The hardware used to create and test the system with is also readily available,
making the project even more accessible for potential future development.

In retrospect, the project has achieved what it set out to do, and while it has obvious
limitations, it has produced a system which has no analogue in the current computing space
and I personally believe that these initial steps taken can feasibly become a mature and
valuable tool for the rapid prototyping and development of edge-driven real-time vehicular
services. Every component developed with the intention of being stand-alone allows the even
further expansion of the separate components into separate products for different purposes in
fields other than automotive, which is especially true for the CAN Bus Simulator.

Only time will tell what the future may bring and which technologies will prevail in the
connected world of tomorrow.
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8. Reflection on L.earning

The purpose of this section is to critically evaluate my personal performance in tackling the
project, to show which skills and abilities have been developed as well as the learning areas
which would need focusing on in the future. Apart from the regular learning of programming
languages, I will look into the improvement of personal and professional skills. I will be
comparing my progress against the Skills Framework for the Information Age (SFIA) [42] in
order to examine the employability and professional skills developed.

8.1. Personal SKkills

Time Management

Having finalised the project, I can really appreciate how important time-management is in the
development of systems of this scale. Even the careful planning was insufficient from the
initial report, as it was expected that some parts of the system would take a disproportionate
amount of time to complete. Any disruptions in the learning flow were not taken into account
or any unpredictable design changes.

After having done the research and creating the initial system design, planning the workload
of the project, proved to be a challenge and the best way I found I could keep track of my
time was to segment the separate functionalities of the project to be designed and developed
into time-frames, working incrementally to get a better view of the scale of the project. I then
assigned each functionality an estimated completion time in order to get a perspective of what
could be included and what had to be omitted or put aside until the major components were
complete.

Adhering to the work plan I set out to complete, issues into developing some of the
components started to arise. The Instrument Cluster took a substantial amount of time to
develop and the rest of the functionalities had to be pushed back because of it. Reflecting on
this experience, I believe it is a better way to plan the project with time to spare. For example,
if initially assigning a week to a given component (which might actually be the real estimate
time to develop), an extra quarter or half of that time should be assigned as room for
problems and their resolution. By doing this to every requirement, the system is bound to be
completed without time management issues.

A further method that would have been useful is carrying out a mid-term project review. By
doing this it would have been possible to identify what I have been trailing behind on. I was
so involved in solving the development of the Instrument Cluster that a review of the
progress for the system as a whole would have given me a better idea that overtime work
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would be needed if the rest of the system had to be completed within the overall time-frame.
Other components would subsequently lag behind in their completeness, by ‘eating into’ their
time on the Instrument Cluster implementation.

This learning experience was valuable to me as it showed me the pitfalls of time management
and gave me a better understanding of how to cope with unexpected project time
irregularities.

Project Planning and Organisation

Having regular meetings with the project supervisor meant I could discuss any details of the
project I was uncertain of, such as the choice of technologies, approach and general guidance
for the project. From those very useful conversations I could adjust and plan my project
accordingly and much of the time-scheduling from the previous section contributed to the
overall satisfactory organisation of the project.

Even though initial project planning was in place, having a coursework for another module
mid-term affected the scheduling and required careful reorganisation so as to not overlap the
two projects. This was also true during the Easter break, when for unpredicted reasons crucial
time had to be taken away from the already tight schedule. Missing small details like these
builds up and necessitates working on the project overtime to avoid the possibility of not
meeting the requirements. This experience has taught me a valuable lesson to “expect the
unexpected” and give the project some head-room.

8.2. Progress against SFIA

During my Placement year in industry, [ became familiar with the SFIA network for
evaluating personal and professional development against a set of criteria defined by the
framework for different skills specific to IT people. I have chosen a few particular skills that I
think I have improved in over the course of the project. I will be using version 6 of the SFIA
framework to make a self-reflection and analysis of my progression of the most notable skills
from the development of this project.

Solution Architecture (ARCH)
The SFIA Solution architecture skill defines that the person can deal with the overall design

of a high level architecture that would give the development stages of the project further
guidance. From the descriptions of the SFIA Level mappings I believe that through the work
on this project I have achieved a Level 5 on the mapping. This is because I believe I cover
most of the requirements to possess this level of achievement. Using appropriate tools,
logical models, components and interfaces in order to contribute to the development of
systems architectures in functional areas description of the mapping fits the work done on this
project in Sections 3 and 4. Producing detailed component specification and detailed designs
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for implementation using selected products is also covered in this project in section 2 and 3.
Since this project is not used in a business, the business change and assurance requirements
are not relevant. Providing advice on technical aspects of system development and integration
such as future changes, deviations from specifications is also something covered in the Future
Development sections. I can not consider myself Level 6 on the mapping because it defines
the need to be in a professional environment to get feedback from project stakeholders in
order to ensure the design covers the key points of the solution.

Systems Design (DESN)
During the course of the project I believe I have reached a Level 3 in SFIA Systems Design

which means that I am able to specify user/system interfaces, interpret logical designs into
physical ones, taking into account the target environments, any performance and security
requirements and existing systems (Sections 2 and 3). As well as this, I have to be able to
produce detailed designs and documents that work using required standards (sections 3 and
4), methods and tools as well as prototyping tools where necessary (section 4). I believe that I
satisfy these requirements for Level 3 in systems design as they are mostly covered to the
desired level throughout the report.

Network Design (NTDS)
Through the research and development that went into creating the Connected Vehicle

Simulator, I have gained valuable insight and knowledge as to how existing vehicle, roadside
and in general, network infrastructures operate and have conceptualised the network for the
system. This learning experience goes in line with Level 5 of the SFIA Network Design
professional IT skill which mentions that producing system designs and specification and
overall architectures and design of networks and networking technology. The skill description
also mentions specification of user/system interface including validation, access, security,
risks and translates logical designs into physical designs which is the case with the work done
in this project. I believe that this is a very useful skill in my intentions to have to deal with
networks in the professional future environment in a company.

Programming/Software Development (PROG)

Of course, having dealt with a software development project of this scale, improvements in
Programming/Software Development skills as defined by SFIA are bound to happen. From
my year in industry, having been a systems administrator for a company, I did not have much
of an opportunity to improve my Software Development skills. I am happy to say that with
the development of this project I believe I have reached Level 3 in this professional skill. This
means that I have achieved abilities such as designing, coding, testing, correcting and
documenting moderately complex software programs and scripts from agreed specification
and subsequent iterations. I believe that this is a valuable skill to improve because of the
potential future work in the industry implications.
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Table of Abbreviations

Abbreviation Meaning

SLA Service level agreements

[oT Internet of Things

oS Operating System

ITS Intelligent Transportation systems

Fog Stratum of small servers or miniaturized data centers that
communicate with end devices and cloud services

Edge Stratum of end-devices which consume given content or
services

ECU Electronic Control Units

Raspberry Pi Low power, low cost, system on a chip boards used for
development projects

AGL Automotive Grade Linux

FDD Feature Driven Development software methodology

3G,4G,5G 3rd, 4th, 5th generation mobile communications technologies

V2v Vehicle-to-Vehicle

V21 Vehicle-to-Infrastructure

V2X Vehicle-to-Everything

VCS Vehicular Communications Systems

DSRC Dedicated Short Range Communications

OSI Open Systems Interconnect model

MAC Media access control address

ARP Address resolution protocol
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CAN Controller area network

DLC Data Length Code

WAVE Wireless Access in Vehicular Environment
ETSI European Telecommunications Standards Institute
Kb,Mb,Gb,Tb kilo, mega, giga, tera bits

KB,MB,GB,TB kilo, mega, giga, tera bytes
Kbps,Mbps,Gbps, Tbps kilo, mega, giga, tera bits per second
MIMO Massive Multiple-input Multiple-output
SSID Service Set Identifier

ABS Anti-lock braking system

RPM Revolutions per minute
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Appendices

Appendix A

List of CAN Messages and their functions for the CAN Bus Simulator
CANID | CANID | Datain Byte Vehicle Function
(HEX) (DEC) (From 0 to 5)
0x244 580 3 Speed value (num)
0x1F5 501 3 Gear value (num)
OxF7 503 5 Park brake (on/off)
0x1F8 504 5 Lights value (on/off)
188 392 5 Turn Signals (0-off, 1-left, 2-right)
0x1FB 507 5 Seat belt (on/off)
0x1FC 508 5 Fuel level (num 0-100)
0x1FD 509 5 Engine Temperature level (num 0-100)
0x1FE 510 5 Battery Level (num 0-100)
Ox1FF 511 5 Oil Level (num 0-100)
0x200 512 4 and 5 RPM (0 - 65 535)
0x201 513 5 ABS warning (on/off)
0x202 514 5 ABS warning (on/off)
0x203 515 5 Engine (on/ofY)
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Appendix B:

GPS Location decimal points and their distance accuracy.

Decimal Accuracy
Six

4 inch
000001 menes
Five

3.6 feet
00001 cc
Four

fi

0001 36 feet
Three

360 feet
001 e
Two 3600 feet
.01 0.7 miles
One 36,000 feet
1 6.9 miles
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