
Initial Plan

Author: Matthew Nunes
Supervisor: David Walker
Moderator: Xianfang Sun
Module Code: CM3203
Module Title: One Semester Individual Project
Credits: 40

Project Title: Parallel performance study of scientific codes using CUDA and OpenCL

Project Description:

Moore's law is one of the most well known laws amongst computer scientists. It asserts that the
number of transistors on a chip will double every two years. This has been true in the past, however,
chips are now beginning to reach their physical limits and it is predicted that Moore's law will stop
showing this linear increase by 2020. Despite the inadequacies of Moore's law, computer speeds
have continued to increase at an alarming rate. This has been achieved both by adding more
processors per chip and employing co-processors in the form of Graphics Processing Units to assist
in processing. The new hardware paradigms of parallel computers has led to a range of new
software models to allow programmers to exploit the additional hardware. Two examples of these
are Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL).[1][2][5]

CUDA was developed by NVIDIA and is therefore aimed at NVIDIA's line of GPUs. Effictively,
CUDA is an extension of C/C++. CUDA can only be run on NVIDIA GPUs and is optimised and
written specifically for them. [3][4]

On the other hand, OpenCL is a cross-platform, open standard extension of C for writing portable
parallel programs that can make use of CPUs, GPUs, FPGAs (Field Programmable Gate Arrays)
and more. OpenCL is maintained by the Khronos Group and is supported by a large number of
companies, a few which include Apple, Intel, Advanced Micro Devices (AMD) and NVIDIA. SDKs
(Software Development Kit) have been developed for OpenCL by Intel, AMD and NVIDIA. [6][7][8][9]

The project I will be attempting is aimed at comparing the performance of OpenCL and CUDA on a
variety of algorithms. The algorithms that will be implemented are:

1) The Matrix Multiplication algorithm
2) The Laplace equation
3) An image blurring algorithm
4) A molecular dynamics algorithm
5) A cellular automata algorithm

The Matrix multiplication algorithm is as its name suggests an algorithm that takes two matrices
and produces the result of their product. The behaviour of this algorithm can be studied as the size
of the matrix is increased.

The Laplace equation is used to determine the electric field surrounding a conducting object held at
a fixed electrical potential inside a box which is also at a fixed electrical potential. This is quite a
complex problem to parallelise due to the care that must be taken when choosing which values to
modify and which not to touch. Therefore it will be interesting to compare how well it suits

OpenCL and CUDA.

The image blurring algorithm replaces each pixel value at a point with the average of its neighbour's
values. Doing this blurs the image. This can be done more than once to further blur the image.

The molecular dynamics algorithm simulates the movement of molecules in a closed system where
the molecules obey the following rules: 1) If the molecules are close to each other, they will repel
one another 2) If the molecules are far apart, they will attract each other 3) If the molecules are
extremely far apart, they will have no effect on one another. By following these rules, it is possible
to simulate particle dynamics in a system.

Finally, the last algorithm that will also be implemented if time allows it is a cellular automata
algorithm which simulates the reaction that occurs on the catalytic converter of a car. To put it
simply, Carbon Monoxide reacts with Oxygen to give off the less harmful Carbon Dioxide. The end
result of this algorithm can take many different forms depending on values of the various variables.

The main variable being measured and compared is the runtime. Data will be gathered by varying
the problem sizes and language specific variables (such as chunk size, number of threads per block
etc.) to see how changing the variables affects the runtime. All the experiments will be carried out
on the same machine to reduce the chances of the results being skewed unintentionally. The data
will be stored in a spreadsheet (such as Excel or OpenOffice Calc) and graphs will be generated in
order to easily assess the trend in behaviour. Doing this should clearly show whether the OpenCL or
CUDA implementation of an algorithm is more efficient

Time permitting, the algorithms will then be further optimised using a variety of techniques which
include making use of shared memory and re-writing the algorithms to reduce the conditional
statements within them. Furthermore, given that OpenCL should run on any AMD device, its
performance for one of the algorithms could be analysed when running on a phone. Graphs will be
plotted in order to fully comprehend the effect of these changes on the runtime.

Final Report Details:

The final report that I will work on during the Easter break will contain the following headings in its
main body:

1. Introduction
2. Motivation and Background
3. Problem Description
4. Approach to problem
5. Code Description
6. Timing Experiments Performed
7. Results from Experiments
8. Analysis of Results
9. Future Considerations
10. Conclusion
11. Reflection

Essentially the final report will contain a description of how much I was able to achieve, an
explanation of my implementation, the results from running tests (with graphs), additional areas in
which the experiments could be further explored (future considerations) and a reflection on my
experience with this project.

Aims and Objectives:

• Implement the Matrix Multiplication algorithm, Laplace equation algorithm, image blurring
algorithm and the molecular dynamics simulation using both CUDA and OpenCL

• Compare the performance of the different implementations of the algorithms when problem
sizes and language specific variables (such as chunk size, threads per block etc.) are
modified

• Visualise the performance of the algorithms using graphs
• (Optional) Implement the cellular automata algorithm using CUDA and OpenCL.

◦ Compare the performance of the different implementations for this algorithm as before
• (Optional) Run one of the algorithms implemented using OpenCL on a phone capable of

running OpenCL.
◦ Measure its performance on a phone.

• (Optional) Optimise the algorithms by exploiting elements of both the hardware and
software such as using shared memory.
◦ Plot graphs to assess to benefits from the optimisations

Work Plan:

Time Period Tasks

Week 1 (27th January - 2nd February) 1. Write Initial Report
2. Research OpenCL and CUDA compilers
3. Learn OpenCL and CUDA
4. Meet Supervisor

Week 2 (3rd February - 9th February) 1. Implement the matrix multiplication
algorithm using OpenCL and CUDA

2. Compare the performance of the
algorithm written in OpenCL and CUDA

3. Implement the Laplace equation using
CUDA and OpenCL

4. Compare the performance of the
algorithm written in OpenCL and CUDA

5. Meet Supervisor

Week 3 (10th February - 16th February) 1. Implement the image blurring algorithm
using OpenCL and CUDA

2. Compare the performance of the
algorithm written in OpenCL and CUDA

3. Meet Supervisor

Week 4 (17th February - 23st February) 1. Implement the molecular dynamics
algorithm using CUDA and OpenCL

2. Compare the performance of the CUDA
and OpenCL implementations of the
molecular dynamics algorithm

3. First review meeting with Supervisor

Week 5 (24th February - 2nd March) 1. Implement the cellular automata
algorithm using CUDA and OpenCL

2. Meet Supervisor

Week 6 (3rd March - 9th March) 1. Compare the performance of the CUDA
and OpenCL implementations of the
cellular automata algorithm

2. Meet Supervisor

Week 7 (10th March - 16th March) 1. Run and measure the performance of one
of the OpenCL algorithms on a phone

2. Optimise the OpenCL and CUDA
algorithms for matrix multiplication

3. Measure and compare the performance
gain

4. Meet Supervisor

Week 8 (17th March - 23st March) 1. Optimise the OpenCL and CUDA
algorithms for the Laplace equation

2. Measure and compare the performance
gain

3. Meet Supervisor

Week 9 (24th March - 30th March) 1. Optimise the OpenCL and CUDA
algorithms for the image blurring
algorithm

2. Measure and compare the performance
gain

3. Meet Supervisor

Week 10 (31st March - 6th April) 1. Optimise the OpenCL and CUDA code
for the molecular dynamics algorithm

2. Measure and compare the performance
gains

3. Second review meeting with Supervisor

Week 11 (7th April - 13th April) 1. Optimise the OpenCL and CUDA code
for the cellular automata algorithm

2. Measure and compare the performance
gains

3. Second review meeting with Supervisor

Easter recess (14th April - 4th May) 1. Write report
2. Meet Supervisor

Week 12 (5th May - 9th May) 1. Submit report
2. Meet Supervisor

Work Plan Explained:

The table above shows an optimistic work plan in which all the optional objectives will be
achieved. Since it is ambitious, it is also not set in stone. The work plan is subject to change as I
will be following an Agile software development methodology (to the extent that is possible without
a team). I chose this since it is flexible in that it allows requirements to change and it is suitable for
small teams. While it is true that the Waterfall method is more popular and practiced, it is aimed
more at large teams. In addition, it seems counter-productive to be chained to a methodology that
doesn't encourage change despite the relatively low cost it would involve (in my case).

References

1. Blaise Barney, Lawrence Livermore National Laboratory. 2013. Introduction to Parallel
Computing [Online]. Available at: https://computing.llnl.gov/tutorials/parallel_comp/
[Accessed: 29-01-2014]

2. Moore's Law [Online]. Available at: http://www.mooreslaw.org/ [Accessed: 29-01-2014]

3. NVIDIA. 2014. What is CUDA [Online]. Available at: https://developer.nvidia.com/what-
cuda [Accessed: 29-01-2014]

4. Sarah Tariq, NVIDIA Corporation. 2011. An Introduction to GPU Computing and CUDA
Architecture [Online]. Available at: http://on-demand.gputechconf.com/gtc-
express/2011/presentations/GTC_Express_Sarah_Tariq_June2011.pdf [Accessed: 29-01-
2014]

5. Michigan Technological University. 2008. Scientist models molecular switch [Online].
Nanowerk. Available at: http://www.nanowerk.com/news/newsid=6076.php [Accessed: 29-
01-2014]

6. Khronos Group. 2014. The open standard for parallel programming of heterogeneous
systems [Online]. Available at: http://www.khronos.org/opencl/ [Accessed: 29-01-2014]

7. NVIDIA. 2014. OpenCL [Online]. Available at: https://developer.nvidia.com/opencl
[Accessed: 29-01-2014]

8. Intel. 2014. Getting Started With OpenCL* Applications [Online]. Available at:
http://software.intel.com/en-us/vcsource/tools/opencl [Accessed: 29-01-2014]

9. Mahesh Doijade. 2013. What is OpenCL [Online]. TechDarting. Available at:
http://www.techdarting.com/2013/06/what-is-opencl.html [Accessed: 29-01-2014]

https://computing.llnl.gov/tutorials/parallel_comp/
http://www.techdarting.com/2013/06/what-is-opencl.html
http://software.intel.com/en-us/vcsource/tools/opencl
https://developer.nvidia.com/opencl
http://www.khronos.org/opencl/
http://www.nanowerk.com/news/newsid=6076.php
http://on-demand.gputechconf.com/gtc-express/2011/presentations/GTC_Express_Sarah_Tariq_June2011.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/GTC_Express_Sarah_Tariq_June2011.pdf
https://developer.nvidia.com/what-cuda
https://developer.nvidia.com/what-cuda
http://www.mooreslaw.org/

