
Visualising Malicious Network
Activity

by Aled Owain Mason
Student no: 1130538

CM3203: One Semester Individual Project (40 credits)

Supervised by Prof. Omer F. Rana

Moderated by Mr. Michael Daley

A project submitted in partial fulfilment of
BSc Computer Science with Security and Forensics

School of Computer Science and Informatics
May 2014

Abstract

Many large organisations now implement Intrusion Detection Systems (IDSs)
to mitigate the increasing cyber-threat. These IDSs produce log files containing
information about each threat that the IDS has prevented. These logs are an im-
portant resource, as they contain key information about the types of threats that are
emerging, as well as useful metadata linked to each entry. However understanding
this data is a difficult task, as there are thousands of cyber-attacks being launched
every day towards large networks which implement an IDS.

The aim for this project is to analyse and interpret these log files taken from
Cardiff University Information Services (INSRV) IDSs. This analysis would aim
to answer some research questions surrounding these large datasets. To do this, a
software environment was developed to efficiently process this data and to create
dynamic visualisations “on-the-fly”. This project was developed by using a variety
of tools including D3.js, a JavaScript visualisation library.

Acknowledgements

With many thanks to my supervisor Prof. Omer Rana for his guidance and support
during this project. Also a big thanks to Mr. Damian Southard for discussing
project ideas and providing the network data; without whom this project would
not have been possible. Lastly I would also like to thank my family for their
ongoing support throughout my studies at University.

1

Contents

1 Introduction 1
1.1 Preface . 1
1.2 Data Visualisation . 1

2 Background 2
2.1 Cyber Threats . 2

2.1.1 Port Scanning . 2
2.1.1.1 Stealth SYN Scan . 2

2.1.2 Malware . 3
2.1.2.1 Virus . 3
2.1.2.2 Spyware . 3

2.1.3 Denial of Service . 3
2.1.3.1 SYN Flood . 4
2.1.3.2 Distributed DoS . 4

2.1.4 Vulnerabilities & Exploitation . 4
2.1.4.1 Buffer Overflows . 4
2.1.4.2 SQL Injection . 4

2.2 Intrusion Detection . 4
2.2.1 Pattern Matching . 5
2.2.2 Statistical Anomaly . 5

2.3 The Problem . 5
2.3.1 Analysing the Dataset . 6

2.4 Stakeholders . 7
2.5 Existing Solutions . 7

3 Specification & Design 8
3.1 Overview . 8
3.2 Changes from Initial Plan . 8
3.3 Visualisation Designs . 8
3.4 System Description . 9
3.5 Use Cases . 9

3.5.1 Core Requirements . 9
3.5.2 Real Time Functionality . 11

3.6 UML Sequence Diagrams . 14
3.7 Database Design & Schema . 16

4 Implementation 17
4.1 Acknowledgements . 17

4.1.1 Git . 17
4.1.2 Dropbox . 17
4.1.3 Bootstrap . 17
4.1.4 MAMP . 17
4.1.5 JQuery . 18
4.1.6 D3.js . 18

4.1.6.1 bl.ocks.org . 18

2

4.2 Critical Source Code Explained . 19
4.2.1 Uploading Log Files . 19
4.2.2 IFrames . 19
4.2.3 Requesting Data . 19
4.2.4 Pie Chart . 20
4.2.5 World Map . 21

4.3 Problems Encountered . 23
4.3.1 PHP Memory Limit . 23
4.3.2 Pie Chart Labels . 23
4.3.3 Performance Issues . 24
4.3.4 Returning JSON . 24
4.3.5 D3 Errors . 25
4.3.6 CSS Styling Issues . 26
4.3.7 Rickshaw . 26

5 Results and Evaluation 27
5.1 Visualisation Examples . 28
5.2 Software Limitations . 31
5.3 Evaluation of Approach . 32
5.4 Feedback from INSRV . 32

6 Future Work 34
6.1 Real Time Functionality . 34
6.2 CVE Database . 34
6.3 Additional Data Sources . 35
6.4 Open Source . 35
6.5 CEReS Project . 36

7 Conclusion 37

Reflections on Learning 38

Appendicies 40

References 40

3

1 Introduction

1.1 Preface

With a huge increase of malicious cyber-attacks in recent years [1], cyber-security has been
of critical importance to large organisations which operate large IT infrastructure. These
organisations often implement a countermeasure in the form of an Intrusion Detection
System (IDS) to mitigate these cyber-threats. These IDSs are capable of producing
log files, containing information about each cyber-threat that was prevented. However
understanding this data is a difficult task, as a log file usually contains thousands of
entries.

The aim for this project will be to build a software tool where a user can efficiently
analyse and interpret these kinds of log files. Cardiff University Information Services (IN-
SRV) have kindly supported this project by providing numerous datasets to experiment
with, taken from their IDSs. This project will also aim to answer some research questions
surrounding this data:

• What is the most common type of attack launched towards a given network?

• What time of the day is the busiest with respect to malicious traffic?

• Which country do most cyber-attacks originate from?

• Which sub-networks do most cyber-attacks target?

1.2 Data Visualisation

“Information overload” is a term used countless times in our modern society, although for
this project its quite appropriate. For example, in one log file provided by INSRV; over
400,000 threats were recorded. Interpreting this data in its raw format will be difficult
and troublesome. “Fortunately, we humans are intensely visual creatures” [2]; so by
designing and using various visualisation techniques, we can derive firm conclusions from
a given dataset. In a TED Talk in 2010, David McCandless, an “information designer”
and author of “Information is Beautiful”, speaks about data visualisation as a form of
“knowledge compression” [3].

Of course creating these visualisations for our dataset will still be a tedious task by
hand [2]. So with this in mind, this project will aim to build a software environment, ca-
pable of creating various visualisations “on-the-fly”, in order to communicate information
effectively to the end-user.

1

2 Background

In March 1989, Sir Tim Berners Lee proposed the idea of a “web of notes with links
between them” [4]. Today this idea is the backbone of the World Wide Web, driven by
the internet. It has become a multifaceted environment with millions of users everyday,
permeating all kinds of industries and government.

With these developments however, there are an increasing amount of cyber-attacks
launched towards inter-connected networks for malicious purposes [1]. Because of this,
many new technologies have been developed, such as Intrusion Detection Systems and
Firewalls.

Cyber-crime is estimated to cost the UK “£27bn per annum” [5] from a report by
Detica - a world leading cyber-security firm. These are committed by “foreign intelligence
services” [5] which participate in industrial espionage, including intellectual property
theft, to improve their domestic “industries and economy” [5]. There are also “organised
crime networks” who solicit online scams [5] and “hacktivists” [6] who engage in illegal
computer activities to promote a campaign of activism.

In 2011, the head of GCHQ Iain Lobban reported that cyber-attacks were at a “dis-
turbing level” [7] and were attempting to “steal British ideas and designs...to gain com-
mercial advantage or to profit from secret knowledge of contractual arrangements” [7].
So what are these cyber-attacks and how do they work?

2.1 Cyber Threats

2.1.1 Port Scanning

Port scanning is usually the first order of business when it comes to cyber-attacks. Port
scanning is a way to gain information about which network ports are accepting connec-
tions [8]. With this information, malicious hackers know where and how to transmit their
threats. There are thousands of ports available to establish a connection which usually all
map to a unique application or service, e.g. HTTP runs on port 80. Although attempting
to do this is quite difficult as many new security technologies, including IDSs, can detect
when a port scan is taking place. However there have been efforts to circumvent these
countermeasures, such as a stealth SYN scan.

2.1.1.1 Stealth SYN Scan
To understand how this port scan works, we must first discuss a TCP/IP connection.
Transmission Control Protocol (TCP) “maintains reliable connections” [8] as it ensures
that all data that was sent, is accurate and unchanged. It does this by first establishing
a TCP connection using a 3-way handshake (see Figure 1). This involves sending 3
unique packets. First an initiator would send a SYN (synchronise) packet to the listener.
The listener would then reply with a SYN-ACK packet; this message acknowledges the
initiators first packet and sends another SYN packet. Finally the initiator would reply
with an ACK (acknowledgement) packet.

This type of port scan will attempt to open a TCP connection with the listener
by sending a SYN packet. If a SYN-ACK packet returns, then it must be “accepting
connections” [8]. The attacker will then send a RST (reset) packet, which will close the

2

open connection on the listeners machine, to prevent an accidental DoS attack (explained
below).

Figure 1: A TCP 3-way handshake [9].

2.1.2 Malware

Malicious software, often shortened to “malware”, is a computer program “designed for
some malicious purpose” [10], often to disrupt a computer system’s operations. Malware
comes in many different varieties, including viruses and spyware.

2.1.2.1 Virus
A computer virus is a program that is able to create copies of itself and spread across
various computer networks [11]. These viruses often contain a “payload” which carries
out malicious actions [10]. These can vary depending on the seriousness of the program,
but typically they “damage data files” [11].

2.1.2.2 Spyware
Spyware is a piece of malicious software designed to gather information about the user
without their knowledge [12]. This could include a user’s “keystrokes, screenshots, au-
thentication credentials... and other personal information” [13]. This can lead to a variety
of other crimes including “identity theft and credit card fraud” [13].

2.1.3 Denial of Service

Denial of Service (DoS) attacks aim to disrupt a networked service or resource to prevent
legitimate users from accessing it. This method is most common among “hacktivists” who
wish to prevent legitimate access to a particular website. In 2008, the online hacktivist
group “Anonymous” made headlines as they targeted the Church of Scientology through
denial of service attacks [6]. Some of the most common denial of service attacks are
described below.

3

2.1.3.1 SYN Flood
SYN Flooding exploits the TCP 3 way handshake design by sending the listener (e.g. a
web server) many SYN requests (usually from spoofed IP addresses), in an attempt to
half-open a TCP connection with the listener. As most servers will have a “finite table
that can only track so many incoming connections” [8], this will slow down the server
and prevent legitimate users from accessing the resource.

2.1.3.2 Distributed DoS
A distributed denial of service attack is also a common type of cyber-attack which involves
using many hosts to attack a single resource. As denial of service attacks aim to overload
the target system, a distrubted DoS (commonly known as DDoS) attack is usually more
dangerous because typically the attacker(s) hold a greater bandwidth compared to the
target system. This approach is common among hacktivist groups and organised criminals
but is also carried out by involuntary victims.

This approach is called a “Botnet” and involves compromising, usually through a
virus, a number of innocent people’s machines and turning them into “bots” or “zombies”.
These machines are then under the control of the attacker who subsequently uses them
to carry out a DoS attack towards another online resource/ server [8].

2.1.4 Vulnerabilities & Exploitation

Vulnerabilities and exploitation techniques may be the most dangerous of all cyber-
threats, as these are actually “flaws or oversights in the design of the program” [8] and
attacks like these are made by knowledgeable hackers. One example of such a vulner-
ability is the “Heartbleed” bug found in the popular OpenSSL library. This allowed a
knowledgeable hacker to steal information intended to be protected, by exploiting the
“SSL/ TLS encryption used to secure the internet” [14].

2.1.4.1 Buffer Overflows
A buffer overflow is simply when a program allows data to be inserted into a buffer
which exceeds the size originally intended for that buffer [8]. This usually results in that
program crashing, as when excess data is inserted into the buffer, it overwrites adjacent
memory’s data. This is quite a serious vulnerability in a program’s implementation, as
an attacker could target the system’s availability and gain control of the system [15].

2.1.4.2 SQL Injection
When interacting with a database online, it is most likely implemented with Structured
Query Language (SQL). SQL injections are a method for hackers to interact directly with
the database, through a vulnerable access method like a web form [10]. This could lead
to unauthorised access or deletion of the data stored on the database.

2.2 Intrusion Detection

With all these security issues and an emerging global cyber-threat, many large networks
have implemented Intrusion Detection Systems as a way to prevent these malicious at-
tacks. An IDS automates “the process of monitoring events in systems or networks to

4

detect intrusions” [10]. A networked IDS is placed between the source and destination
hosts and monitor packets bound to access the inner-network, in an attempt to estab-
lish if the network packet is a malicious threat [10]. It does this by using a variety of
techniques including pattern matching and statistical anomaly.

2.2.1 Pattern Matching

Signature based detection, also known as pattern matching, is a method used to detect
cyber-threats. This method involves looking at “traffic and behaviour that matches the
patterns of known attacks” to a “signature database” [16]. However this method is
effective only if the attack has already been recorded in the database and cannot detect
new emerging threats.

2.2.2 Statistical Anomaly

Statistcal based intrusion detection aims to identify malicious activity through “system-
atically analysing audit trail data” [17]. This involves measuring a “baseline profile”
[16] to estimate a normal network connection. Then monitoring connections for “actions
that are outside of those normal parameters” [16]. This method is different from pattern
matching as it can detect threats that are not already well-known and can prevent “zero-
day” attacks (threats where “no patch exists” [18]) from having an impact on a computer
system.

2.3 The Problem

These IDSs have the ability to produce log files containing information about each threat
that the IDS has stopped. These logs are an important resource, as they contain key
information about the types of threats that are emerging, as well as useful metadata
linked to each entry.

However making sense of this data is a difficult task as each log file contains an
extremely large amount of fields and entries (see Figure 2). This project aims not only
to solve this problem, but attempts to answer some research questions surrounding this
data.

5

Figure 2: Sample of a raw dataset.

2.3.1 Analysing the Dataset

The datasets for this project were taken from INSRV intrusion detection systems. These
IDSs are manufactured by Palo Alto Networks1, a cyber-security firm which makes various
products to counter cyber-threats. To analyse each entry in the dataset, INSRV have also
provided a brief manual [Appendix A] on how to interpret these log files. This manual
contains information on what information each field contains. Each threat entry has
42 respective fields, shown below are the ones of interest for this project, with a brief
description of each.

• Subtype - a type of threat log, i.e.
virus/ vulnerability etc.

• Generated Time - timestamp of when
the log was generated.

• Source IP - source IP address of the
threat.

• Destination IP - destination IP ad-
dress intended for the threat.

• Rule Name - name of the rule that the
session matched.

• Source Zone - area of the network the
threat was sourced from.

• Destination Zone - area of the network
the threat was destined for.

• Destination Port - port utilised by the
session.

• Threat ID - Palo Alto Networks iden-
tifier for this kind of threat - can be
used to link to CVE (explained later).

• Severity - severity linked to the threat,
e.g. low/ high etc.

• Source Location - name of the country
the threat originated from.

• Destination Location - name of the
country the threat was targetting.

1Palo Alto Networks available at: https://www.paloaltonetworks.com

6

https://www.paloaltonetworks.com

These kind of log files are a good source of information for analysing malicious network
activity. They contain comprehensive information regarding the metadata (including
timestamps, IP addresses and threat type) of countless cyber-threats. However this type
of data is also very restricted; as we are unable to analyse the entire network session -
which contains low level pcap data (raw network packets).

Also note that we are unable to detect malicious attacks from these datasets - as our
dataset only provides an indicator of a threat occurring. This would involve analysing
additional datasets and further research and development into intrusion detection.

2.4 Stakeholders

A potential stakeholder for this project would be network administrators/ engineers and
other professionals working in a NOC (network operations centre) environment. This
group of professionals would be interested in a way to quickly derive facts and statistics
about the network they manage.

Damian Southard who works in Cardiff University’s INSRV as a Security Engineer
has mentioned a visualisation tool like this will be beneficial for himself in a NOC envi-
ronment and for data analysis in general. He also mentioned that this tool is useful for
his management; as they like to include graphs and visualisations for their own reports.

Providing an easy way to derive facts and generate visualisations will also be of
interest to groups of people who want to clearly illustrate the statistics of these cyber-
attacks. One such group is CESG (Communications Electronic Security Group)2, the
“UK Government’s National Technical Authority for Information Assurance” [19]. They
provide advice to the UK government departments, “the wider public sector” and the
“UK’s Critical National Infrastructure” [19].

2.5 Existing Solutions

From my research, there are only a handful of software tools that already do this. Kibana3,
is a software program available from elasticsearch and is able to visualise, in real-time,
logs and other time-stamped data. Although this software is quite difficult to install,
especially for a person without a technical background. This project aims to offer a
simpler way to provide visualisation capabilities to an end-user, while also tailoring the
results for malicious network data.

2CESG available at: https://www.cesg.gov.uk/
3Kibana available at http://www.elasticsearch.org/overview/kibana/

7

https://www.cesg.gov.uk/
http://www.elasticsearch.org/overview/kibana/

3 Specification & Design

3.1 Overview

The aim for this software is to be functional but also simple to use. For this reason I
have decided to create a web application. With many different programming languages
available to develop web applications and with each containing a variety of different built-
in and open-source libraries, it is a good choice for this project. Also websites are simple
to use, as they do not require the user to install any specific software packages to benefit
from their applications.

For the implementation, I plan on using a MySQL database to store each log file, so
that it’s possible to query the dataset using PHP. With this returned data I will then use
a JavaScript library (such as D3.js) to create each of the visualisations needed.

This system will initially be designed to work with INSRV data; thus will be limited
to only be compatible with Palo Alto Networks IDSs which run PAN-OS and generate a
“threat” log file.

3.2 Changes from Initial Plan

In my initial plan, I proposed developing visualisation capabilities for real-time net-
work activity and to link each log entry with the common vulnerabilities and exposures4

database. After some thought however, these objectives will now be extended require-
ments and will only be completed if the project’s overall progress is ahead of schedule.

3.3 Visualisation Designs

To create various visualisations for the research questions originally intended for this
project, we must first discuss what kind of visualisations are suitable for each.

What is the most common type of attack launched towards a given network?
This question only deals with one variable, so is suited toward a simple bar or pie chart.

What time of the day is the busiest with respect to malicious traffic? As this
question needs to consider multiple variables, i.e. time and number of threats, this is
suitable for a bar/ line chart. With time on the x-axis and number of threats on the
y-axis. We could also use a stacked bar or multi-series line chart to visualise different
kinds of threats.

Which country do most cyber-attacks originate from? This question could be
visualised using a simple bar graph, although there is also the option of using a world map
visualisation, with a colour gradient to determine a greater amount of threats originating
from a particular country.

Which sub-networks do most cyber-attacks target? This question could also be
visualised using a pie chart, although we could also graph the network topology.

4CVE database available at: http://cve.mitre.org/

8

http://cve.mitre.org/

3.4 System Description

To visualise a raw dataset, the user must first be able to upload their log files to the
database. Once this is completed, the user should be redirected to a “dashboard” en-
vironment whereby the user can immediately view some statistics about their log file.
The user should then be able to navigate the website to view the visualisations generated
from their dataset.

If a user should want to return to the website at a later time, they will be given a
unique identifier associated with their log file, so they can refrain from re-uploading their
dataset multiple times. This ID can also be shared with other colleagues, to allow ease
of access to the website.

As this software is being built as a website, I plan on using web technologies such as
AJAX, to query the server and subsequently, the database. I also plan on keeping each
visualisation separate, by using HTML IFrames.

3.5 Use Cases

After researching the problem area, I created the below use cases and communicated this
with Damian Southard from INSRV. I wanted the software tool to be easy to use and
provide a very simple way to analyse various log files. To do this I obviously needed the
capability for a user to upload their own files. I also needed to view the log file itself and
generate visualisations on-the-fly.

3.5.1 Core Requirements

Use Case:- Upload Log File
Description: Basic Flow: Alternate Flows:

User is able to upload a log
file to the website.

1. User clicks the “Upload”
button from the website.
2. User selects a log file
from their machine.
3. Browser begins upload-
ing the file to the server.
4. include:: Server veri-
fies integrity of uploaded file
and sequentially writes en-
tries to the database.
5. webpage re-directs to
a new page, displaying a
unique ID.

4A. Server cannot verify the
file.
4B. The upload graciously
quits.

Pre-Conditions: Post-Conditions:
None. Log file is successfully up-

loaded to the database.
User is re-directed to a new
page.

9

Use Case:- View Log
Description: Basic Flow: Alternate Flows:

User is able to view a table
containing their log file.

1. Server pulls the log
file information from the
database.
2. Log file entries are for-
matted and displayed on the
website.
3. extend:: User inputs a
filter and presses the “Go”
button.
4. Log file entries are up-
dated to match the filter.

3A. User inputs an invalid
filter and presses the “Go”
button.
3B. The system informs the
user of a problem.

Pre-Conditions: Post-Conditions:
User has already logged
into the system with their
unique ID/ uploaded a log
file.

Log file is successfully dis-
played on the user’s screen.

Use Case:- Enter Code
Description: Basic Flow: Alternate Flows:
User is able to login using
their unique ID/
pre-generated code.

1. User clicks the “Enter a
pre-generated code” button
from the website.
2. User enters their unique
ID and presses “Go”.
3. include:: Server verifies if
the unique ID exists on the
system.
5. webpage re-directs to a
new page.

3A. User inputs an invalid
code and presses the “Go”
button.
3B. The system informs the
user of a problem.

Pre-Conditions: Post-Conditions:
None. User is re-directed to a new

page containing the log file
specified.

10

Use Case:- View Visualisations
Description: Basic Flow: Alternate Flows:
User is able to enter a
visualisation environment
for their IDS log file.

1. User clicks the “Visual-
isation” link from the web-
site.
2. System begins pulling
the log file information from
the database and processes
the data to create various
visualisations.

n/a

Pre-Conditions: Post-Conditions:
User has already logged
into the system with their
unique ID / uploaded a log
file.

User is able to view vari-
ous visualisations for their
log file.

3.5.2 Real Time Functionality

Use Case:- Enter IDS Server Info
Description: Basic Flow: Alternate Flows:
User is able to login to the
system, connecting their
Intrusion Detection
System.

1. User clicks the “Visualise
Real-Time IDS Data” link
from the website.
2. User enters their login
credentials and presses the
“Go” button.
3. include:: System con-
nects to the IDS.
4. website re-directs to a
new page, displaying infor-
mation about the IDS in
real-time.

3A. System is unable to con-
nect to the IDS.
3B. System informs the user
of a problem.

Pre-Conditions: Post-Conditions:
User holds correct creden-
tials to login to their IDS.

User is logged into the sys-
tem and is able to view in-
formation about their IDS.

11

Use Case:- View Real Time Log
Description: Basic Flow: Alternate Flows:

User is able to view the
IDS threat log in real time.

1. Server pulls the log file
information from the IDS.
2. Log file entries are for-
matted and displayed on the
website.
3. extend:: User inputs a
filter and presses the “Go”
button.
4. Log file entries are up-
dated to match the filter.

3A. User inputs an invalid
filter and presses the “Go”
button.
3B. The system informs the
user of a problem.

Pre-Conditions: Post-Conditions:
User has already logged into
the system using the “Visu-
alise Real-Time IDS Data”
option.

User can view their IDS
threat log in real-time.

Use Case:- View Real-Time Visualisations
Description: Basic Flow: Alternate Flows:
User is able to enter a
visualisation environment
for their IDS threat log in
real-time.

1. User clicks the “Visual-
isation” link from the web-
site.
2. System begins pulling
the log file information from
the IDS and processes the
data to create various visu-
alisations.

n/a

Pre-Conditions: Post-Conditions:
User has already logged into
the system using the “Visu-
alise Real-Time IDS Data”
option.

User is able to view vari-
ous visualisations from their
IDS threat log in real-time.

12

Figure 3: Use Case Diagrama

aImage generated from https://creately.com/

13

https://creately.com/

3.6 UML Sequence Diagrams

Figure 4: Basic Flowa

aImage generated from https://www.websequencediagrams.com/

14

https://www.websequencediagrams.com/

F
ig

u
re

5:
S
eq

u
en

ce
D

ia
gr

am
fo

r
V

is
u
al

is
at

io
n

P
ag

ea

a
Im

ag
e

ge
n
er

at
ed

fr
om

h
t
t
p
s
:
/
/
w
w
w
.
w
e
b
s
e
q
u
e
n
c
e
d
i
a
g
r
a
m
s
.
c
o
m
/

15

https://www.websequencediagrams.com/

3.7 Database Design & Schema

A MySQL database will be used to store each log file. As MySQL is a relational database,
each log file will be added to multiple tables. The first table, Log, will contain the
unique identifiers for each complete log file. The second table, Description, will contain
the information for each entry inside a log file. To link these tables, the primary key
field (logid) from the Log table will be the foreign key in the Description table. The
Description table will then have a primary composite key, consisting of logid and entryid,
where entryid is an incrementing integer beginning at 0 for each log file.

As this project is being developed to be compatible with INSRV data, the database
will need to be configured for the Intrusion Detection Systems that INSRV operate. These
are made by PaloAlto Networks. So by using the PaloAlto Networks PAN-OS Tech Note
document [Appendix A] (a user guide describing how to interpret a log file), I have been
able to design the Description table so that each column corresponds to the field name
as it appears in the log file (see Figure 6).

Planning ahead to make this system compatible with other kinds of IDS log files, I
have added in the schema below a “type” field, so that in future, the database could
distinguish different kinds of log files, which would link to different tables - determined
by their type. This way, the system could be extended to support numerous log file types.

Figure 6: Database Design Diagrama

aImage generated from https://creately.com/

16

https://creately.com/

4 Implementation

4.1 Acknowledgements

Before discussing the development of this project specifically, I wanted to acknowledge
the underlying technologies that made this system possible and mention the supporting
applications that aided with general project progression.

4.1.1 Git5

Git is a “powerful, flexible and low-overhead version control tool” [20]. I used this tool to
create a hierarchical structure of nodes, each with a unique repository. With this feature,
I was able to “revert” to a previous “commit” (version), or create a new “branch” to
add new features or fix bugs, with the option of switching the branch I was working on,
creating a very stable environment for project progression.

4.1.2 Dropbox6

This project is backed-up using Dropbox, a free online file hosting service. This service
provided a seamless method for backing up critical source-code. After installation, a spe-
cial folder appears on a user’s machine. Each file a user adds to their Dropbox folder will
automatically be synchronised to “Dropbox’s secure online servers” [21], thus providing
an online backup.

4.1.3 Bootstrap7

Bootstrap is a “popular front-end framework” [22] for developing web applications. I
chose to implement Bootstrap as a front-end framework for my website as it provided
open-source HTML templates, CSS stylesheet and a JavaScript library. It also allowed
me to create an aesthetically pleasing website in a short amount of time.

4.1.4 MAMP8

MAMP is a software stack which includes all the technologies needed for “installing a
local server environment” [23]. “AMP” is an acronym which stands for the technologies
that are installed with MAMP - (Apache, MySQL, PHP). MAMP was an excellent choice
for deployment as it provided everything that was needed to begin creating a website.

As this project needed some way to store large datasets, MySQL was an obvious choice
for implementation as it is a scalable, high performance database management system
[24]. Also with “81%” [23] of all websites using PHP and an extensive library of built in
functions [25], PHP was another excellent choice for building this web application.

5Git available at http://git-scm.com/
6Dropbox available at https://www.dropbox.com/
7Bootstrap available at http://getbootstrap.com/
8MAMP available at https://www.mamp.info/en/

17

http://git-scm.com/
https://www.dropbox.com/
http://getbootstrap.com/
https://www.mamp.info/en/

4.1.5 JQuery9

JQuery is a “feature-rich JavaScript library” [26]. It provided me a method to use ad-
vanced features, such as AJAX, without writing the underlying source code myself with
an “easy-to-use API” [26]. It is also worth noting that Bootstrap’s JavaScript library
actually depends on JQuery being declared first in the website’s source code.

4.1.6 D3.js10

Data Driven Documents or “D3” is a “JavaScript library for creating visualisations” [2].
As this project is reliant on creating functional visualisations, D3 was the perfect choice
for developing these; as D3 is “extremely fast” and supports “large datasets” [27].

D3 uses chain syntax, a programming technique used for “chaining methods together
with periods” to “perform several actions with a single line of code” [2]. This provides a
simple way to “generate and manipulate” [2] SVG (Scalable Vector Graphics) elements.
SVG is an image format used on the web and is “defined using markup code similar to
HTML” [2]. By using D3 and these paradigms, it is possible to create various charts,
graphics and visualisations which are driven by the data they represent.

4.1.6.1 bl.ocks.org
This website, made by Mike Bostock, provided free examples of source code for D3 vi-
sualisations which I was able to adapt for use with my data. The initial source code for
my implemented pie chart, stacked bar chart and multi-series line chart was copied from
bl.ocks.org [28] [29] [30].

9JQuery available at http://jquery.com/
10D3.js available at http://d3js.org/

18

http://jquery.com/
http://d3js.org/

4.2 Critical Source Code Explained

4.2.1 Uploading Log Files

The first crucial section of this software is the upload functionality. With this, log files
are uploaded and written to the MySQL database. To do this, I first had to generate a
unique ID for each log file. I did this by adding a null entry into the log table and by
using the mysql insert id() method to return the ID that will identify the log file; seen in
Listing 1. Next, each log file entry is separated into each respective field and appended
to a string named $query. This string will then be the insert query performed by the
database, seen in Listing 2.

1 $query = ”INSERT INTO log VALUES (n u l l) ” ;
2 $ r e s u l t = mysql query ($query) or d i e (mysq l e r ro r ()) ;
3 $ l o g i d = m y s q l i n s e r t i d () ;

Listing 1: Getting a unique ID

1 f o r each ($input as $entry) {
2 $query = ”INSERT INTO d e s c r i p t i o n VALUES (’ $ l o g i d ’ , ’ $ ent ry id ’ , ” ;
3 $entry = s t r g e t c s v ($entry , ” , ” , ’ \” ’) ;
4

5 f o r each ($entry as $key) {
6 $query .= ” ’ ” . m y s q l r e a l e s c a p e s t r i n g ($key) . ” ’ , ” ;
7 }
8 $query = subs t r ($query , 0 , −1) ; // Remove l a s t comma
9 $query .= ”) ” ;

10

11 $ r e s u l t = mysql query ($query) or d i e (mysq l e r ro r ()) ;
12 $ent ry id++;
13 }

Listing 2: Writing to the database sequentially.

4.2.2 IFrames

To add a layer of abstraction to the visualisation webpage, each visualisation is embedded
as a HTML IFrame. To ensure that these IFrames generate the correct visualisations, the
log file ID is parsed to the web page by using a HTTP GET Request inside the IFrame
source address, seen in Listing 3.

1 <i f rame name=” i f rm ” id=” i f rm ” s r c=” graphPie . php? id=<?php echo $id ; ?>&type
=11” s c r o l l i n g=”no” frameborder=”0” marginheight=”0” frameborder=”0”
c l a s s=”auto−he ight ” width=”500” he ight=”500”></ i f rame>

Listing 3: Using a HTTP GET Request to load an IFrame

4.2.3 Requesting Data

The project implements AJAX (Asynchronous JavaScript and XML). This is a “way
to use existing standards” [31] to exchange data with a server and update web pages
“without reloading the whole page” [31]. Although it is important to note that this

19

technology does not restrict its usage with XML (Extensible Markup Language), as this
project uses JSON (JavaScript Object Notation) as its primary data type.

Using JQuery’s AJAX method, this piece of JavaScript code sends a HTTP POST
request to the server, giving the ID number of the log file and the type of graph re-
quested as POST variables. When the data is eventually returned, the callback function
is executed which contains the returned data d, seen in Listing 4.

The server will then assign these POST variables to the variables $id and $type respec-
tively. Then the server runs a switch statement so it may call the appropriate function
and return the correct dataset needed for the visualisation to display correctly, seen in
Listing 5.

1 $. post (”methods/ code . php” , { id :<?php echo $id ;?> , type : <?php echo $type
;?>} , f unc t i on (d) {

Listing 4: AJAX Post Request using JQuery

1 $ id = $ POST [’ id ’] ;
2 $type = $ POST [’ type ’] ;
3

4 switch ($type) {
5 // Pie Charts
6 case 11 :
7 kindOfAttacks ($ id) ;
8 break ;
9

10 case 12 :
11 des t inat ionZone ($ id) ;
12 break ;
13

14 // Stacked Charts + Line Charts
15 case 21 :
16 threatsTime ($ id) ;
17 break ;
18

19 case 22 :
20 sever i tyTime ($ id) ;
21 break ;
22

23 // Maps
24 case 31 :
25 worldMap ($ id) ;
26 break ;
27 }

Listing 5: Switch Statement

4.2.4 Pie Chart

To draw a pie chart to the web page, the server first returns the data in JSON format. It
does this by creating an associative array containing each attribute name (called label)
and corresponding value (called count). This array is then appended to another array
named $output, before being returned to the client, seen in Listing 6.

20

1 $query = ”SELECT subtype , COUNT(subtype) as X FROM d e s c r i p t i o n WHERE
l o g i d = $id GROUP BY subtype order by X asc ” ;

2 $ r e s u l t = mysql query ($query) or d i e (mysq l e r ro r ()) ;
3

4 $output = array () ;
5 whi le ($row = m y s q l f e t c h a s s o c ($ r e s u l t)) {
6 $data = array (” l a b e l ” => $row [’ subtype ’] , ” count ” => i n t v a l ($row [’X ’]))

;
7 array push ($output , $data) ;
8 }
9 echo j son encode ($output) ;

Listing 6: Server returning data for a Pie Chart

D3 then takes this data to create the pie chart. This is done by firstly transforming
the data by using d3.layout.pie. This function takes my JSON data and outputs an array
of objects which includes “start angles” and “end angles” - essential for making a pie
chart. Then to draw the slices of the pie chart, the code uses a built in d3 function called
d3.svg.arc, which draws the slice using an SVG “path”.

4.2.5 World Map

To draw the world map visualisation, I first needed to link the full country name (as
recorded in the log files) to it’s corresponding 3 letter country code (to be compatible
with the DataMaps11 JavaScript library). This was done by using an associative array
[32] mapping the 3 letter country code (key) to the country name (value), seen in Listing
7. Then these key/value pairs are flipped, so that the countries recorded in each log file
could be translated to the country code, seen in Listing 8

1 <?php
2 $country codes = array (
3 ’AFG’=> ’AFGHANISTAN’ ,
4 ’ALB ’=> ’ALBANIA ’ ,
5 ’DZA’=> ’ALGERIA ’ ,

Listing 7: Country Code mapped to Country Name

1 $country codes = a r r a y f l i p ($country codes) ;

Listing 8: Flipping the key/value pair

Next, after calling the map function, the database would be queried to return the
correct data. This data is then inserted into an array named $output, with the key as the
country code and the value as another array, seen in Listing 9.

This country code is selected by using the previously declared associative array $coun-
try codes. Note that as the country name was stored in upper-case format, the strtoup-
per() method was used so that the log entry could match the array key.

The value of this array is another associative array. This will contain a “fillKey” value
(e.g. “veryhigh”, “low” etc) that eventually will determine the colour of the country when

11DataMaps JavaScript library available at: http://datamaps.github.io/

21

http://datamaps.github.io/

drawn on the map. It will also contain a “threats” value, which holds the total amount
of threats logged from that particular country.

Finally this data is given to the DataMaps JavaScript library, to generate a World
Map. The method shown in Listing 10, draws the map inside the container div box and
uses the “fillKey” values to select a colour to draw.

1 whi le ($row = m y s q l f e t c h a s s o c ($ r e s u l t)) {
2 i f ($row [’X ’] > 5000) {
3 $output [$country codes [s t r toupper ($row [’ s o u r c e l o c a t i o n ’])]] = array (”

f i l l K e y ” => ” veryhigh ” , ” t h r e a t s ” => $row [’X ’]) ;
4 }
5 e l s e i f ($row [’X ’] > 1000) {
6 $output [$country codes [s t r toupper ($row [’ s o u r c e l o c a t i o n ’])]] = array (”

f i l l K e y ” => ” high ” , ” t h r e a t s ” => $row [’X ’]) ;
7 }
8 e l s e i f ($row [’X ’] > 500) {
9 $output [$country codes [s t r toupper ($row [’ s o u r c e l o c a t i o n ’])]] = array (”

f i l l K e y ” => ”med” , ” t h r e a t s ” => $row [’X ’]) ;
10 }
11 e l s e i f ($row [’X ’] > 100) {
12 $output [$country codes [s t r toupper ($row [’ s o u r c e l o c a t i o n ’])]] = array (”

f i l l K e y ” => ” low” , ” t h r e a t s ” => $row [’X ’]) ;
13 }
14 e l s e {
15 $output [$country codes [s t r toupper ($row [’ s o u r c e l o c a t i o n ’])]] = array (”

f i l l K e y ” => ” verylow ” , ” t h r e a t s ” => $row [’X ’]) ;
16 }
17 }

Listing 9: Formatting the data ready for D3

1 var map = new Datamap({
2 element : document . getElementById (” conta ine r ”) ,
3 p r o j e c t i o n : ’ mercator ’ ,
4 f i l l s : {
5 d e f a u l t F i l l : ”#ABDDA4” ,
6 veryhigh : ”#700404” ,
7 high : ”#A30505” ,
8 med : ”#BA1C1C” ,
9 low : ”#C93636” ,

10 verylow : ”#D15252”
11 } ,

Listing 10: Generating the Map

22

4.3 Problems Encountered

4.3.1 PHP Memory Limit

When attempting to upload files, the website would often crash with the error message -
“500 Internal Server Error”. This was due to PHP’s memory limit being exceeded when
uploading large files. To rectify this, I modified the PHP settings found in the “PHP.ini”
file to increase the “memory limit” and “post max size”, to allow larger log files to be
supported with the system.

4.3.2 Pie Chart Labels

When drawing a pie chart, I realised that some labels were obscured because the label was
too large for the pie slice, seen in Figure 7. To rectify this I implemented a function [33] to
rotate each label and place them on the edge of the chart, seen in Listing 11. Although
this still is not foolproof, as some labels, representing small data series, occasionally
overlap.

Figure 7: Pie Chart with obscure labels

1 var pos = d3 . svg . arc () . innerRadius (rad iu s + 2) . outerRadius (rad iu s + 2) ;
2

3 var getAngle = func t i on (d) {
4 re turn (180 / Math . PI ∗ (d . s ta r tAng l e + d . endAngle) / 2 − 90) ;
5 } ;
6

7 g . append (” text ”)
8 . a t t r (” trans form ” , func t i on (d) {
9 re turn ” t r a n s l a t e (” + pos . c en t r o id (d) + ”) ” +

10 ” r o t a t e (” + getAngle (d) + ”) ” ; })
11 . a t t r (”dy” , 5)
12 . a t t r (” font−s i z e ” , ”13px”)
13 . s t y l e (” text−anchor ” , ” s t a r t ”)
14 . t ex t (func t i on (d) { re turn d . data . l a b e l ; }) ;

Listing 11: D3 Function to rotate the labels

23

4.3.3 Performance Issues

One major problem with the website was the slow loading times of a particular graph.
To examine this issue, I used Google Chrome’s console feature where it was evident that
this was caused by long waiting periods from an AJAX request, seen in Figure 8. I then
checked my source code where I realised I was querying the MySQL database inside a
for loop; with another inner loop to process the returned data, seen in Listing 12. This
caused my run time complexity to increase to O(n2). To resolve this, I designed a more
sophisticated query that would return the full dataset needed, seen in Listing 13. This
query is performed outside of any loop, decreasing the run time complexity to O(n). The
loading time is also decreased, seen in Figure 9.

1 f o r ($ i =0; $ i < 24 ; $ i++) { // Outer Loop
2 $query = ”SELECT subtype , count (subtype) as x FROM d e s c r i p t i o n WHERE

hour (generated t ime) = $ i AND l o g i d = $id GROUP BY subtype ” ;
3 $ r e s u l t = mysql query ($query) or d i e (mysq l e r ro r ()) ; // Queried db
4

5 $data = array () ;
6 $data [’Time ’] = ” $ i : 00 ” ;
7 whi le ($row = m y s q l f e t c h a s s o c ($ r e s u l t)) { // Inner Loop
8 $data [$row [’ subtype ’]] = i n t v a l ($row [’ x ’]) ;
9 }

Listing 12: Inefficient source code

1 $query = ”SELECT hour (generated t ime) as hours , subtype , count (subtype)
as X from d e s c r i p t i o n where l o g i d = $id group by subtype , hours order by

hours asc ” ;
2 $ r e s u l t = mysql query ($query) or d i e (mysq l e r ro r ()) ;
3

4 whi le ($row = m y s q l f e t c h a s s o c ($ r e s u l t)) { // S i n g l e Loop
5 $key = $row [’ hours ’] ;
6 i f (! i s s e t ($output [$key])) {
7 $output [$key] = array (’Time ’ => ”$key :00 ”) ;
8 }
9 $output [$key] [$row [’ subtype ’]] = i n t v a l ($row [’X ’]) ;

Listing 13: Efficient source code

Figure 8: Increased loading times. Figure 9: Decreased loading times.

4.3.4 Returning JSON

Even though the returned data was in the correct format, d3 would not accept it as
an argument. This was due to a data-type error, where d3 was expecting a supported

24

data-type (such as JSON) but receiving a string. To fix this issue, I had to include the
json encode() method in my PHP code, which would return the JSON representation of
the value, shown in Listing 14. Then on the client side, this data will need to be parsed
as a JSON object, by using the JSON.parse() method, shown in Listing 15. Figure 10
illustrates the before and after effects of using these commands.

1 echo j son encode ($output) ; // Returning JSON

Listing 14: JSON Encode Method (Server Side - PHP)

1 data = JSON. parse (d) ;

Listing 15: JSON Parse Method (Client Side - JavaScript)

Figure 10: Client’s console displaying the returned data

4.3.5 D3 Errors

Another issue was various graphs not appearing due to D3 errors, seen in Figure 11.
This was caused by missing attributes in the JSON data whilst being parsed to D3 for
graphing. This occurred because the MySQL database does not return empty or zero
values after a query has taken place. To fix this issue I created an array called $helper
which would contain all the possible values the output could contain. Then I would
iterate through the output data to check if each attribute has been included and append
any missing attributes before the data is parsed to the client, seen in Listing 16.

Figure 11: D3 errors appearing in the console.

1 $he lpe r = array (’ v u l n e r a b i l i t y ’ , ’ f i l e ’ , ’ v i r u s ’ , ’ spyware ’ , ’ scan ’ , ’
packet ’) ;

2 f o r each ($he lpe r as $h) {
3 i f (! i s s e t ($output [$key] [$h])) {
4 $output [$key] [$h] = 0 ;
5 }
6 }

Listing 16: Iterating through the helper array

25

4.3.6 CSS Styling Issues

Another problem which was encountered when developing these visualisations was con-
flicting CSS styling properties. Each visualisation relies on specific CSS properties and
as all these visualisations were displayed on the same page, different properties would
conflict and cause the visualisations to misbehave. I needed a way to separate these
visualisations from each other, but also allow them to be displayed on the same page.

To do this, I modified my design to implemented HTML “iframes”. These are es-
sentially a webpage inside another webpage by embedding the document after specifying
the address. These not only rectify the issues that were occurring (because each CSS
property will be limited to a specific iframe), but offered more control over the design of
the website in general, as visualisations that appear more than once can be amended by
editing a single document.

4.3.7 Rickshaw

This project originally used Rickshaw12, a JavaScript library built on D3 for creating
various time series graphs. Rickshaw offered a higher layer of abstraction and simpler
creation of graphs compared to D3 by itself. Although these graphs were suitable and
early development was going well, after testing with larger datasets, the performance
would dramatically be decreased. Another issue with Rickshaw was the lack of supporting
documentation it offered. Because of these issues, in week 9 I decided to discard what I
had made so far using Rickshaw and switch to a straight D3 approach. I feel that this was
a good decision, as the new visualisations work much more efficiently. Even though this
decision added to the time lost during this project, many of the concepts needed to build
the new visualisations I had already learned during my time developing with Rickshaw.

12Rickshaw available at: http://code.shutterstock.com/rickshaw/

26

http://code.shutterstock.com/rickshaw/

5 Results and Evaluation

I feel that this project has successfully implemented a software environment, capable of
achieving the core requirements stated in the “Specification and Design” section.

When entering the system for the first time, the user is given 3 options. This includes
uploading a log file, entering a pre-generated code and visualising real-time data (future
scope). After uploading a file, the user is then provided with a unique ID, so that they
are able to return to the website at a later time, without re-uploading their log file (see
Figure 12).

Figure 12: “Splash” screen - home.php

Once the user is “logged in” using either a log file or unique ID, the first 25 log entries
are displayed on their screen, along with a generic statement about their log file. Here
the user is also able to specify a data filter, to reduce the results shown on the user’s
screen to match the filter specified (see Figure 13).

27

Figure 13: Dashboard screen, using the filter feature - home.php

I believe the visualisations generated (shown in the below section) are very clear and
easy to interpret. Each visualisation has a title and short caption displayed on the side,
describing what information the visualisation is trying to convey to the user.

5.1 Visualisation Examples

Figure 14: Pie Chart illustrating types of attack (with description).

28

Figure 15: Stacked Bar Chart illustrating types of attack over time (with description).

Figure 16: Line Chart illustrating types of attack over time (with description).

Figure 17: World Map illustrating the countries where malicious attacks originate (with
description).

29

Figure 18: Stacked Bar Chart illustrating different severity attacks over time (with de-
scription).

Figure 19: Line Chart illustrating different severity attacks over time (with description).

30

Figure 20: Pie chart illustrating most targeted zones (with description).

5.2 Software Limitations

I feel that these graphs and visualisations work well to communicate information across
to the end-user. Although there are obviously a few things that could be improved upon.
One feature that could be improved is the avoiding overlapping captions, which label
each data series in the pie and line charts. This occurs because some data series have
very small values, compared to other series with much larger values.

Another feature I think could improve the system is making the graphs interactive.
Static visualisations are indeed a good tool, but by making “animated transitions and well
crafted interfaces”, this software could make “exploring” this data much more enjoyable
[2].

One issue that I suspect could be occurring is the source location being obscured in
some entries. This could be done by using an anonymity service such as Tor 13.

Originally developed by the U.S Navy, Tor is a “network of virtual tunnels” [34]
which provide a highly sophisticated and anonymous method of communicating over the
internet. It was originally designed to protect “government communications” but today
it is used by variety of users, including whistle-blowers, activists and journalists [34]. By
using Tor, malicious traffic, as recorded in the log file, will exit the Tor network at random
nodes (and subsequently IP/ country) each time a message is communicated [34].

This is a difficult issue to detect, although we could argue that a series of contiguous
threats originating from the same alleged source IP, is not using this kind of service
and is a genuine threat from the suspected country logged. We could also suspect that
malicious threats of the same nature (measured by Threat ID and destination IP) recorded
at short increasing intervals could be coming from the same source location, although we
still would not be able to identify this location as it would be obscured. However a
consideration for a future iteration of this project would be to include a alternative view
of the world map visualisation to show only source locations which are measured to be
accurate, by the above procedures.

Another obvious limitation for this software is that it is only compatible with Palo
Alto Networks devices that generate a “threat” log file. So another consideration for

13Tor available at: https://www.torproject.org/

31

https://www.torproject.org/

future iterations would be to allow additional log file formats to be supported. This
should be a fairly straight-forward task, as when designing the database to store these
log files, I added designs for additional tables. Then a new upload method will need to
be implemented as well as new methods for querying and formatting the data.

Although there is already a method to add a basic filter to display only certain kinds
of threats, this is limited to the “Dashboard” page. In future iterations of this software I
would implement a method to filter the data displayed in each visualisation, making the
system more responsive for user queries.

5.3 Evaluation of Approach

I feel that this software implements very suitable technologies for the project aims and
objectives. This software is very easy to use, with a user-friendly interface implemented
with Bootstrap14. Also as this software is implemented as a website, it is able to run on
a variety of platforms.

As a web application, this tool utilises popular web technologies including CSS, PHP,
MySQL and JavaScript, making it easily extendible in future. D3 was also chosen as the
method for generating the visualisations for this project. I chose D3 as it is an excellent
“piece of software that facilitates generation and manipulation of web documents with
data” [2]. It is also a well supported library with many tutorials and examples online.
Using D3 however meant that generating these visualisations was not a simple process; as
D3 does not generate predefined visualisations. It did however provide the most flexibility,
“exposing the full capabilities of underlying technologies” [35].

Each visualisation is enclosed inside an IFrame, which provides a layer of abstraction
from the underlying code. These IFrames are embedded web pages which act like a kind
of factory design pattern. This works well as new kinds of visualisations can be added
simply by creating a new web page (to include the visualisation code) and creating a new
IFrame linking to the new page.

Because of this design, the simplest way to provide these IFrames with the $ID and
$type variables (needed to request data from the server) was to use a HTTP GET request.
Although another way to do this would be to use session cookies. These allow “users to
be recognised inside a website” [36] so that each web page could remember what log ID
the user is requesting.

I feel that the might also be susceptible to a brute-force attack from a malicious user.
For example, any user can enter the website and attempt to guess a unique ID, which is
already stored on the system. For this reason, one preventive method would be to deploy
the website inside a locally trusted network. Although this could also be prevented by
adding some kind of password facility, creating a 2-stage verification system.

5.4 Feedback from INSRV

This software received positive feedback from Damian Southard when he completed the
feedback form, available in Appendix B. He confirmed that the software was easy to
use and that the visualisations were “on par” with current solutions that INSRV had
in operation. Also detailed in the feedback form were ideas for future iterations of the

14Bootstrap available at http://getbootstrap.com/

32

http://getbootstrap.com/

software. This would include real-time data handling and visualisation, custom reporting
and exporting of data and custom views. Some of which I describe in more detail below.

33

6 Future Work

6.1 Real Time Functionality

The first improvement this project could implement is the handling of real-time data,
directly communicated from an IDS. This was at first a goal in my initial plan, but
unfortunately I did not have time to complete this functionality. Damian Southhard
mentioned in his feedback form [see Appendix B], that this would be a key feature in an
operational environment.

Real-time visualisation could be implemented by using RabbitMQ15, a “messaging
broker” [37] which provides a “common platform to send and receive messages” [37].
This application uses the Advanced Messaging Queuing Protocol (AMQP) which enables
“client applications to communicate with conforming messaging middleware brokers” [38].
It works by messages being “published” to an exchange. The exchange then routes the
message over a network (e.g. the internet) towards the receiving queue. The receiving
“consumers” are then able to read the messages by reading their respective queue [38],
seen in Figure 21.

Figure 21: AMQP Model

By using this networking architecture, my software could be extended to continuously
read from the RabbitMQ queue and return the results to the client immediately for
formatting or visualisation purposes.

6.2 CVE Database

Included with the log files from INSRV were 3 XML files. These files contain more
specific information about each threat entry, it also links each threat to a CVE (common
vulnerabilities and exposures) identifier. This is done by taking the numerical identifier
enclosed in parenthesis from the Threat ID field and mapping that to the “entry name” in

15RabbitMQ available at: https://www.rabbitmq.com/

34

https://www.rabbitmq.com/

the XML file (see Figure 22). By linking to the CVE database, it will allow a stakeholder
to “quickly and accurately access information about the problem” [39] that their IDS just
prevented. This could help with further research in this area of intrusion detection.

Figure 22: XML File with CVE IDs

6.3 Additional Data Sources

Linking additional data sources was another suggestion from Damian Southard. By link-
ing IDS logs with session data, it should be possible to display and visualise statistical
anomalies that the IDS detected. For example, we could display a line graph with 2 series:
a normal network session (or baseline) and the malicious network session in question. We
would then be able to visualise what triggered the IDS alert by looking at the anomaly -
e.g. >x HTTP Requests made in n seconds or an exponential increase in UDP outbound
packets.

6.4 Open Source

By making this project open source publicly available, third-parties will be given access to
the underlying source code which builds this application. Software with an open source
licence will allow anyone to study, change and distribute the software as they please
[40]. Websites such as GitHub16 have become popular as they store “over 12.5 million
repositories” [41], where the public can collaborate on various software projects.

16GitHub available at: https://github.com/

35

https://github.com/

Doing this will allow the public to contribute to this project by, for example, adding
different kinds of visualisations or supporting additional kinds of datasets. As the stake-
holders are professionals who work in IT, this could prove to be a popular option.

6.5 CEReS Project

I am delighted to mention that this project has been invited to support a research project
funded by the EPSRC (Engineering and Physical Sciences Research Council). “This
Global Uncertainties Consortia for Exploratory Research in Security (CEReS) grant
aimed to bring social and computer scientists together to better understand cyber se-
curity” [42], which is certainly one of this project’s aims. See Appendix C for a short set
of slides made to summarise this project and contribute to the CEReS project.

36

7 Conclusion

This project has addressed the issue of “information overload” with regards to malicious
network activity. With the increased need for cyber-security in our modern society, this
project aimed to analyse the large growth of data logs and attempt to convey information
surrounding these cyber threats through the use of visualisation techniques.

There were many unforeseen problems that arose during the course of this project
that made some of the initial goals impossible to achieve. The implemented software is
however capable of creating the kinds of visualisations useful for analysing cyber threat
activity.

These visualisations also provide the capability to answer some research questions
that encompass these large datasets. But this is not yet foolproof, with some alterations
to be made; including the support of additional datasets. But on the whole, this tool has
made large steps towards a reliable solution for efficient data analysis.

Although this software is not yet ready for an operational environment it has been
positively received by Damian Southard, a Security Engineer working at INSRV. With
further development and by following feedback provided by Damian, this tool could be
deployed as a permanent addition for INSRV’s network operations.

37

Reflections on Learning

This project has taught me many lessons about approaching unfamiliar problems, as well
as new technical skills invaluable when studying a subject such as computer science.

From the beginning of this project I decided to use Git as a version control system.
I had used this in the past with some issues getting it to work correctly, which made me
reluctant on using it again. However I feel that this was one of the best decisions I had
made early on, as it gave me the opportunity to safely record my progress and revert
any mistakes I may have made. It also gave me the opportunity to teach myself about a
popular technology excellent for collaboration. Something that will be an excellent asset
in future, when working in an IT role.

One of the main skills I feel that has improved the most is my programming ability
and the confidence to approach unfamiliar problems. I have worked on web applications
in the past, which has given me a very basic understanding of the underlying technologies
that build the web. For this project however I had to expand these skills to build a fully
functioning website. I feel that although this went well, I know I will be able to apply a
lot of knowledge to the next time I build a project similar to this.

I have always been quite effective with regards to time constraints. Throughout my
degree course I have had to manage multiple assignments with overlapping deadlines.
However this project has been entirely different as there is only a single deadline; even
though there are several deliverables. To solve this problem I created a project plan
which organised my time well, although this meant that unforeseen problems would have
a dramatic effect on progression. Often it felt like a project plan did not exist at all.
To rectify this problem in future, I plan on allowing additional time for each task, even
though I may feel that I can achieve certain tasks without this extra allowance.

Throughout this project I often felt confused with regards to the project specification
and requirements, which generally slowed my progression. I feel it would have been
beneficial to speak to Damian from INSRV earlier about project ideas and to gain clearer
goals and designs for this project. Also it would have been useful to hold regular meetings
with INSRV, so they would be able to monitor my progress. In future I plan to be more
consistent with regards to communication with stakeholders and seek clarification when
needed.

Ultimately I feel like this project has been one of the toughest and most rewarding
challenges of my university course. I feel like my technical skills have improved dramati-
cally after building this software environment, as well as my ability to learn after reading
numerous tutorials, documentation, books and other resources. I now look forward to
undertaking further projects during my career, knowing that I have learned much from
this experience.

38

Glossary

AJAX Asynchronous JavaScript and XML - A technique used to send messages
to a server and dynamically update web pages.

API Application Programming Interface - A set of tools available for building
software applications.

Cyber-threat A malicious action taken place on a computer system, usually over the
internet.

D3/ D3.js Data Driven Documents - A JavaScript library used for the creation of
visualisations based on data.

HTML Hypertext Markup Language - A markup language used for encoding
documents used predominantly on the World Wide Web.

HTTP Hypertext Transfer Protocol - The primary protocol used to browse the
World Wide Web.

IDS Intrusion Detection System - A security measure used to detect and pre-
vent cyber-threats.

INSRV Cardiff University Information Services - The department which operate
Cardiff University’s computer networks and services.

JSON JavaScript Object Notation - A data type which uses human readable
text to represent attribute value pairs.

NOC Network Operations Centre - A location where network monitoring and
management takes place.

SSL/ TLS Secure Sockets Layer/ Transport Layer Security - Cryptographic algo-
rithms used to protect communications over the Internet.

SVG Scalable Vector Graphics - An image format used on the Web.
XML Extensible Markup Language - A markup language used for encoding

documents to be both human and machine readable.

39

Appendices

A - PaloAlto Networks, PAN-OS Tech Note.
B - Feedback Form completed by Damian Southard.
C - Slides for CEReS Project.

References

[1] Asseo L. Cyber-Attacks Are Increasing Threat, FBI Director Says. 2013.
Available: http://www.bloomberg.com/news/2013-11-14/cyber-attacks-are-

increasing-threat-fbi-director-says.html (accessed 15 Apr 2014).

[2] Murray S. Interactive Data Visualization for the Web. Sebastopol, CA: O’Reilly Me-
dia. 2013.

[3] McCandless D. The beauty of data visualization. 2010. Available: http://www.ted.

com/talks/david_mccandless_the_beauty_of_data_visualization (accessed 13
Apr 2014).

[4] Berners-Lee T. Information Management: A Proposal. 1990. Available: http://www.
w3.org/History/1989/proposal.html (accessed 14 Apr 2014).

[5] Detica. The Cost of Cyber Crime. 2011. Available: https://www.gov.uk/

government/uploads/system/uploads/attachment_data/file/60943/the-

cost-of-cyber-crime-full-report.pdf (accessed 13 Apr 2014).

[6] Singel R. War Breaks Out Between Hackers and Scientology - There Can Only
Be One. 2008. Available: http://www.wired.com/2008/01/anonymous-attac/ (ac-
cessed 16 Apr 2014).

[7] BBC News. GCHQ chief reports ’disturbing’ cyber-attacks on UK. 2011. Available:
http://www.bbc.co.uk/news/uk-15516959 (accessed 18 Apr 2014).

[8] Erickson J. Hacking: The Art of Exploitation. 2nd Edition. San Francisco, CA: No
Starch Press, Inc. 2008.

[9] Eddy W M. Defenses Against TCP SYN Flooding Attacks. n.d. Avail-
able: http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-

4/syn_flooding_attacks.html (accessed 16 Apr 2014).

[10] Calder A, Watkins S. IT Governance. 5th Edition. London, UK: Kogan Page Ltd.
2012.

[11] United States Computer Emergency Readiness Team. Virus Basics. n.d. Available:
http://www.us-cert.gov/publications/virus-basics (accessed 21 Apr 2014).

[12] Federal Trade Commission. Monitoring Software on Your PC. 2005. Avail-
able: http://www.ftc.gov/sites/default/files/documents/reports/spyware-

workshop-monitoring-software-your-personal-computer-spyware-adware-

and-other-software-report/050307spywarerpt.pdf (accessed 18 Apr 2014).

40

http://www.bloomberg.com/news/2013-11-14/cyber-attacks-are-increasing-threat-fbi-director-says.html
http://www.bloomberg.com/news/2013-11-14/cyber-attacks-are-increasing-threat-fbi-director-says.html
http://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization
http://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60943/the-cost-of-cyber-crime-full-report.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60943/the-cost-of-cyber-crime-full-report.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60943/the-cost-of-cyber-crime-full-report.pdf
http://www.wired.com/2008/01/anonymous-attac/
http://www.bbc.co.uk/news/uk-15516959
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
http://www.us-cert.gov/publications/virus-basics
http://www.ftc.gov/sites/default/files/documents/reports/spyware-workshop-monitoring-software-your-personal-computer-spyware-adware-and-other-software-report/050307spywarerpt.pdf
http://www.ftc.gov/sites/default/files/documents/reports/spyware-workshop-monitoring-software-your-personal-computer-spyware-adware-and-other-software-report/050307spywarerpt.pdf
http://www.ftc.gov/sites/default/files/documents/reports/spyware-workshop-monitoring-software-your-personal-computer-spyware-adware-and-other-software-report/050307spywarerpt.pdf

[13] United States Computer Emergency Readiness Team. Spyware. 2008. Available:
http://www.us-cert.gov/sites/default/files/publications/spywarehome_

0905.pdf (accessed 21 Apr 2014).

[14] CODENOMICON. The Heartbleed Bug. 2014. Available: http://heartbleed.com/
(accessed 4 May 2014).

[15] Rawat M. Buffer Overflow Basics. 2014. Available: http://resources.

infosecinstitute.com/buffer-overflow-basics/ (accessed 22 Apr 2014).

[16] Shinder D. SolutionBase: Understanding how an intrusion detection system (IDS)
works. 2005. Available: http://www.techrepublic.com/article/solutionbase-

understanding-how-an-intrusion-detection-system-ids-works (accessed 2
May 2014).

[17] Mathew D. Choosing an Intrusion Detection System that Best Suits your Orga-
nization. 2002. Available: http://www.sans.org/reading-room/whitepapers/

detection/choosing-intrusion-detection-system-suits-organization-82

(accessed 2 May 2014).

[18] Graham J, Howard R, Olson R. Cyber Security Essentials. Boca Raton, FL; Auerbach
Publications. 2011.

[19] CESG. About CESG. 2014. Available: https://www.cesg.gov.uk/AboutUs/Pages/
aboutusindex.aspx (accessed 30 Apr 2014).

[20] Loeliger J, McCullough M. Introduction. In: Version Control with Git. Sebastopol,
CA: O’Reilly Media. 2012. p1-8.

[21] Dropbox. Where does Dropbox store everyone’s data? n.d. Available: https://www.
dropbox.com/help/7/en (accessed 21 Apr 2014).

[22] Bootstrap. Get Bootstrap. n.d. Available: http://getbootstrap.com/ (accessed 21
Apr 2014).

[23] MAMP. Manage your websites locally. 2014. Available: https://www.mamp.info/

en/ (accessed 22 Apri 2014).

[24] MySQL. Top Reasons to Use MySQL. 2014. Available: https://www.mysql.com/

why-mysql/topreasons.html (accessed 22 Apr 2014).

[25] PHP. Function Reference. n.d. Available: http://www.php.net/manual/en/

funcref.php (accessed 22 Apr 2014).

[26] JQuery. Write Less, Do More. 2014. Available: http://jquery.com/ (accessed 22
Apr 2014).

[27] D3. Data-Driven Documents. 2013. Available: http://d3js.org/ (accessed 22 Apr
2014).

41

http://www.us-cert.gov/sites/default/files/publications/spywarehome_0905.pdf
http://www.us-cert.gov/sites/default/files/publications/spywarehome_0905.pdf
http://heartbleed.com/
http://resources.infosecinstitute.com/buffer-overflow-basics/
http://resources.infosecinstitute.com/buffer-overflow-basics/
http://www.techrepublic.com/article/solutionbase-understanding-how-an-intrusion-detection-system-ids-works
http://www.techrepublic.com/article/solutionbase-understanding-how-an-intrusion-detection-system-ids-works
http://www.sans.org/reading-room/whitepapers/detection/choosing-intrusion-detection-system-suits-organization-82
http://www.sans.org/reading-room/whitepapers/detection/choosing-intrusion-detection-system-suits-organization-82
https://www.cesg.gov.uk/AboutUs/Pages/aboutusindex.aspx
https://www.cesg.gov.uk/AboutUs/Pages/aboutusindex.aspx
https://www.dropbox.com/help/7/en
https://www.dropbox.com/help/7/en
http://getbootstrap.com/
https://www.mamp.info/en/
https://www.mamp.info/en/
https://www.mysql.com/why-mysql/topreasons.html
https://www.mysql.com/why-mysql/topreasons.html
http://www.php.net/manual/en/funcref.php
http://www.php.net/manual/en/funcref.php
http://jquery.com/
http://d3js.org/

[28] bl.ocks.org. Pie Chart. 2012. Available: http://bl.ocks.org/mbostock/3887235

(accessed 5 May 2014).

[29] bl.ocks.org . Stacked Bar Chart. 2012. Available: http://bl.ocks.org/mbostock/

3886208 (accessed 5 May 2014).

[30] bl.ocks.org . Multi-Series Line Chart. 2012. Available: http://bl.ocks.org/

mbostock/3884955 (accessed 5 May 2014).

[31] W3Schools. AJAX Tutorial. 2014. Available: http://www.w3schools.com/ajax/

default.ASP (accessed 30 Apr 2014).

[32] Small Dog Studios. Country Abbreviation PHP Array. 2011. Available: http://

blog.smalldo.gs/2011/02/country-abbreviation-php-array/

[33] Stackoverflow.com. Preventing Overlap of Text in D3. 2013. Available:
http://stackoverflow.com/questions/14534024/preventing-overlap-of-

text-in-d3 (accessed 6 May 2014).

[34] Tor Project. Tor: Overview. n.d. Available: https://www.torproject.org/about/
(accessed 1 May 2014).

[35] Bostock M. Data-Driven-Documents. 2011. Available: http://strongriley.

github.io/d3/ (accessed 5 May 2014).

[36] AllAboutCookies. What are session cookies used for? n.d. Available: http://

www.allaboutcookies.org/cookies/session-cookies-used-for.html (accessed
4 May 2014).

[37] RabbitMQ. Features. 2014. Available: https://www.rabbitmq.com/features.

html (accessed 30 Apr 2014).

[38] RabbitMQ. AMQP 0-9-1 Model Explained. 2014. Available: https://www.

rabbitmq.com/tutorials/amqp-concepts.html (accessed 30 Apr 2014).

[39] CVE. Frequently Asked Questions. 2014. Available: http://cve.mitre.org/about/
faqs.html#a13 (accessed 30 Apr 2014).

[40] Andrew M St. Laurent. Open Source Licensing, Contract and Copyright Law. In:
Open Source & Free Software Licensing. Sebastopol, CA: O’Reilly Media. 2004. p.
1-13.

[41] GitHub. Features. 2014. Available: https://github.com/features (accessed 1 May
2014).

[42] Cardiff School of Computer Science & Informatics. Security experts contribute to
£1m research studies. 2014. Available: https://www.cs.cf.ac.uk/newsandevents/
securityresearchgrants.html (accessed 1 May 2014).

42

http://bl.ocks.org/mbostock/3887235
http://bl.ocks.org/mbostock/3886208
http://bl.ocks.org/mbostock/3886208
http://bl.ocks.org/mbostock/3884955
http://bl.ocks.org/mbostock/3884955
http://www.w3schools.com/ajax/default.ASP
http://www.w3schools.com/ajax/default.ASP
http://blog.smalldo.gs/2011/02/country-abbreviation-php-array/
http://blog.smalldo.gs/2011/02/country-abbreviation-php-array/
http://stackoverflow.com/questions/14534024/preventing-overlap-of-text-in-d3
http://stackoverflow.com/questions/14534024/preventing-overlap-of-text-in-d3
https://www.torproject.org/about/
http://strongriley.github.io/d3/
http://strongriley.github.io/d3/
http://www.allaboutcookies.org/cookies/session-cookies-used-for.html
http://www.allaboutcookies.org/cookies/session-cookies-used-for.html
https://www.rabbitmq.com/features.html
https://www.rabbitmq.com/features.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html
http://cve.mitre.org/about/faqs.html#a13
http://cve.mitre.org/about/faqs.html#a13
https://github.com/features
https://www.cs.cf.ac.uk/newsandevents/securityresearchgrants.html
https://www.cs.cf.ac.uk/newsandevents/securityresearchgrants.html

	Introduction
	Preface
	Data Visualisation

	Background
	Cyber Threats
	Port Scanning
	Stealth SYN Scan

	Malware
	Virus
	Spyware

	Denial of Service
	SYN Flood
	Distributed DoS

	Vulnerabilities & Exploitation
	Buffer Overflows
	SQL Injection

	Intrusion Detection
	Pattern Matching
	Statistical Anomaly

	The Problem
	Analysing the Dataset

	Stakeholders
	Existing Solutions

	Specification & Design
	Overview
	Changes from Initial Plan
	Visualisation Designs
	System Description
	Use Cases
	Core Requirements
	Real Time Functionality

	UML Sequence Diagrams
	Database Design & Schema

	Implementation
	Acknowledgements
	Git
	Dropbox
	Bootstrap
	MAMP
	JQuery
	D3.js
	bl.ocks.org

	Critical Source Code Explained
	Uploading Log Files
	IFrames
	Requesting Data
	Pie Chart
	World Map

	Problems Encountered
	PHP Memory Limit
	Pie Chart Labels
	Performance Issues
	Returning JSON
	D3 Errors
	CSS Styling Issues
	Rickshaw

	Results and Evaluation
	Visualisation Examples
	Software Limitations
	Evaluation of Approach
	Feedback from INSRV

	Future Work
	Real Time Functionality
	CVE Database
	Additional Data Sources
	Open Source
	CEReS Project

	Conclusion
	Reflections on Learning
	Appendicies
	References

