
School of Computer Science and Informatics

Coursework Submission Cover Sheet

Please use Adobe Reader to complete this form. Other applications may cause
incompatibility issues.

Student Number

Module Code

Submission date

Hours spent on this exercise

Special Provision

(Please place an x is the box above if you have provided appropriate evidence of need to the Disability & Dyslexia Service and have
requested this adjustment).

Group Submission

For group submissions, each member of the group must submit a copy of the coversheet. Please
include the student number of the group member tasked with submitting the assignment.

Student number of submitting group
member

By submitting this cover sheet you are confirming that the submission has been checked, and that the
submitted files are final and complete.

Declaration

By submitting this cover sheet you are accepting the terms of the following declaration.

I hereby declare that the attached submission (or my contribution to it in the case of group
submissions) is all my own work, that it has not previously been submitted for assessment and
that I have not knowingly allowed it to be copied by another student. I understand that deceiving or
attempting to deceive examiners by passing off the work of another writer, as one’s own is
plagiarism. I also understand that plagiarising another’s work or knowingly allowing another
student to plagiarise from my work is against the University regulations and that doing so will
result in loss of marks and possible disciplinary proceedings.

1

Contents

Introduction .. 3

Prior Research & Background ... 4

How is object recognition currently achieved? ... 4

Choosing a descriptor part 1: HOG and texture descriptors .. 4

Choosing a descriptor part 2: SIFT, SURF, FAST with BRIEF key point detectors and descriptors 5

Selecting a smart phone operating system ... 8

Libraries that implement the methods discovered ... 8

System Specification and Design... 9

System Scope + Boundaries ... 9

Requirements .. 9

Functional Requirements ... 9

Non-Functional Requirements ... 11

Use Cases .. 14

Software Work Models – User Interface & Background System.. 16

System Architecture .. 17

Implementation .. 19

Complications when implementing .. 19

Critical code documentation .. 20

System User Interface, Testing & Evaluation .. 25

UI Prototype and System Usability Testing: Think-Aloud User Evaluation 25

The Implemented UI .. 33

System Experiments ... 36

Introduction .. 36

1. Angle of Acceptance .. 37

2. Dolly Capacity / Object Scale Robustness ... 38

3. Noise Limit ... 39

4. Library Limit ... 41

5. Object Distortion ... 42

System Functionality Testing and Evaluation .. 44

Future Adaptations ... 51

Helping visually impaired recognise and find objects ... 51

Finding lost objects .. 51

2

Conclusions ... 53

Reflection ... 54

Bibliography.. 56

3

Introduction

Object recognition, that is finding and identifying different objects in images, video streams or
similar media can be achieved on computers where processing and memory power is relatively
large, but there are less examples of image recognition in smartphone or portable devices where the
ability to perform recognition is far more capped.

 The objective of the project is to produce an application for a smartphone device that can
recognise user defined objects in an environment of noise through the device’s camera. As
smartphones have the added advantage of a freely moving camera to perform recognition on, this
can then act as a basis for future developments such as helping visually impaired recognise specific
objects or lost items.

The main objective can be split into a series of goals; Research into how object recognition
maybe achieved and how it may be applied to a smartphone device, designing the system using the
research as a foundation for assumptions, implementing the system itself, testing the boundaries
and functionality of the system created, documentation of how the existing system may be applied
to solve the future developments like that previously mentioned and finally drawing conclusions on
the implemented system in comparison to the original design and objective.

4

Prior Research & Background

In order to create object recognition on smartphones a number of different fields need to be
considered, these include; how object recognition is currently performed, what different methods or
techniques used in object recognition will be best implemented to give the maximum performance
and still be suitable on a smartphone, what smartphone operating systems are available and finally
what recognition technologies or libraries exist that could aid the programming process.

How is object recognition currently achieved?

 Object recognition requires three key components in order to function. This first is a single
or set of images that are either identical or similar visually to the object you wish to recognise.
Officially these are known as training images as they are used to train the detector in detecting
objects of a similar type using the set. The second key component is the descriptor/method used to
gain data from those training images in order to make a comparison. Here there are mainly two
kinds of descriptors, texture descriptors and key point descriptors [29]. Texture descriptors
uniformly process the entire training image that often results in a high number of parameters being
gained as a description. Meanwhile key point descriptors only process pixels that have a high enough
“uniqueness” value, before processing each pixel is given a uniqueness value to measure how likely
that pixel will be to recognise in another image, the top valued pixels are the key points analysed
further to give the parameters. Within these two kinds are descriptor methods available for
detecting a vast range of data, from those that detect edges/gradients or corners to others using
features, templates and image segmentation. The final component is the matcher itself, which is the
way in which the data detected is matched with the query image (in the case of this project the
frames seen through the phone camera) to determine whether or not the object exists in the query
image and how it will then be highlighted.
 Whether or not a single or set of images is used and how the data will be matched depends
on the descriptor used to gain data from training images. As there are many descriptors available a
selection of the most popular will be considered, each will be analysed in turn as to how it works and
how affective it may be before ranking them in order of priority of implementation.

Choosing a descriptor part 1: HOG and texture descriptors

The first to consider is HOG (Histogram of Orientated Gradients); HOG is a type of texture descriptor
that splits a training image into a number of localised cells [28]. For each cell, the shape of structures
within is captured through calculating orientation gradients. Orientated gradients are determined
for each cell by analysing pixels within the cell in turn; determining whether there is an edge that
passes through the pixel, what orientation the edge is at and how visible it is. The result of the
orientation gradients calculated for a region is added to a bin. When all cells have been monitored,
the bin is then analysed as a whole to determine a consensus of the gradients and calculate edges
for the entire image.

HOG will often produce parameters for each cell that are very similar to one another,
performing HOG on a single training image gives little value. Often the HOG descriptor will need
thousands of training images stored in a classifier that contains both positive and negative examples
in order to calculate a threshold for matching and function appropriately for classification and
recognition. The same is for other popular texture descriptors such as LBP (Local Binary Patterns)
and Haar, though their methods and type of data retrieved may differ, still thousands of training
images sorted in a classifier are need [32].

When considering transferring texture descriptor techniques to a smartphone device there
is a major concern with the storage capacity of the platform. Even if through scraping many images
can be maintained, smartphones do not hold the same memory of a standard computer or laptop.
Storing thousands of images in order for the application to work without external storage may not

5

be feasible. For a numerical example, a face detector used in a publication on Haar training was
recorded to have used a total of 8000 positive and negative training images [21]. A Motorola Moto G
(representing a common budget smartphone) has a storage capacity of 5.52 GB in total. Each image
taken using the camera takes up roughly 300KB, this leads to a total of 2.4 GB or 43.48% of the
systems total capacity being used to track a single object type for the application. When considering
other phone functions such as messaging, applications, audio, images and videos not used by the
recogniser, using nearly half the storage of the phone is inefficient.

The result is that HOG and other texture descriptors will be of the lowest priority when
choosing a descriptor for smartphone transfer. This means that further research will focus on Key
point detectors that need only a single image of an object to create matches and compare
similarities. The impact this will have on the smartphone system will be it can no longer recognise
objects at a high semantic level, which is what texture descriptors excel at doing. To expand, it will
not be able to recognise two distinct objects as being the same thing, such as two different cats as
being in the same family “cat”, but using key point detectors will be able to recognise them as two
separate entities provided there is at least an image of each and that those images to some operable
degree look similar to the training images.

Choosing a descriptor part 2: SIFT, SURF, FAST with BRIEF key point detectors and descriptors

SURF (Speeded Up Robust Features) and SIFT (Scale-Invariant Feature Transform) are scale and
rotation invariant [38] [39], this means the size or orientation of the object in the query image
compared to the training image does not affect its matching performance. SIFT and SURF are also
both real value descriptors [15], meaning the resultant vectors produced by their key point feature
detection are in real values. Being in real value means that when matching between features in
query and training images the distances (measure of similarity between two descriptors) are
calculated using Euclidian distance. Whereby the Euclidian distance d(P,Q) between two vectors, P
and Q containing values (P1,P2 … PN) and (Q1,Q2 … QN) respectively is given by the following
Pythagorean theorem [20]:

d (P, Q) = d (Q, P) = √ = √∑

 The main difference between SIFT and SURF is the methods used in calculating key
point/pixels and their features. SIFT creates various scales of the image through a scale space, which
by smoothing and resampling the image results in a series of images at different scales [34]. SIFT
then applies a difference of Gaussians function (a method of effectively “subtracting” one blurred
image from another [35]) between adjacent images in the space to calculate maxima and minima,
the extrema calculated act as the points of interest on the image. These points are further narrowed
in key point localisation [18], where unstable points are removed and then real value descriptors
made by combining together remaining key points in a local region that sum the orientation and
scale data of each separate point it encompasses.

SURF also builds a scale space, but instead uses an integral image of the original training
image (whereby an integral image is the original image split into summed areas of pixels rather than
a series of individual pixels) and uses a Hessian matrix approximation to find key points [5]. The real
value descriptors are calculated using a set of quadratic grids of a set size covering the entire image.
Each grid is orientated to the dominant direction of the feature under the grid, each descriptor is
then the sum of x and y values relative to the orientation of the grid.

Fig. 1. Creating descriptors in SURF (left) and SIFT (right)

6

As a result of using an integral image, for the same size image SURF is much faster at
computing matches than SIFT but SIFT normally finds and matches more key points resulting in
greater accuracy. In a research paper by the International Journal of Innovative Research in
Computing and Communication Engineering [25], SIFT calculated 46% more matches between the
same two images than SURF however SURF had an approximately 3x faster run time. For a
smartphone device application that needs to run and compare images through a camera frame as
close to real time as possible, which also has less processing power than a standard computer, SIFT
may be too slow to transfer to a mobile device. However SURF being faster and still having good
performance as well as being scale and rotationally invariant is a strong candidate.

FAST (Features from Accelerated Segment Test) with BRIEF (Binary Robust Independent
Elementary Features) and ORB (Orientated FAST and Rotated-BRIEF) both can create binary
descriptors. When matching between features in query and training images the distances are
calculated using Hamming distance. A hamming distance value is an integer representing the
number of coefficients in which two descriptors differ (the higher the value the more differences
there are) [12]. For instance, the Hamming distance between two binary values “10111” and
“10010” is 2.

FAST compares and extracts feature of a training image by detecting corners [6]; it achieves
this by using a circle of 16 pixels (also known as a Bresenham circle of radius 3) as a classifier on each
pixel in the image to determine if they are corner points or not. Each pixel in the Bresenham circle is
labelled 1 to 16 clockwise; the pixel under consideration, P, is at the centre of the circle and given an
intensity value, IP. An intensity threshold is set, then if a set N of contiguous pixels out of the 16 are
either lighter or darker than IP that pixel is considered a key corner point. The algorithm is made
faster by only comparing pixels 1, 5, 9 and 13 of the circle first. If 3 out of the 4 intensity values at
those pixels are not above or below the threshold then the point can be discarded early. Otherwise,
cycle through the remaining 16 to see if the other pixels that are above or below threshold add to a
total of N.

FAST by itself does not cover implementation to compute descriptors of the corner points
for matching, for this it needs another separate method BRIEF [19][11]. BRIEF creates a binary string
as the descriptor for a region around each key point by performing a number of binary tests equal to
the length of the string, 1 is a passed test and 0 is a failed test. Each test compares two points (P1
and P2) around the set region of the key corner point. If P1 has a greater intensity value than P2 a
binary result of 1 is recorded in the binary string, otherwise it is a 0. This gives each key point a
unique binary identifier acting as the descriptor in the training image, which can be measured
against identifiers of the query image to match descriptors that are most similar (through Hamming
distance). Although FAST with BRIEF descriptors are robust to lighting, blur, and perspective
distortion in a similar way to SIFT and SURF, they do not take into account scale or rotation and are
not invariant or robust in these fields.

ORB builds off of both FAST and BRIEF methods but adjusts them to make them rotation
invariant and give more robustness to scale (but not invariance) at the cost of additional computing
time. How ORB achieves this is by first making the FAST feature detector incorporate both scale and

Fig. 2. FAST & the Bresenham circle

7

rotation data. Firstly, FAST features are filtered so that only the most corner like points are taken
into the ley point set, this is so a measure of “cornerness” is imposed and only the best and most
useful key point need take up descriptor computation. This is done through a Harris corner measure
[4], to begin a threshold is set to gain more than N points out of all the ordered points (where N is
the target number of key points wanted), these N+ points are measured and ranked in accordance
to the Harris corner measure then the top N are selected. Only these top N key points are continued
on to be given scale robustness, scale invariance and be made descriptors for. Scale robustness is
introduced to the top key points through a scale pyramid of the image, producing FAST features for
each filtered key point at every level of the pyramid. Orientation data is added to the select corner
key points by an intensity centroid [26]. The intensity centroid makes the assumption that a corner’s
intensity is offset from its centre, through calculating the moments of a circular patch of radius R
around the corner key point the centroid can be found. Finding the vector from the centre to the
centroid may then be used to create an orientation degree. Mathematically this follows:

. Finding the moments of a patch, M, where p and q are the order of moments:

MPQ = ∑

. Finding the intensity centroid using these moments:

C = (

)

. Calculating orientation from the vector between centre of corner, O, to the centroid, C:

Once all key points have been given orientation vales and some degree of scale is
considered, BRIEF descriptors of the key points are then made rotation invariant by using the
orientation of a key point to “steer” BRIEF calculations in a relative direction using a corresponding
rotation matrix.

FAST with BRIEF and ORB have quicker runtimes in both the matching and detecting process
when compared to SIFT and SURF. This is because when compared to Euclidian distance, Hamming
distance is calculated far faster when matching two images [27]. Furthermore their methods of
finding key points are also computed at a greater speed. For example, in a research paper on “ORB:
an efficient alternative to SIFT or SURF” [9], the time per frame in milliseconds that FAST and ORB
took to detect objects through the same video string was 8.68ms and 15.30ms respectively
meanwhile it took 217.30ms for SURF and 5228.70ms for SIFT to compute the same function.
However, SIFT and SURF are more robust than FAST with BRIEF and ORB as they are both scale and
orientation invariant rather than only rotation invariant for ORB or neither invariance for FAST with
BRIEF. Considering this with the fact that SURF is still relatively fast in comparison to SIFT, SURF will
still remain the top priority. ORB being faster than SURF and more robust than FAST with BRIEF is a
second priority whilst FAST with BRIEF will be third as SIFT will drop camera frames per second
significantly more making the application seem unusable despite being better at matching.

To re-iterate, the priority order in which the descriptors and methods discussed will be
implemented in if the other is unsuccessful will be:

1. SURF
2. ORB
3. FAST with BRIEF
4. SIFT

8

5. HOG
*MSER was not researched as a possible descriptor to be used by the system despite being in the
initial report. Having already evaluated two additional key point descriptors (FAST with BRIEF and
ORB) it was decided that another popular descriptor that focuses on key points would not need to
be reviewed and would waste resources to investigate rather than start implementation. A sufficient
range of descriptors had already been identified along with the top three choices being sufficiently
quick enough to port to smartphones without additional investigation.

Selecting a smart phone operating system

The two choices in phone operating systems available to test and implement on are coincidently the
most popular for smartphones at present day, Android and Apple iOS. Both have well-known
application stores and technologies that support mobile developers. When choosing between the
two it was a matter of which application was programmed in a language most suitable for the
strengths of the programmer, or if both are coded similarly which contained the most support for
testing new applications (especially in the context of object recognition and the need to access the
system camera etc.)

 iOS applications are programmed in Objective-C using the Xcode IDE [14], Objective-C is an
object orientated language built on top of the existing C language. Meanwhile Android applications
are coded in Java [8], mainly using either the specific Android Studio or Eclipse IDE. Given that the
programming language most recognisable is Java, and that there would be little time to learn
Objective-C in addition to transferring object recognition to a smartphone it was decided to
prioritise using an Android rather than iOS operating system to host the recognition application.

Libraries that implement the methods discovered

There are two popular open source libraries that contain methods/algorithms for image processing
and recognition (i.e. functions for SURF detection and matching available), they are VLFeat and
OpenCV [16]. VLFeat is written in C with an interface for Matlab and supports Windows, Mac OS X
and Linux operating systems [41]. Meanwhile OpenCV is written in optimised C/C++ with an
interface for C, C++, Python and Java and supports Windows, Linux, Mac OS, iOS and Android [22].
Given that Android has been selected as the operating system of best choice and that Java is the
preferred language, OpenCV having a Java interface and Android compatibility gives it a greater
priority over VLFeat that has neither in this context. The resources needed to re-write the relevant
parts of the VLFeat library for Android compatibility as well as creating a corresponding Java
interface could take over creating the application that uses and tests it. Therefore with VLFeat, there
is less of a guarantee that the end result will be a smartphone application that can perform object
recognition to some extent, whereas OpenCV has the documented tools to begin using recognition
algorithms on smartphones from the start. With this in mind, OpenCV will take first priority over
VLFeat when it comes to applying a recognition library on the smartphone being used.

9

System Specification and Design

System Scope + Boundaries

The system scope and boundary is a succinctly written description of what the system is designed to
be from research. This is used to help fuse all the results of research into a more condensed form so
that requirements of the system can be more easily drafted. The system scope and boundaries are
as follows:

The smartphone system will be programmed in Java for Android devices. In order to perform object
recognition the system will need two key components. One component is constantly connected to
the Android camera that displays the stream of frames received on screen whilst giving the option to
capture the current frame being viewed. The captured image will be saved in a location accessible on
the smartphone; Android provides a public Media Gallery that is suitable this [1]. From this section
the system will also show the results of object recognition using SURF methods accessed from the
OpenCV library via a java interface. The recognition function will be between the query image (the
frames in the camera) and the training images available to the application. This component will be
called the “finder”.
 The second component stores the training images to be compared and recognised in the
camera frames shown in the finder. This component will be called the “library” and will be able to;
display training images in some library list form, add images from the Media Gallery, delete images
that have been added and select images in the library to be cropped. Cropping is necessary in order
to only have a training image the size of the object itself so that no other features but the object are
recognised in the camera view. Android also provides an in-built crop mechanism that is suitable to
serve as the crop screen [31].

Requirements

Functional requirements were derived using the scope and boundaries description to provide a more
concise list of deliverables so that it is easier to break down and implement parts of the problem at
hand. Both non-functional and functional requirements also help serve as a benchmark when
evaluating the results of what was implemented with the specification of the system design.

Functional Requirements

Finder view

1. The finder must capture images through the mobile device’s camera and save them to an external
storage location

Acceptance Criteria:
. On response to a button or touch command, the application must be able to get the frame data
that the camera received at that time and write to an image file
. This image file data must be sent and stored in external storage than can be accessed again when
needed (such as the Android Media Gallery discussed)

Justification:
This is one of the key requirements using the method chosen to perform object recognition; the user
must be able to take an image of the object to recognise otherwise there will be no training image to
search for in the camera frames.

10

2. The finder must be able to perform feature matching between images in the library and frames
processed by the camera

Acceptance Criteria:
. The camera in response to a system button must switch between performing no processing on
camera frames to on each frame, trying to match features from images in the library to that frame
. A user must not be able to perform feature matching if the library is empty/ there are no training
images to use

Justification:
The central requirement in order for the application to adhere to its scope and description, if the
system cannot match features in anyway then it has not solved the problem or brief in much
capacity. Performing a feature match on null data when the library is empty will most likely lead to
computational errors, to avoid the entire application shutting down the system should never initiate
feature comparison with an empty library and should instead display an error message.

3. The finder will display positive matches through outlining the matched library object in the
camera display using a graphical overlay

Acceptance Criteria:
. The graphical overlay must be bound around the object in order to highlight its location
. To distinguish multiple objects being tracked, each object image in the library must have the option
of being named or labelled and this label must also show on the recognised item in the frame as part
of the overlay
. The graphical overlay must be visible and distinguishable against other backgrounds and entities in
frame

Justification:
Performing the background processing for matching yields no results to a user unless they can see
the outcome, making this requirement equally as important as the other functions.

4. The finder must contain functionality to switch to the library view and from the library view back
to the finder

Acceptance Criteria:
. On button click, the system must be able to navigate to the library view, displaying relevant UI
features and functionalities for that view as necessary
. The library view must have a return option to navigate back to the finder

Justification:
In order to decrease clutter on a single screen it is best to split functionality into relevant groups and
give each group its own user interface, this requirement is therefore necessary to navigate between
the groups chosen. This case being functions involving the library group, which is editing and adding
of the training images as well as the finder group, that is functions involving the initiation and results
of object recognition.

Library view

1. The system’s library must store images selected from other storage facilities on the mobile device

Acceptance Criteria:

11

. On button click or touch, the library must be able to navigate to the external storage interface

. From this interface, the user must be able to select a single image from a listed selection of all
images taken
. Once selected, the image data must be sent and stored in the library
. After selection, the user must be prompted with an optional text entry field to label said image
with a string that is stored in the library alongside it
. The system must return to the library after the above has been performed
. The library must be able to hold any quantity of images

Justification:
The library must be a separate storage from where all the images are saved to in order to increase
flexibility of the programme. For example a user may take an image, add it to the library separately,
remove it from the library and add the same image again without having to re-take the photo. This
would not be the case if all images taken were stored directly into the library without use of an
external storage.

2. The system’s library should remove images from its own storage

Acceptance Criteria:
. Via the use of a menu button, the user must be able to select an image and it be removed along
with its label from the library storage

Justification:
This requirement is important to allow freedom of action for the user during a session using the
application. If an object has been recognised or is no longer needed to be tracked then removal of
the items training image from the library will free up computational space for other objects of higher
priority. A delete function will also ensure the system will not become overloaded performing
matching on objects that do not need to be found and will not compete for space on the camera
view by displaying recognition graphics for an object that has no longer a desire to be recognised.

3. The system’s library should support a crop function for images within its storage

Acceptance Criteria:
. On selection of a menu button, the user must be able to choose an image to be cropped and have
its data sent and displayed to a crop screen where the system will also navigate to
. The image must be able to be cropped from each of its four edges, with the flexibility to crop as
much of a percentage of each edge as desired
. After cropping selection the user must be able to select a save button, whereby the system
navigates back to the library screen with the previously cropped image data replacing the un-
cropped data of the same image
. The string label for this image must remain the same

Justification:
Cropping will be an essential requirement in order to focus the recogniser to find features that are
only present on the objects itself and not additional features from around the environment to which
the images object was taken in.

Non-Functional Requirements

Performance

12

1. The initial camera fps (frames per second) before running matching functionality alongside should
match the performance of the default camera specification for that device

Acceptance Criteria:
. For the Motorola Moto G device used in testing and showcasing the system, this should be 30 fps

Justification:
As running the feature matching code on each frame will decrease fps, having the highest possible
fps for the camera before matching takes place will ensure that the decrease is the lowest it can be
for that device.

2. The resolution for the screen size of the application camera should match that of the maximum
resolution available for that size on the device

Acceptance Criteria:
. The widescreen (16:9) camera for the test device operates at 864x480 pixel resolution

Justification:
The greater the resolution the more detail the object to be recognised will be in, this will further
result in more features accurately being picked up by the matcher and theoretically lead to better
matching. It is therefore important for the camera’s resolution being used by the application to
match the best available resolution the device has for the widescreen.

3. The time taken to switch between finder and library views should be equivalent to the
expectations for loading times

Acceptance Criteria:
. The time to switch between views should be <= 2 seconds

Justification:
Users will often lose interest in an application if loading times are too long or functions take too long
to initiate/work. From an independent survey taken by Akami and Gomez [30] the wait time before
user’s loose interest of a web page is 2 seconds or less. Though web pages perform differently to in-
built applications, this should act as a benchmark for the attention span of typical users from
initialising a function to seeing its results on screen.

4. Response times between switching from matching to non-matching modes should be
instantaneous

Acceptance Criteria:
. It should take <= 2 second to switch between standard camera view and feature matching view

Justification:
See “Justification” for performance requirement 3.

5. The finder should match objects in the library with camera frames at real-time

Acceptance Criteria:
. Finder should always use the most recent frame in the data stream from the camera to perform
match processing on

13

Justification:
Object recognition needs to occur as the camera view is translated across a scene, such that the user
knows in real time when an object to be recognised is in view of the camera and what that object is.
Using other methods such as performing recognition on a pre-recorded video would not suit the
scope or description of what the recogniser is tasked with.

Reliability

1. Matching functionality should use tried and tested feature extraction and comparison methods

Acceptance Criteria:
. The system should use the top priority feature extraction method, SURF, as the basis for extracting
features and matching descriptors

Justification:
The methods of feature extraction explored in the research phase of the project have been tried and
tested to have measurable success among many sample types and spaces. This allows for
comparison and selection of the best method for the application. Creating a new feature extraction
method will not give enough time to test as extensively as previously designed methods to the
extent that it can be indefinitely compared and justified that it is better for the application than an
existing technique.

Compatibility

1. The system should accommodate for different models of phone using Android

Acceptance Criteria:
. Techniques used should not be hardcoded for a specific device specification

Justification:
The application was designed to be used on Android mobiles, as there are many types of mobiles
using Android by multiple manufacturers it would be unbeneficial to make the system optimal only
for the test device. Examples of this would be setting the camera view to be a specific pixel size that
fitted the test screen well but appeared too small or large on other mobile screens, or setting the
resolution to match the maximum capacity of the test device but be incompatible with a device with
a smaller capacity.

Usability

. UI should adhere and be designed towards a well validated set of heuristics

Acceptance Criteria:
. The heuristic set chosen shall be ‘Nelson’s usability principles’ for its popularity and credit
. There should be evidence of these principles being considering when designing and testing the
interface

Justification:
Rather than designing and creating an interface based on what appears good to the creator and to
test against no real benchmark. It is deemed best to follow approved guidelines that have been
modelled specifically to help interfaces in terms of usability, then to test the interface in accordance

14

to how well it met those principles. This more structured approach should result in a user centric
rather than personalised interface and also save time when testing as results can be more easily
contextualised and measured.

Use Cases

Using use cases will help understand how separate functions are meant to respond in different
circumstances from the actor’s perspective viewing the interface. If referenced to whilst
implementing a function, the number of errors found in the testing of that function should be
reduced as all the possible scenarios in which a user can use that function and the way it should
respond to user commands would have been already explored.

Capturing an object’s image

Basic flow:
1. User selects the menu option to take an image
2. User presses a button or touches the camera view
3. System undergoes image capture of the current camera frame
4. System displays a message indicating the image has been saved

Viewing the library

Basic flow:
1. User selects menu option to navigate to the library view
2. System replaces the finder view on the main activity with the library view

Adding an image in the library

Basic flow:
1. User selects menu option to add an image
2. System redirects to Android Media Gallery
3. User selects the image to add from the list in the Gallery
4. System prompts user to enter a text label for the image
5. User enters a name into the text entry field
6. User selects the confirmation button for the name
7. System adds image and text to the library list
8. System redirects back to the library view

Alternative flows:
A. No image data saved in Gallery:
1. User selects menu option to add an image
2. System redirects to Android Media Gallery
3. No image data can be seen, user selects cancel option in Gallery
4. System redirects back to the library view

B. User does not wish to add a name:
1. System prompts user to enter a text label for the image
2. User selects cancel option on the text label pop-up
3. System adds image and null text to the library list
4. System redirects back to the library view

Removing an image in the library

15

Basic flow:
1. User selects menu option to delete an image
2. User touches a library entry to delete
3. System deletes the image and text for that entry
4. System updates the library list so that the entry can no longer be seen on the interface

Alternative flows:
A. No entries are in the library:
1. User selects menu option to delete an image
2. System does not respond to an on touch delete request in the empty library list until an entry is
added

B. User tries to delete the final library entry whilst tracker is still active
1. User selects menu option to delete an image
2. User touches the last library entry to delete
3. System responds with an error message stating the library cannot be empty whilst the tracker is
on

Cropping an image in the library

Basic flow:
1. User selects menu option to crop an image
2. User touches a library entry to crop
3. System sends image data of that entry to the Android crop screen
3. System redirects to Android crop screen
4. User drags corner controls to crop the image
5. User selects the save button
6. System gets the data from the crop and replaces the relevant entries original image with the
cropped image
7. System redirects back to the library view

Alternative flows:
A. No entries are in the library:
1. User selects menu option to crop an image
2. System does not respond to an on touch crop request in the empty library list until an entry is
added

Viewing the recogniser/finder

Basic flow:
1. User selects menu option to navigate to the finder view
2. System replaces the library view on the main activity with the finder view

Matching library images with camera frames

Basic flow:
1. User selects menu option on finder screen to track objects in the library
2. System matches library images with each camera frame
3. System highlights positive matches on each frame in the camera view using a graphical overlay
containing a box around the object and name at the centre

16

Alternative flows:
A. No entries are in the library
1. User selects menu option on finder screen to track objects in the library
2. System displays an error message stating that the library is empty

B. User wishes to stop matching
1. User selects menu option on finder screen to stop tracking objects in the library
2. System finished processing on the last frame received
3. System displays recognition results of the last processed frame
4. System stops processing further frames for matches between library images

Software Work Models – User Interface & Background System

Work models help to give structure to implementation, so that a pattern of outputs can be chosen
and followed to most suit the problem at hand. The execution of such vast amounts of work for a
system cannot be humanly comprehended without thinking of a work model. Improvising as to what
kind of work should be done when and how could lead to running out of time on parts of the system
when closing towards the deadline. This can be avoided with the consideration of appropriate work
models for the task and achieve end results of a higher grade.

The background system, meaning the coding of the functional requirements, will be
implemented using an incremental development model. This will involve breaking down the system
into subtypes, implementing and testing each subtype whilst layering the functionalities on top of
one another to eventually result in a full system. Incremental development was chosen due to the
size of the system, time given to implement and “safety” of the model itself. In example, given the
fairly short period of time to implement it is vital that the core capabilities of the system (the
matching process between training and camera frame) can be seen to work to some degree before
moving on to less essential functions. An incremental model supports this by allowing the core
capability to be its own subtype, implementing and testing it first to check that it works thus assuring
safety that the core functions do perform by themselves before integrating with other less
important subtypes.
 Furthermore the incremental model was chosen due to the lack of disadvantages it has in
the context of this system project. For instance, the task and time invested to break down the
system into sub-functions has already been achieved in majority through creating the functional
requirements. Delegating the sub-functions out which may have been another large task in a group
implementation is not necessary when there is only a single programmer. Moreover, through prior
research the system architecture has already been envisaged and requirements drawn from those
conclusions which are a necessary step needed when following the incremental model. The extra
time spent testing each segment may add some extra time when compared to implementing a
complete and untested system, but the assurance that each component works is a good
compensation and may eventually save time later on as you do not need to scan the entire code
looking for solutions to errors once the system is complete.

Fig. 3. Incremental Development Model

17

For the user interface in terms of layout, usability and aesthetics a prototyping model was
chosen to be followed. This is because as the part of the system with exposure to the user audience
it seemed logical to follow a user based implementation pattern. The prototyping model involves
creating a prototype that is made using fewer resources than that of the real implementation, the
prototype is tested to gain initial feedback and the UI changed accordingly before investing fully into
implementing the real interface. Although the model will not strictly be followed as there will
probably only be time to perform a single iteration of prototype testing, gaining early feedback
should result in better, more user centred decisions when approaching the interface that will be
integrated into the system. There is also no worry that users will think the system is ‘nearly built’ or
will be reluctant to wait for the finished product, which are often disadvantages of prototyping, as
there is no planned commercial release of the system. Furthermore, creating prototypes and
documenting the changes may result in harder project management in a group implementation but
should be easily overcome when there is only a single human resource containing all the knowledge
about the system.

System Architecture

This section contains a high level diagram of the system architecture in terms of its interactions
between different applications or components and the data exchanges that take places. The
architecture diagram was created to be a useful reference when coding sub-functions, such that the
picture of the entire system and how it interacts is not lost when focusing on specific system parts.

When labelling communication arrows with “Android Intent”, “activity” and “Android
‘OnActivityResult’ Method”; an Android intent is an abstract message that can be sent to Android
specific applications to instruct them to perform specific functions dependent on what has been sent
in the intent and which Android component it was sent to. An ‘activity’ in android refers to the
component of the application that provides the screen and the UI in which the user interacts with.
The main activity represents the activity for the object recogniser system itself and must be created
and managed as part of the system code whilst activities for Android applications like Media Gallery
are already generated. Android application activities can be called through an intent from the main
activity in order to replace it on screen, giving new functions available to the user depending on
which applications activity is called. The ‘OnActivityResult’ method lies within the main activity and is
called from the Android application on exit of its own activity. The method handles the return of
data used whilst away from the main activity, allowing on return for the programmer via Java code
to handle result data gained whilst the system was displaying the other application.

Finder and library screen are documented as ‘views’ and not separate screens as they are
both part of the same main activity. They are effectively the same screen but with different
elements on them depending on which view is active. Views were chosen over two separate screens
in this case so that they could share image data more easily (such as passing images stored in the
library to the matcher) using the same variables without having to continuously send intents to one
another.

Fig. 4. Prototype Development Model

18

19

Implementation

Complications when implementing

Accessing the Android Media Gallery

The Android Media Gallery was chosen to store saved images taken with the camera in preference
to only storing in a separate location on the phone for consistency purposes, that a user would
expect if taking a photo with the default camera would be stored in the Media Gallery so should the
same functionality for this application. It also made handling the image storage and selecting
appropriate images to add to the library easier as the interface and storage management was
already implemented for the Media Gallery. However, during implementation there were
complications with accessing and saving to the Media Gallery that took some time to overcome. At
first the image was stored in an external location, then through a media scanner intent populated
with the image data taken from the external file location, a broadcast can be sent out containing the
intent directed at the Media Gallery broadcast receivers. This then forces the media scanner to scan
the file into the Gallery.

This method in theory worked but was inefficient in practice, as when testing the system
whilst programming, whenever an image was taken only occasionally could it be seen in the Media
Gallery. The Smartphone would have to be restarted to force a complete phone scan in order for all
the previously taken images to appear back into the Gallery. This is a major usability error as having
to restart the device in order for the system to fully function most times when an image is taken
takes up a user’s time and affects other open applications that then have to be closed as a result. To
eventually solve this problem the method had to be re-implemented such that no broadcasters or
intents were used. Instead the date taken (for organisational purposes), file type and file data were
directly stored into a Content Provider. A Content Provider is an in-built Android class that manages
a repository of data (in this case the 3 data sets mentioned) in one application for use in another
(the Android Media Gallery in this case). The method ‘insert’ in class Content Resolver then sends
these values as a row of data entries in a table and inserts it into the Media Gallery directly without
the need to scan. This new method proved successful and solved the previous error that could have
been detrimental to the usability of the system.

Old method for accessing Android Media Gallery

public void AddToLibrary(final String fileName){

Log.i(TAG,"Adding to Gallery");
Intent mediaScanIntent = new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE);
File f = new File(fileName);
Uri contentUri = Uri.fromFile(f);
mediaScanIntent.setData(contentUri);
sendBroadcast(mediaScanIntent);

}

New method for accessing Android Media Gallery

public void AddToLibrary(final String fileName){
 ContentValues values = new ContentValues();
 values.put(Images.Media.DATE_TAKEN, System.currentTimeMillis());
 values.put(Images.Media.MIME_TYPE, "image/jpeg");

20

 values.put(MediaStore.MediaColumns.DATA, fileName);
 getContentResolver().insert(Images.Media.EXTERNAL_CONTENT_URI, values);
}

Native C++ code

OpenCV is written in optimised C/C++ but contains a Java interface, a vast majority of the
documentation on the Android OpenCV library relevant to the system such as using feature
detection and matching was therefore also written in C++ language. This meant that the application
could either use native C language alongside the Java code, such that the documentation can more
easily be translated and applied to solving matching problems, or it would have to be rewritten from
C++ to Java using the interface OpenCV provided but had little documentation on. The inherent
benefit of using C++ is the time it saves at first from not having to be rewritten. However, using C++
may lead to future problems when needing to tweak functionality or solve errors as there was little
knowledge or experience in writing in C++ when compared to Java. It was decided that although it
was much easier to transfer documentation straight to a C++ file in the Android Java package, using
the Java interface would benefit much more when needing to understand and edit its contents.
Furthermore, the time taken to re-write the code could have still been outweighed by the time it
would take when trying to edit and add to a language with limited experience in.

SURF with OpenCV Android library

Despite SURF feature detection being part of the standard OpenCV library, when the Android
OpenCV library was installed it was found that SURF detection was not included in the package due
to patent issues [17]. As previously discussed SURF detection was initially chosen over FAST and ORB
detection as it was both supposedly scale and rotation invariant yet faster than SIFT. As a result of
this, the next highest priority detection method from research, ORB, was selected as a replacement.
The result should be a faster matching algorithm that has less performance maxima for certain
contexts due to the lack of robust scale invariance.

Critical code documentation

Storing images in the library

When an image is selected from the Android Gallery and is given a label, the bitmap data from the
image and its label represented as a string are stored in two ArrayLists (image and descrip) of the
given type at the same index ‘Position’. The application’s library is then essentially an Android
ListView represented as an Nx2 table through an adapter. Each row in the table stores a TextView
object and an ImageView object that are populated with the bitmap data and string data from the
two ArrayLists respectively at index ‘Position’, meanwhile N is the size of the ArrayLists (i.e. the
number of images added to the library). The adapter acts as platform for the ListView to display and
gain access to the table data items and is also what forces the ListView to refresh its display
whenever a Bitmap is added, removed or cropped from the ArrayList.

Starting the matching process and retrieving library images

When ‘Track objects in library’ is selected the systems camera display enters the feature
matching mode. Instead of just displaying each camera frame in RGBA format with no prior
processing (view mode set to VIEW_MODE_RGBA) the system now retrieves images in the library to
undergo a matching process for each camera frame (view mode set to VIEW_MODE_FEATURES). To
do this the system simply cycles through the bitmap ArrayList until it reach the last data item in the
list. In turn the system gets the Bitmap data at a given index ,converts it to a compatible Mat format

21

that the OpenCV library uses to perform matching, undergoes the matching and necessary
highlighting functions before moving on to the next index with the same frame. The frame and any
relevant highlights on top are only shown in the camera display once all the bitmap ArrayList has
been cycled through.

case VIEW_MODE_RGBA:

mRgba = inputFrame.rgba();
break;

case VIEW_MODE_FEATURES:
mRgba = inputFrame.rgba();

 . . . Selecting type of detector, matcher and extractor to use in the matching process . . .

for (int x = 0; x < image.size(); x++){
Bitmap bm = image.get(x);
Mat ImageMat = new Mat (bm.getHeight(), bm.getWidth(),
CvType.CV_8U, new Scalar(4));
Utils.bitmapToMat(bm, ImageMat);

. . . Matching and highlighting . . .

}

Return mRgba

Finding matches between training image and camera frames

The matches that are created for pairs of feature points between library/training image and camera
frame depend on the type of matcher as well as the kind of descriptor (either binary or real value)
used. First all the ORB features of both training image and camera frame are calculated using the
“detect” method of OpenCV and stored in Mat arrays “points2” and “points” respectively.
These points are then computed to binary descriptors (multidimensional vectors) using the OpenCV
“compute” method so that they can be matched. Finally, the descriptors of the training image are
matched with the most relevant descriptor in the camera frame as a result of using the brute force
descriptor matcher. DMatch stores the camera frame descriptor index and train descriptor index for
each match and the distance (how close they are to perfectly matching each other) between them.

FeatureDetector fast = FeatureDetector.create(FeatureDetector.ORB);
DescriptorExtractor Extractor = DescriptorExtractor.create
(DescriptorExtractor.ORB);
DescriptorMatcher Matcher =DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE);

MatOfKeyPoint points2 = new MatOfKeyPoint();
fast.detect(ImageMat, points2);

MatOfKeyPoint points = new MatOfKeyPoint();
fast.detect(mRgba, points);

Mat descriptor1 = new Mat();
Mat descriptor2 = new Mat();
MatOfDMatch matches = new MatOfDMatch();

Extractor.compute(ImageMat, points2, descriptor2);
Extractor.compute(mRgba, points, descriptor1);

Matcher.match(descriptor1,descriptor2, matches);
List<DMatch> matchesList = matches.toList();

22

Selecting “good” matches

Once all the matches between the training image of the object and the camera frame have been
computed using the OpenCV library, it is still necessary to prune the set of matches. This is because
the BRUTEFORCE matching method OpenCV uses will match all descriptors of the training image
with the descriptors most like it in the camera frame. You could therefore get a pair of descriptors
that are matched to be most similar but in reality are vastly different and do not reflect features of
the true object at all. Without selecting good matches the system will try to highlight everything that
is most similar to the image of the object that can be seen in the frame and will therefore not
successfully recognise when the true object is not in frame.
 Matches are pruned using the “distance” value stored with every matching pair as part of
the matching method; the distance value is a measure of similarity between the two descriptors. As
previously discussed in the research, using ORB creates descriptors that are binary vectors; the
distance between the two is measured using the Hamming technique. To prune the system first finds
the maximum and minimum distances in the set of matches found. Then the system cycles through
every match, only adding matches to a separate “good” set that are less than X * minimum distance
where X is some constant. The constant chosen must be decided carefully, as too high will let too
many bad matches through and highlight points on too many irrelevant objects. Meanwhile too
lower constant will make slight deformations in camera position or object placement from the
original training image result in the object not being recognised despite being in view. The constant
“2.5” was chosen to be the best value for the system after testing with values near the OpenCV
recommended distance threshold of 3 [23]. The result of pruning is a set of ‘good’ matches
containing the indexes of the pair if descriptors and their distance values that matched and passed
the good matches threshold in an OpenCV MatOfDMatch structure.

Double max_dist = 0.0;
Double min_dist = 100.0;

for (int i = 0; i < matchesList.size(); i++) {

Double dist = (double) matchesList.get(i).distance;
if (dist < min_dist)

 min_dist = dist;
 if (dist > max_dist)
 max_dist = dist;
}

LinkedList<DMatch> good_matches = new LinkedList<DMatch>();

for (int i = 0; i < matchesList.size(); i++){

if (matchesList.get(i).distance <= (2.5 * min_dist)) {
 good_matches.addLast(matchesList.get(i));
 }
}

MatOfDMatch goodMatches = new MatOfDMatch();
goodMatches.fromList(good_matches);

Highlighting the object in the camera frames

As the structure MatOfDMatch only stores the indexes in both training and camera frame of the
points that match, it is necessary first to get the point values at those indexes in order to properly
map the object in the training image onto its relative position in the camera frame. This is done by
cycling through the good_matches MatofDMatch with the indexes of all good matches previously

23

filtered, getting their point values at that index and storing them in a list. This list then needs to be
converted into a MatOfPoint format for OpenCV to map them.
 The mapping and highlighting code is surrounded by an if statement that does not execute
unless the number of good points found from matches is greater than Y, where Y is yet another
constant that controls whether or not an entity is mapped highlighted on top of the frame. A
minimum value of 4 is needed in order to perform the mapping process and plot a rectangular
outline however this integer was raised to 10 for this system in order to avoid highlighting objects
that have features close to the training image but are not the training image object.
 Mapping the points and highlighting the outline of the training image into its correct relative
position in the camera frame is achieved mainly using the OpenCV library methods
“findHomogrophy” and “perspectiveTransform”. “FindHomogrophy” is used to produce the
most probable perspective transformation/ homography matrix between the good points that
matched in the object image and the camera frame. It achieves this by using a RANSAC (random
sample consensus) approach [36], distinguishing in the camera frame inliers (points that resemble
the object/training image) from outliers by iteratively and randomly sampling many different subsets
of point pairs until the end of the sampling and the best subset (the subset which has most inliers) is
then used to produce the resultant homography matrix. RANSAC was chosen over other OpenCV
library methods such as default “0” and “LMEDS” as it is the only method that works well with any
ratio of outliers to inliers [24]. Which when considering the amount of potential noise the system
may have to transform onto (as it will be unlikely the camera frame will be in a position identical to
the object image in the library), made RANSAC the best option.
 This homogrophy matrix is then used along with a 5x1 matrix “tmp_corners” (where the
first four rows represent each corner point of the training/library image and the last row is the
centre point of the library image) to undergo the actual transform of the points in “tmp_corners”
onto their relative positions in the camera frame. The transformed points are stored in the output
array “scene_corners” in the same index they started at in “tmp_corners” (for example the last
index in “scene_corners” is the centre point of the other transformed corners etc.). Digital lines
are then drawn between the points of each transformed corner in the scene using OpenCV method
‘line()’and the string label of the library image is placed at the centre transformed point so that the
mapping can be seen on the camera frame and the object recognised by the user.

List<KeyPoint> keypoints1_List = points.toList();
List<KeyPoint> keypoints2_List = points2.toList();

LinkedList<Point> objList = new LinkedList<Point>();
LinkedList<Point> sceneList = new LinkedList<Point>();

for(int i=0;i<good_matches.size();i++){

objList.addLast(keypoints2_List.get(good_matches.get(i).trainIdx).pt);
sceneList.addLast(keypoints1_List.get(good_matches.get(i).queryIdx).pt);

}

MatOfPoint2f obj = new MatOfPoint2f();
MatOfPoint2f scene = new MatOfPoint2f();
obj.fromList(objList);
scene.fromList(sceneList);

if (objList.size() > 10){

Mat H = Calib3d.findHomography(obj, scene,Calib3d.RANSAC, 5);
Mat tmp_corners = new Mat(5,1,CvType.CV_32FC2);
Mat scene_corners = new Mat(5,1,CvType.CV_32FC2);

tmp_corners.put(0, 0, new double[] {0,0});
tmp_corners.put(1, 0, new double[] {ImageMat.cols(),0});

24

 tmp_corners.put(2, 0, new double[] {ImageMat.cols(),ImageMat.rows()});
tmp_corners.put(3, 0, new double[] {0,ImageMat.rows()});
tmp_corners.put(4, 0, new double [] {(0 + ImageMat.cols())/2,(0 +
ImageMat.rows())/2 });

Core.perspectiveTransform(tmp_corners,scene_corners, H);

Core.line(mRgba, new Point(scene_corners.get(0,0)), new
Point(scene_corners.get(1,0)), new Scalar(0, 255, 0),4);

Core.line(mRgba, new Point(scene_corners.get(1,0)), new
Point(scene_corners.get(2,0)), new Scalar(0, 255, 0),4);

Core.line(mRgba, new Point(scene_corners.get(2,0)), new
Point(scene_corners.get(3,0)), new Scalar(0, 255, 0),4);
Core.line(mRgba, new Point(scene_corners.get(3,0)), new
Point(scene_corners.get(0,0)), new Scalar(0, 255, 0),4);

Core.putText(mRgba, descrip.get(x), new Point(scene_corners.get(4,0)), 1,2,
new Scalar(0,255,0), 2);

}

25

System User Interface, Testing & Evaluation

UI Prototype and System Usability Testing: Think-Aloud User Evaluation

The user interface testing phase consisted of following protocol for a think-aloud user

evaluation. The test itself was performed on the paper prototype UI, a paper prototype was chosen
over using prototype software due to the speed of production in comparison and relative simplicity
of the UI at hand. Testing was done on a prototype in order to identify and solve any major usability
errors before committing high quantities of resources integrating it with the Android Java system.
 The test itself was carried out on three potential users, one male aged 20 and two females
ages 21 and 54. From prior interview the persons of age 20 and 21 technical experiences with mobile
software were no greater than frequent phone use for texting, internet browsing and social media
applications thus representing an average non-professional IT capability for their age. The female
aged 54 had limited technical experience with mobiles, only occasionally texting and using internet
browsing but did not use any phone applications.
 The test was taken inside a 5x4 metre room, the noise conditions inside were quiet and the
room contained a desk, chair, two paper prototypes (one for demo purposes), TP-330 Cam Link
camera stand, list of 3 tasks and a Motorola Moto G mobile device using default software for video
and audio recording . A facilitator and human computer were also present in the room during the
test. The facilitator was tasked with activating the audio/video recording, briefing and prompting the
user, demonstrating the pilot example as well as setting up the paper prototype. Meanwhile the
human computer was responsible for manipulating the paper interface to respond as the system
would to the user’s interactions with the prototype.
 The test was conducted as follows; only one user would be in the test room at any time
taking the test. Before a new tester had entered the room the paper prototype would be set up by
the facilitator to resemble the starting screen of the application, and the mobile device would be set
on the camera stand to view the entire prototype on the desk. One of the users would then be
invited into the room to start their test and asked to take a seat next to the paper prototype. The
facilitator then explained that the experiment is recorded by video and audio via the mobile device,
and that the user is to perform a think-aloud walkthrough for 3 tasks on a paper prototype for a new
mobile application aimed at tracking objects through the mobile’s camera. It was explained that the
human computer would be acting as the system would in response to their actions. The facilitator
then demonstrated an example think-aloud walkthrough on the demo paper prototype and task
with the human computer. Once finished the facilitator then asked the user to perform a mock task
on the demo paper prototype as well, treating it as if it were a real task and prompting the user to
think aloud their actions when necessary. After the mock and demonstration was completed the
facilitator then asked if the user was ready to begin the proper recorded task with the paper
prototype. All responded yes but if there was a negative response the facilitator would go through
mock and demonstration once again. The recording started as soon as the user responded that they
were ready, the facilitator would begin the recording by stating the gender and age of the user then
told the user the first task. The task list was for subject reference to remind them of their goal whilst
the oral announcements by the facilitator were used as marker for the recording to help in analysis.
Once the user had completed a task the facilitator would announce the next task. During the entire
test the facilitator would prompt the user to speak aloud their thoughts and processes when
necessary. Once all tasks were completed the tester was then asked to leave the room.
 The results of the tests were 9 video recordings, 3 recordings per tester for each of the 3
tasks. Recordings were analysed by comparing their reactions and ability to complete the tasks using
the paper UI in accordance to well-known usability heuristic, ‘Neilson’s usability principles’. The
principles when compared to each task were also given a compliancy and severity rating, indicating if
the UI successfully supports the principle and if not the severity in which it did not achieve the

26

principle. Below shows the compliancy key, severity table used with a negative compliance, and
tabled results that summarises the analysis of all users for each task. T1, T2 and T3 refer to testers
aged 20, 21 and 54 respectively.

Compliancy Key:

. ‘+’ =Positive compliance, prototype interface is good and supports the principle well

. ‘-’ = Negative compliance, prototype interface did not support the principle to some severity

extent

Severity Rankings:

Task 1 Results: “Take an image of an object through the camera, add the image to the library and
give it a name”

Paper States Involved:

Camera view on launch Camera view – Object in scene Camera view – Image taken

Library view Android Media Gallery Label entry after image select
from Android Media Gallery

27

Usability Principle Compliancy Severity Written Comments

Visibility of system
status

- 2 When taking an image through the
camera, T3 understood that clicking the
‘Take Object Image’ menu option
initialised the camera but took time to
realise that touching the screen is what
was needed to take the image.
Incorporating a pop-up text to explain
that touching the screen executes image
capture may help users who are used to
physical button applications see this
functionality in quicker time.

Match between
system and real world

+ NA Labels for menu items were clear
enough to the users to not confuse as to
their technical functionality. All testers
seemed ok with the concept that the
‘library’ was the place where the images
were stored locally.

User control and
freedom

+ NA No errors were made during this task
that required the freedom to return to a
previous state, in the case that the
library was accidently accessed too early
the ‘finder’ menu item should be enough
to return the user back to the camera to
take an image of the object.

Consistency and
standards

+ NA All users seemed to be able to
distinguish between the different
controls available in both library and
finder states. Users could recognise
menu items that were not relevant to
the current task and always pressed the
right touch buttons to achieve a sub-
goal.

Error prevention + NA As no errors were made and the intent
to add an image to the library can be
easily cancelled, no additional error
prevention such as confirmation
windows were deemed necessary for
these states and tasks. Including
confirmation windows when no errors
have occurred during testing could
hinder the efficiency and speed of
progressing to the task.

Recognition rather
than recall

+ NA The only knowledge the application
assumes the user remembers is what
image they wish to add to the library.

Text entry after text field is selected in label entry Library view – Single image and label added

28

This is however facilitated by displaying
all images on the system through the
Android Media Gallery such that they
can browse all images until the correct
item is found. Other than this the
options available in Finder and Library
states were suitable enough to avoid
confusion.

Flexibility and
efficiency of use

+ NA Although the UI has no shortcuts for
experienced users (there is only one way
to take a picture and add it to the
library), the actions themselves could be
completed quickly (it took 3 seconds to
navigate through the Android Media
Gallery prototype and add the selected
image).

Aesthetic and
minimalistic design

+ NA The design was simplistic enough that no
user was confused about how to access
the library or add an image once in the
library state.

Help users recognise,
diagnose and recover
from errors

+ NA No errors were made during the task,
however if a user was to try and track an
object when no image is in the library a
message stating ‘Error: No Image in
Library’ has been prepared to pop-up.
This should be enough to warn users
that they are not currently searching for
anything and need to add an image to
the library in order to work.

Help and
documentation

- 2 As with the “Visibility of system status”
principle analysis for this task, no help
was made clear when T3 did not
understand how to take a picture. The
pop-up text explaining what to do when
the ‘Take object image’ is clicked should
be enough to solve the issues with both
these principles.

Task 2 Results: “Add another 2 images, Crop a single image, delete all the images in the library and
re-add the original image”

Additional Paper States Involved:

Crop screen Library view – Multiple images and labels added

29

Usability Principle Compliancy Severity Written Comments

Visibility of system
status

+ NA Library, crop and the Android Media
Gallery screens were clear enough for
each tester to know which part of the
system they were in once the menu item
was clicked to navigate towards them.
The library list was updated in response
to crop, delete and add actions in a way
that the users recognised which image
they had just cropped, deleted or added
without any usability concern.

Match between
system and real world

+ NA All users understood the terminology of
‘cropping’ an image and that it involved
trimming the borders to focus on the
object. Having the objects in the library
appear as a chronological list (starting
from the top being the first image
added) was suitable enough that users
understood what object images were in
the library at any time and could
navigate between them with confidence.

User control and
freedom

+ NA User T2 accidently clicked ‘Load image to
library’ a third time, default ‘cancel’
button in the Android Media Gallery
(where the images are saved and
selected to go to the library) was
acceptable enough for the user who no
longer needed to add an image to return
to the library.

Consistency and
standards

+ NA With crop and Android Media Gallery
screens there was no confusion as to the
controls associated with them. All users
understood the concept that to crop an
image they had to drag the highlighted
corners until it fit around the object and
that to add an object to the library from
the Media Album they had to touch the
image.

Error prevention + NA Despite T1 commenting that he could
have had accidently miss-spelled the
wrong name when adding an image
during the text entry state, returning to
the applications label entry state after
would have allowed him to re-enter the
text entry state again by clicking on the
text field to fix the error.

Recognition rather
than recall

+ NA Much like in ‘Recognition rather than
recall’ for task 1, the system only
assumes that the user knows what the
original image is before adding it. There
were no issues in using recall to find the

30

image in the Media Album, although
recognition would be preferred, this
instance of recall facilitated by the
Media Album is deemed acceptable
enough for this iteration.

Flexibility and
efficiency of use

- 2 When re-adding the original image, T1

commented that he would have
preferred to not retype the name of an
item he had previously to save time.
Although it would save time to store
deleted images and items in a temporary
cache such that if they are re-added
from the library again the system would
recognise its name, this is not just a
change to the UI. The extra resources
and processing power needed to
implement this system change may not
be feasible in this implementation. As it
was expressed as only a minor
inconvenience this functionality could be
added in future adaptations.

Aesthetic and
minimalistic design

- 2 User T2 commented how the library
looked ‘kind of cluttered’ when multiple
objects were added. Perhaps taking
away the ‘crop’ and ‘delete’ buttons
from each library entry and instead
incorporating them as single menu
buttons will remove unnecessarily
repeated controls and free up space.

Help users recognise,
diagnose and recover
from errors

+ NA There is cancel button in the Android
Media Gallery screen to return to the
library if necessary, as seen in the ‘User
control and freedom’ principle for this
task it was effective in solving navigation
errors for T2 guiding the user back to
their intended state. For the crop screen,
despite there being no cancel button the
users were familiar with clicking the save
button to return to the library despite
how much they cropped.

Help and
documentation

+ NA The controls for adding, delete and
cropping were intuitive enough that no
user needed additional help or guidance
when completing any of the tasks.

Task 3 Results: “Start and stop the recognition search for the object in the camera”

Additional Paper States Involved:

31

Usability Principle Compliancy Severity Written Comments

Visibility of system
status

- 3 T3 commented that with black being
such a popular shade for many objects,
highlighting them when recognised with
a black outline box and text may seem
invisible on the screen in practice. With
this in mind the colour of the bounding
box and text will have to be changed to a
brighter and less popular colour,
otherwise the functionality of the
system may be undermined by UI
choices.

Match between
system and real world

+ NA Using a box and text approach to
highlighting recognised objects through
the camera did not seem unusual to any
of the users despite the comment on its
colour and how it might affect
performance (see Visibility of system
status in task 3).

User control and
freedom

+ NA Users recognised that the menu item
‘Track objects in library’ changed to
‘Stop object tracking’ and that they
could stop object tracking at anytime.

Consistency and
standards

+ NA As with ‘User control and freedom’ and
‘match between system and real world’
heuristics for this task users were not
confused by the controls for searching
an object or indeed the way in which
recognised objects would be displayed.

Error prevention + NA No user had accidently started object
tracking during the experiment, however
if this case did occur and the library
wasn’t empty it was deemed that the
menu item ‘Stop object tracking’ would
be enough of a counter measure to
return to a desired state, especially
considering how all users notices the
change in the menu item. A confirmation
screen may just decrease efficiency
when a user intends to execute object
tracking.

Camera view – Object recognised in view

32

Recognition rather
than recall

+ NA All images and their relevant labels are
listed in the local library such that a user
always has a prompt as to what objects
they are searching for in the finder.
There was no confusion from any user
involving a lack of knowledge as to what
the application was searching for or the
controls needed to press to activate the
search.

Flexibility and
efficiency of use

+ NA Users could move from the library
screen to the finder and initialise the
object tracking in 3.5 seconds.
Considering that object tracking will
often be turned on and off in application
use and that the library will be often
accessed in and out of, this speed was
concluded to be quick enough to satisfy
the consistent change in screen, as none
of the users commented negatively on
the length of time it took to navigate
around the system UI during the
experiment.

Aesthetic and
minimalistic design

+ NA With the camera view taking up the
entire UI of the finder screen and the
menu items visibility being toggle able
through in-built android controls, no
signs of complaint were made from any
of the users about irrelevant controls or
features taking up space.

Help users recognise,
diagnose and recover
from errors

+ NA See ‘Error prevention’ and ‘Help and
documentation’ for this task.

Help and
documentation

+ NA The change in menu item name from
‘Track objects in library’ to ‘Stop object
tracking’ was enough help and
documentation for the users in the
experiment to know whether or not the
system was in a tracking mode.

The user evaluation test on the paper prototype revealed three usability flaws in the current design;
the lack of system visibility when taking the image of an object, the “crowded” appearance of the
library when multiple items are held and the concern of the visibility of the recognition graphics
when an object had been successfully matched with a training image. Although there was only
enough time to perform user evaluation on three possible audience targets, and that there could be
other usability errors spotted if more potential users were tested, the sample size was large enough
to provide suitable enough feedback on strengths and weaknesses of the intended UI. These
usability flaws will be taken into consideration upon implementing the real interface and logged
justifications of changes can be seen in “The Implemented UI” section of this report.

33

The Implemented UI

Start-up screen and taking an image: Finder screen

The finder screen follows a centre stage design pattern, whereby the entire UI is taken up by the
java camera view. This was chosen as the most appropriate approach as the camera is where all the
functionality of the finder screen takes place. The menu items can be toggled to appear so that they
only take up space on the screen when necessary, and do not distract the user when they are
searching through the camera view to track an object or take a picture. As a result of the prototype
testing, pop-up text now appears and fades out after 3 seconds of selecting the ‘Take Object Image’.
Text instructs the user on how to take an image and when it has been successfully saved to the
system therefore helping to solve the issues involving the ‘help and documentation’ heuristic with
the original prototype.

Viewing the library and its objects: Library screen

34

For visibility purposes, black and white has been selected to be the primary colours used in the
library and throughout the system. Not only is white on black the best combination to read and grab
attention with titles and labels [40], it helps avoid human factors involving the eye and colour
wavelengths (such as the use of dark blue appearing as black as the eyes age [7]) which must be
considered if the application is too help the elderly who statistically have the poorer sight. For the
library itself, a black background also frames the images added and do not detract from the content
of the image such that it is hard to tell what images are loaded into the library. Crop and Remove
image buttons have been removed from each library entry and added as menu items to create a
more minimalistic design after the prototype experiments. The style of the library entries are set like
a list such that all items have equal visual priority and can be easily distinguished from one another.
Much like with the screen finder, menu items can be toggled on and off so that they do not
unnecessarily detract from items in the library.

Adding an image to library: Android Media Gallery and labelling pop-up

The media library follows a grid of equals design pattern, giving each image equal space and rich
opportunity for users to browse through available images and select the most relevant item.
Meanwhile the labelling pop-up contains a cancel option for “user control and freedom”, supporting
users that do not wish to attach a label to the image added.

Cropping an image: Crop screen

35

Object Tracking enabled: Finder screen

As a result of the prototype experiments, the bounding box and label text has had its colour changed
from black to light green. This was so that when an object is successfully recognised, it can be easily
detected against most common environments and items. The colour choice also helps with the
principle that there should be a ‘match between system and real world’, as green is often associated
with a working system which would be preferable to a red colour that has connotations of system
failure [37].

36

System Experiments

Introduction

Experiments were performed to test the limits of the system in different scenarios in addition to
testing functionality and usability. Each report of an experiment consists of an abstract, list of
equipment, method (with accompanying diagram if necessary), results tables/graphs and written
conclusion.

The phone equipment used in these experiments is limited to one device that operates at a
resolution of 864x480 pixels. As resolution affects the detail of features when comparing between
library images and screen capture, especially at different distances, certain results from experiments
Dolly Capacity, Library Limit and Noise Limit may yield different values with screens of different
resolutions.

In some experiments a ‘best case’ and ‘worst case’ object is used to try and estimate lower and
upper level bounds of the system. The best and worst case objects were selected based on their
complexity and kept constant between experiments that used them. The complexity of an object
consists of two factors, the first is the number of features on and around the object and the second
is the regularity in its shape.

For the best case the object needs to be regular in shape, contain many features and not
deform upon being moved. A tin pencil case was therefore chosen for its regular rectangular shape
and graphics on the front to provide the large number of features needed. Meanwhile the worst
case object needed to be irregular in shape and contain significantly less features than the best case.
For this a set of keys on a key ring was selected to provide fewer features to be detected (due to the
lack of graphics on the item) and also be non-standard in shape.

Visibility rankings for all experiments are based off a pre-defined chart as shown below:

Visibility
Rankings

Description Example Image

5 Object is clearly recognised, bounding box
wraps around object perfectly at the
dimensions of the training image with no
stutter between frames and text is at the
centre of the object.

Best Case Object Worst Case Object

37

4 Bounding box warps around the object but on
occasional frame does not perfectly fit the
dimensions of the training image.

3 Between frames bounding box and text ranges

from slight miss-fitting (as in visibility rank 4) to
out of place, but still is constantly recognised
and has the overlay on the objects relative
location.

2 Object is constantly tracked between frames

but bounding box or text has no particular form
or location on the recognised object.

1 Text or bounding box lines can be seen

occasionally between frames on the object
with no particular form.

0 No recognition overlay or wrong object has

been recognised.
-

1. Angle of Acceptance

The angle in which the camera can be moved around an object before the system loses visibility of it.

. Protractor Template
. 30cm Rule
. White Cover (used to place on top of the test surface, such that no features of the surface will be
picked up in addition to the objects added to the scene)
. Best and Worst Case Object

The camera was positioned 20 cm away from the best case object, facing perpendicular down the Y
plane such that the camera lens was pointing down at the object directly below. The initial image
was taken and loaded to the library; this position was then treated as 0° from the centre point of the
object where the image was taken. The camera visibility was recorded at 0, then at +-10° increments
about the centre point using a template protractor until the object was no longer visible. At each
increment the 20cm distance was kept constant. The test was then repeated for the worst case
object.

20cm 20cm

38

It can be seen that in the best case the system can be rotated up to 55° from the angle of the image
in the library and still function at best capacity. However, past this threshold there is a rapid decline
in performance dropping to the lowest rank over the next 15°. Meanwhile with a worst case object
the system only works perfectly when the angle of the camera view is identical to the angle at which
the image was taken. Although the drop from highest to lowest rank is over a far larger degree when
in the worst case (50°), the system may operate at its lowest performance for some objects when
tilted to 50° yet be optimal for others. With this best case object it is no longer visible to the system
past 80° yet the worst case will always be visible up to 90°. This is most likely due to regularity of the
shapes; from a 90° or side perspective if the object is flat such as a rectangle all the features on the
face where the image was recorded are hidden. On the other hand an irregular object may still have
certain parts of the front face showing when viewing from the side. Granting in this case only
enough features for the system to recognise at its lowest performance.

2. Dolly Capacity / Object Scale Robustness

The distance the camera can dolly away from an object before losing visibility, (as there is no lens
zoom function as part of the system, the only way to decrease or increase the scale of the object in
the camera view would be to dolly (physically move the camera not the lens away or toward the
object)).

. Height Template
. 30cm Rule
. White Cover
. Best and Worst Case Object

Like the start of experiment 1, the camera was positioned facing down toward the centre of the best
case object. The starting distance away from the object is variable and is set depending on how close
the object needs to be to fill the camera view such that its width or height borders the edge of the
lens view. The initial image was then taken and loaded to the library; this position is treated as 0cm
away from the object. The camera visibility was recorded at 0, then at increments of +5cm away
keeping the angle to the object the same throughout. The test was then repeated for the worst case
object.

0

1

2

3

4

5

0 10 20 30 40 50 55 60 65 70 75 80 90

V
is

ib
ili

ty
 R

at
in

g

Angle (°)

Best Case Object

Worst Case Object

39

Despite ORB having no scale invariance, there is still some flexibility that the camera can distance
itself from an object. From the results 20cm appears to be the threshold for optimal performance in
both worst and best cases, at best the system is optimal a further 15cm. Much like with angle of
acceptance, there is a steep fall-off point with best case objects whereby visibility sharply falls after
taken 60cm away, reducing to the lowest rank over an additional 10cm. In a similar pattern to the
previous experiment too, there is only a short time in which the best case object operates at the
lowest rank before becoming unrecognisable. Furthermore, the worst case object reduces to the
lowest visibility rating 20 cm before its best case counterpart yet similarly will continue to operate at
lowest performance further than the best case (10cm). This must once again be due to the irregular
shape of the worst case object being more distinguishable at extremes than the graphics and shape
on the best case item.

3. Noise Limit

The number of other items that can be in the camera view before either camera fps becomes too
low to be responsive or the object is no longer visible to the system.

. 30cm Rule
. Metal Plank
. Weight
. White Cover
. Set of objects

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

V
is

ib
ili

ty
 R

at
in

g

Distance (cm)

Best Case Object

Worst Case Object

40

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V
is

ib
ili

ty
 R

at
in

g

Number of Items Added

Best Case Object

Worst Case Object

During both object experiments, the camera was kept at the same distance to the table surface with
the object to be recognised at the centre point of the view. To start the object is alone in the camera
view, the library image is taken and cropped to the size of the object, the camera fps and object
visibility rating is noted (camera fps is recorded and displayed on the phone using an OpenCV library
method). Then one at a time, other non-library items are added from a pre-defined set, positioned
within 1cm of another object in scene but not overlapping the library item, recording fps and
visibility each time. This continues until the visibility is rated 0, the set has all been placed or the fps
becomes too low to be responsive.

In the worst case, the system will only take 3 additional objects being close to the tracked entity in
the view before the visibility is affected. The decline in visibility is rather linear when the number of
items is greater than 3, falling one rank per every other item added close to the object in the view
until at the lowest rank. There is of course a leniency in the results given what particular items are
added, but the experiment shows that an estimate of 7 to 8 items will be the maxima in worst cases.
When compared to the best case the difference between lower and upper bounds seems wide, this
is most likely due to the difference in the number of features and the distinctness of those features
between best and worst case. As the less features an object you wish to track has and the more
common they are the more likely visibility can reduce by mismatching x amount of features with
other similar objects. The best case maintains perfect visibility even after all 15 items in the set have
been added, this could be as a result of the graphics on the front of the tin providing many unique

41

features to the tin itself. To test the limits of a best case object the view was further filled with 15
additional items until the screen was entirely filled with non-library objects, representing a
maximum for the number of additional features possible to be added on screen at the fixed
distance. When the best case item was then re added it was still recognised at a visibility of 5. It can
be therefore assumed that an object matching a best case description will always be spotted at a
rank of 5, provided it is within the angle of acceptance and dolly range that yields a result of 5 and
that the library article remains uncovered by other objects. Below shows the table result and image
of filling the view with maximum items.

4. Library Limit

The experiment records two parts, the first is the number of objects that can be stored into the
library and simultaneously be in view before any library object no longer becomes visible. The
second is the number of objects that can be stored into the library before the system becomes
overloaded.

. 30cm Rule
. Metal Plank
. Weight
. White Cover
. Set of objects

The camera was set in a fixed position 42 cm over the cover using the metal plank. Objects in the set
were added one at a time into the view, with each one being added an image was taken, added to
the library and cropped to the perimeter of only that object. With each additional object the camera
fps and visibility ratings of each object in the set were recorded. Once any visibility rating of a subset
of objects becomes 0 the ratings will stop being recorded, the objects in view will be removed but
other items will continue being added to the library and fps noted until system failure.

Best Case Object

Objects added to scene Camera Fps Visibility Rating

… … …

30 2.11 5

Image of Result

42

Though the objects in the set for this experiment were thought to be distinct, critical problems
occurred with the system in terms of the visibility of the library objects as soon as 4 were in both the
library and the view. Object1 seemed to be matched within other features of object2, the system
could no longer distinguish between two separate objects and thus object1 visibility was noted at 0.
Meanwhile object4 on some frames was found and other frames were not recognised at all, however
upon removing one object whilst keeping the library size at 4 the system could once again recognise
each item individually. This concludes that although the system cannot minimally function if the
number of objects in the library and view is > 4, there is still a capacity to hold more library objects
provided not all of them are in view at once. The results of part 1 of the experiment however only
give an estimate, the number of variables in terms of different objects that could be in the library as
well as camera angles and position could yield different results. For the second part of the
experiment, once eight objects were added to the library the system was overloaded and forced to
close. This may give a total library capacity of 7 (regardless of whether the 7 library items are in the
camera view) but in reality the camera fps becomes too low once 5 objects are in library that a
moving camera could be deemed too unresponsive for user purposes.

5. Object Distortion

An experiment to test the angle the object can be orientated around in comparison to the original
image before no longer being visible. Documentation on how much of the object can be covered
before no longer being visible.

. Protractor
. 30cm Rule
. Metal Plank
. Weight
. White Cover
. Best Case Object (the worst case object was not included in the experiment as its overall shape
would change upon rotation, adding more than just a rotation variable influencing the results)

The camera was set in a fixed position 42 cm over a blank surface, the best case object was then
placed in the centre of the camera view. An image was taken of the object and added to the library
with its size cropped around the item perimeter. Marks were then drawn around the object to
reference its starting position and to make a bearing in which to rotate the object. Starting at 0°, the
objects visibility rating was recorded before rotating the object +45° about its centre. This was
repeated until a full 360° rotation had been made.

Object Rotation (°) Visibility Rating

0 5

45 5

Objects Loaded in Library Camera FPS Visibility Ratings

1 3 {5}

2 1.12 {5, 5}

3 0.65 {3, 5, 3}

4 0.57 {0,4,4,2/0}

5 0.32 x

6 0.30 x

7 0.26 x

8 - -

43

90 5

135 4-5

180 5

225 5

270 4-5

315 5

The two ways an object could be distorted without physically changing its shape are through
rotation and covering. When rotation/orientation is concerned, it can be seen from the table that
research was correct, ORB is orientation invariant and therefore an object can be rotated a full 360°
from the origin of the library image and still be recognised competently by the system. The amount
that an object can be covered and still recognised is too highly variable between objects to be
accurately estimated, as it depends where on the object a majority of features are found. The
percentage an object can be covered before becoming invisible to the system is also controlled in
the code. The code only highlights the object if the number of good matches between training image
and camera frame is greater than X (X being hard coded as 10). Therefore, so long as X features of
the object are visible to the camera it will be displayed. There is however a trade-off, as the lower X
is set to the easier it is for the system to match the training image with an object in the camera
frame that is not the library object.

44

System Functionality Testing and Evaluation

Test cases are used to ensure the functionality performs as expected by checking if a pre-defined set
of use cases or steps creates determined results or an error. Test cases were carried out by a single
tester who had no involvement in the implementation. Test cases are useful so long as an extensive
amount of different procedures for performing similar tasks are considered. The following should
represent a large subset of the steps that can be possibly undergone whilst using the system giving a
strong indication of how error prone the system is whilst running. However, even if all are passed
that does not directly mean that the system is error free, as there could be a minor subset of
unconsidered paths to use the system that have not yet been realised and therefore untested.

Test Case ID: Description: Preconditions: Input:

Image_Capture Take an image of the test
object

- . Test Object (set of
keys)

Steps: Expected Result: Status: Comments:

1. Launch the application
by clicking the “Object
Recogniser” app on the
default phone menu

Finder screen should
appear in mobile monitor,
consisting of the java
camera view and Android
menu bar.

Pass

2. From the launch/finder
screen, tap the “…” option
from the Android menu
bar (on the right hand side)

Finder screen menu bar
should appear at the
bottom of the monitor
overlaying the camera
view.

Pass

3. Tap the “Take Object
Image” option from the
finder screen menu

Finder screen menu bar
should close and system
message “Tap on screen to
take photo” should appear
for a 3 second duration.

Pass

4. Position the camera
20cm away from the
centre of the test object,
with the camera lens
facing down towards the
surface, tap anywhere on
the camera view

System message “Picture
Saved” should appear for a
3 second duration.

Pass

All steps successfully completed for ID “Image_Capture” with no errors or additional observations.

Test Case ID: Description: Preconditions:

Image_Add Add an image to the library User has launched the application and
taken an image of an object

Steps: Expected Result: Status: Comments:

1. From the finder/launch
screen, tap the “…” option
from the Android menu
bar (on the right hand side)

Finder screen menu bar
should appear at the
bottom of the monitor
overlaying the camera
view.

Pass

2. Tap the “Library” option
from the finder menu

Screen should switch to
library view, consisting of
an empty library (appears

Pass

45

black) with title “Object
Library” centred at the top
of the screen.

3. From the library screen,
tap the “…” option from
the Android menu bar

Library screen menu bar
should appear at the
bottom of the monitor
overlaying the library
interface.

Pass

4. Tap the “Load Image To
Library” option from the
library menu

Screen should switch to
Android Media Gallery
view, consisting of albums
“Phone”, “0” and
“Screenshot” with a blue
banner on the top of the
screen and ‘cancel’ button
aligned to the right inside
the banner.

Pass

5. Select and tap the
album “0” from the
Android Media Gallery

Albums on the screen
should disappear and be
replaced with the images
inside album “0”, this
album should only contain
the image of the object just
taken.

Pass

6. Select and tap the image
of the test object from the
album

Screen should return to the
library, with a pop-up box
on top of the screen titled
“Enter Object Name”, pop-
up consists of a text entry
field, “OK” and “Cancel”
button.

Pass

7. Touch the text field on
the label pop-up

Screen should be replaced
with the Android Text Entry
view, consisting of a half
blank screen with button
“Done” to the right and an
Android Keyboard UI
underneath.

Pass

8. Type name ”Keys”, using
the Android Keyboard and
select “Done”

Blank screen should update
when the keyboard is
pressed to reflect the
character or keyboard
function chosen, once
“Done” is selected screen
should navigate back to the
pop-up box now with the
string ‘Keys’ in the text
entry field.

Pass

9. Tap “OK” on the label
pop-up

A row should have been
added to the library,
consisting of the image

Pass

46

chosen from the album on
the left and its given label
to the right.

All steps successfully completed for ID “Image_Add” with no errors or additional observations.

It is important to consider the alternative flows as well as the basic functional components of the
system, so that even in a scenario where a user wishes to return back to a previous screen is tested
for errors. This is why even test cases such as “Android_Gallery_Cancel” and “Object_Label_Cancel”
are documented even though they only consist of a single step, at some point they could be
important for error prevention or recovery and would need to have a return function that is proven
to work.

Test Case ID: Description: Preconditions:

Android_Gallery_Cancel Return from the Android
Media Gallery without
selecting an image

From test case “Image_Add”, performed
steps 1 – 4.

Steps: Expected Result: Status: Comments:

1. From the Android Media
Gallery, select and tap the
“cancel” touch button

Screen should navigate
back to library in the same
state it was left upon
entering the Android
Media Gallery.

Pass

All steps successfully completed for ID “Android_Gallery_Cancel” with no errors or additional
observations.

Test Case ID: Description: Preconditions:

Object_Label_Cancel Cancel labelling an object
about to be loaded to the
library

From test case “Image_Add”, performed
steps 1 – 6.

Steps: Expected Result: Status: Comments:

1. From the label pop-up,
tap the “cancel” button

A row should have been
added to the library,
consisting only of the
image chosen from the
album and no text label

Pass

All steps successfully completed for ID “Object_Label_Cancel” with no errors or additional
observations.

Test Case ID: Description: Preconditions:

Image_Crop Crop an image in the
library

User has loaded and labelled 2 images
from the Android Media Gallery to the
library and is on the library screen.

Steps: Expected Result: Status: Comments:

1. From the library screen,
tap the “…” option from
the Android menu bar

Library screen menu bar
should appear at the
bottom of the monitor
overlaying the library
interface.

Pass

2. Tap the “Crop Image”
option from the library

Library screen menu bar
should close.

Pass

47

menu

3. Tap the first library
entry row with the image
and label in

The first library entry row
should highlight in yellow
when pressed, on release
screen should switch to the
Android Crop view
containing the image
selected, a white rectangle
around the perimeter of
the image with four white
circles acting as crop points
at the centre of each
rectangle edge and a
“Save” button at the top of
the screen aligned to the
left.

Pass

4. Click and drag the four
crop points around the
object in the image

On dragging a point, the
edge of the rectangle
should move with the
relative motion of the drag,
highlighting only the
portion of the image inside
the area of the rectangle
(this is the area that is
cropped).

Pass

5. From the crop screen,
touch the “Save” button

Screen should switch to
library view in the same
state as in step 1, except
the row selected for
cropping should contain
the newly cropped image
with the same text label.

Pass

The cropped image
had successfully
replaced the original
image in the row
selected whilst keeping
the relevant label, but
the row that was
selected which started
at the top of the list is
now at the bottom of
the list.

All steps successfully completed for ID “Image_Delete_02” with no errors and 1 observation.

For the above test case, tester had noticed the change in index of the selected row to be cropped,
this occurs because upon return from the crop screen the cropped image and its original text label
are added as a new entry into the library and the corresponding original image with its text label are
deleted at the index that the selected row was in. The function executes this way rather than
replacing the original image at the selected index due to issues with transferring the index integer
from the “onItemClick” method that handles on touch events in the library to the
“onActivityResult” method that handles returning from the crop activity. As this does not affect
the crop functionality itself and with the library designed to give equal weight to all items it holds
regardless of index this observation has been recorded but will not be acted upon in this iteration.

48

Test Case ID: Description: Preconditions:

Image_Delete_01 Delete an image from the
library

User has loaded and labelled an image
from the Android Media Gallery and is
on the library screen.

Steps: Expected Result: Status: Comments:

1. From the library screen,
tap the “…” option from
the Android menu bar

Library screen menu bar
should appear at the
bottom of the monitor
overlaying the library
interface.

Pass

2. Tap the “Remove
Image” option from the
library menu

Library screen menu bar
should close. Pass

3. Tap the library entry row
with the image and label in

Library entry row should
highlight in yellow when
pressed, on release the
row should be deleted
from the library.

Pass

All steps successfully completed for ID “Image_Delete_01” with no errors or additional observations.

Test Case ID: Description: Preconditions:

Image_Delete_02 Delete the last image from
the library with the object
tracker still active

User has loaded and labelled a single
image from the Android Media Gallery
and is on the library screen.

Steps: Expected Result: Status: Comments:

1. From the library screen,
tap the “…” option from
the Android menu bar

Library screen menu bar
should appear at the
bottom of the monitor
overlaying the library
interface.

Pass

2. Tap the “Finder” option
from the library menu

Screen should switch to the
finder view consisting of
the java camera view.

Pass

3. From the finder screen,
tap the “…” option from
the Android menu bar

Finder screen menu bar
should appear at the
bottom of the monitor
overlaying the camera
view.

Pass

4. Tap the “Track Objects
In Library” option from the
finder screen menu

Finder screen menu bar
should disappear, no
noticeable change in the
java camera except a drop
in fps (frames per second)
making it seem less
responsive to camera
movement.

Pass

5. Tap the “…” option from
the Android menu bar

Finder screen menu bar
should appear at the
bottom of the monitor
overlaying the camera

Pass

49

view.

6. Tap the “Library” option
from the finder menu

Screen should switch to
library view in the same
state as in step 1 (with the
library containing a single
item represented as a row
with an image and label
inside.)

Pass

7. From the library screen,
tap the “…” option from
the Android menu bar

Library screen menu bar
should appear at the
bottom of the monitor
overlaying the library
interface.

Pass

8. Tap the “Remove
Image” option from the
library menu

Library screen menu bar
should close. Pass

9. Tap the library entry row
with the image and label in

Library entry row should
highlight in yellow when
pressed, on release a
system message should
appear with text: “Please
stop object tracking before
empting library” for 3
seconds.

Pass

All steps successfully completed for ID “Image_Delete_02” with no errors or additional observations.

Test Case ID: Description: Preconditions:

Object_Track_01 Track the test object when
the library has no images
stored

The library is empty and the user in on
the finder screen

Steps: Expected Result: Status: Comments:

1. From the finder screen,
tap the “…” option from
the Android menu bar

Finder screen menu bar
should appear at the
bottom of the monitor
overlaying the camera
view.

Pass

2. Tap the ‘Track Objects In
Library’ option from the
finder screen menu

Finder screen menu bar
should close and system
message “Error: Library is
empty” should appear for a
3 second duration.

Pass

All steps successfully completed for ID “Object_Track_01” with no errors or additional observations.

Test Case ID: Description: Preconditions: Input:

Object_Track_02 Track the test
object when the
library has an
image of the
object stored.

From the test case “Image_Capture”,
performed all steps, user has added the
specific test image from test case
"Image_Capture” to the library with label
“Keys” and is on the finder screen

. Test
Object (set
of keys)

50

Steps: Expected Result: Status: Comments:

1. Position the camera
30cm away from the
centre of the object, with
the camera lens facing
down towards the surface

NA NA

2. From the finder screen,
tap the “…” option from
the Android menu bar (on
the right hand side)

Finder screen menu bar
should appear at the
bottom of the monitor
overlaying the camera
view.

Pass

3. Tap the “Track Objects
In Library” option from the
finder screen menu

A green rectangle should
appear around the test
object in the camera view;
the rectangle has a size
equal to the dimensions of
its image in the library (the
closer the crop around the
object in the image is the
closer the rectangle is in
the camera view). The label
“Keys” should appear in
the centre of the test
object in the camera view.

Pass

4. Remove the test object
from the camera view

Camera View should not
recognise or highlight
anything.

Pass

All steps successfully completed for ID “Object_Track_02” with no errors or additional observations.

Eight out of nine test cases were filled with no errors or observations whilst “Image_crop”

did have a documented observation it still passed all stages in the test. This shows that the system
should be competent at executing the different ways in which its functions can be performed (not
considering the small percentage of possible unperceived test cases that could exist but were not
thought of.) The main disadvantages of test cases other than the previously mentioned percentage
of unknowns are its scalability with system expansions and the time investment. Test cases would
have to be archived appropriately if the system were to grow, perhaps transfer data into some data
warehouse so that their knowledge is not lost and can be referred to if there were ever new
software designers working on a bigger project using the object recogniser as a basis. In this instance
there was enough time to create and test the test cases so that the system can be thoroughly
checked, if ever there was a tighter time constraint then an alternative could be exploratory testing.
Exploratory testing involves giving users a timed window to use and “play” with the system and does
not require the prior setup of test case forms or structure (though there may be some guidance
involved). This in some cases will generate more error recognition that a standard set of test cases as
the tester could explore one of the unknown paths during the time frame; however the results or
errors discovered are never certain with exploratory testing and should only replace test cases if a
deadline to deliver a tested system leaves little room for formal documentation.

51

Future Adaptations

As expressed in the introduction, the system was designing as a building block for future
possibilities, here will be discussion of the main adaptations if given more time the system could
adhere to and what theatrically could be done in order to achieve this.

Helping visually impaired recognise and find objects

The system currently has all the basic recognition functionality needed to help visually impaired
persons find or recognise an object, however the interface in its current state is not suitable for use
by those with a lesser vision as it relies on visuals to show results. Adding additional features such as
audio may make the application more suitable. For instance, instead of just adding a text label when
images are added to the library perhaps a voice record option could also be implemented. Android
already has a MediaRecorder API available to do this whereby audio can be recorded using the
device’s microphone, stopped, played back and saved [2]. Then, in addition to a bounding box and
text label being displayed on recognised items from training images the system could also play the
relevant recording attached to that image in the library. The audio could be played in regular
intervals so long as the object is recognised or in view of the camera, or alternatively a command
could be pressed to play the recording back again once it has played once. To further this idea the
system could have the option of being controlled through voice command, so that it can be operated
without needed to interact with the interface. Once again java has an in-built voice recognition
activity that could help with this [10], where on command the Android system will use the
microphone to convert speech into a list of strings. You can then use this list to execute certain
functions depending if certain keyword strings are in the list or not. Given the relative ease of adding
these extra audio functionalities, tuning the system to cater for the more visually impaired would be
very plausible for the future.

Finding lost objects

Can the system implemented by used to help even non-visually impaired find custom items?
Currently one of the most successful methods to find lost objects using a smartphone device is to
use tags. Tags are miniature integrated circuits, with enough memory to hold a unique electronic
product code and further information so that it can be read from [13]. Tags are attached to antennas
that allow them to communicate with RFID (Radio Frequency Identification) readers at certain
frequencies and ranges revealing the ID of the tag and its relative location. These readers when
integrated into mobile systems can give tracking functionality if handles and processed accordingly
by the device. Other tags use Bluetooth signals that can be received by smartphones without the
need to use RFID readers [33] [3]. In either case, the use of tags imposes a manufacturing cost on the
tracking system (especially those using RFID) which can lead to expensive products.

Using image recognition like the methods implemented for this system removes the need
for additional hardware but at the cost of more processing from the device and is less robust. The
main problem currently is the object cannot be completely obscured by the camera in order to
function, as the system needs to view a proportion of the object to gain enough descriptors to
compare with training images. This then raises the question that if an object has to be seen in full or
partial view by the phones camera in order to be recognised, the system is no better than a human
with standard vision trying to find an object alone and is perhaps even slower at doing so.

In order to have the possibility of knowing if an object in a training image has been covered
up or moved out of site of the camera view the system must always be on and monitoring the
tracked objects, so that it may look into some frame archive and tell that at a point in time the
detected object was moved off screen or placed inside/under an item that is not recognisable. From

52

this the system could theoretically give a last known position co-ordinate on the screen (provided
the camera is fixed) or tell which side of the screen an object had left. This solution fits less with
using the object recognition methods on a mobile device and more with a set of fixed cameras in a
room such as a CCTV system. There could be the possibility of connecting the phone to a set of such
cameras wirelessly, using their camera data instead of the device’s as the query images and
incorporating the additional functionality explained above to be of more use to the non-visually
impaired. This could be more accurate than using tags by showing an objects last location in a real
world environment, as RFID readers cannot get exact co-ordinates of tags without the addition of
GPS. Though this then adds many further complications such as setting up a vast set of cameras as
well as the processing requirements, power and privacy issues involved with having a consistently
active camera recording. Therefore, although there is a possibility for the system to be developed
further in order to help the non-visually impaired find commonly missing items. The certain changes
in architecture and additional work needed to perform the development may require too many
input resources and not enough output for the current detection method.

53

Conclusions

To re-iterate; the objective of the project was to produce an application for a mobile device

that can recognise user defined objects in an environment of noise through the device’s camera.
Reviewing the system description from the initial report shows one objective that was not
implemented with much success; “The project will need to be able to allow users to add objects they
wish to distinguish. This will be done by creating a repository of images at multiple angles for added
objects via steadily rotating the camera around the entity at certain points.” Although the finished
system can add objects and if the user wishes multiple angles of the same object to the library, the
experiments performed revealed the top library capacity is 7 before a chance of system crashing and
4 before possibly affecting the recognition in the camera view. These capacities are minimal in order
to support adding multiple angles of a single object before being a detriment to the system. The
programme in its current state is far more suited to detecting an object from a single face (within the
angle of acceptance) if multiple objects wish to be found or a single object from a few perspectives if
only that object is to be recognised. This highlights the importance of the experiments performed,
as it could have been concluded that the system satisfies this objective successfully by assuming the
library has a large capacity without considering the capacity of the whole system.
 However excluding this objective, a mobile device application for Android smartphones has
indeed been implemented, the application can recognise objects using ORB detection and matching
on images taken by the user. The experiments prove that in the best case noise is not a
consideration, so long as the object is in view and in the worst case a certain noise threshold is
acceptable. The recognition results can also be seen as additional graphics on top of the device
camera whose frames are used as the query image when matching. The finished system does satisfy
the requirements drafted in the design section, further proven from the test cases. Therefore, a vast
majority of sub-goals from the main objective have been successfully fulfilled with positive results
and it is reasonable to assume the main objective has been met to a high degree.

54

Reflection

The individual project is essentially a problem solving task that can be split into segments;
developing an understanding of the problem to a point where a solution can be made, using
understanding to create plans and designs to help solve the problem, creating the solution from the
designs and research, and finally testing the solution is adequate or valid enough to solve the initial
problem. For each section there will be a discussion of the method(s) used to accomplish it, how
beneficial the methods were under timed conditions and what methods or learning’s can be applied
to future applications.
 Firstly, developing an understanding of the problem, which in this case was the research
needed to give a competent understanding of how to implement object recognition on smartphones
whilst adhering to my skillset. In order to achieve this the object was decomposed into smaller
sections of research such as how does object recognition work, what techniques are available and
what smartphones will most likely support those techniques with a programme I am comfortable
with. The method of decomposition was very successful when drawing conclusions from research
and building up knowledge. It also prevented an overload of information which could have occurred
when trying to research everything at once. However it did need additional management in order to
re-compose the sub solutions to bring back the context of the end result. In this case it was relatively
easy to relate all the segments together at once, especially considering there was only one human
resource with all the knowledge of each segment and no sharing or externalising was needed.
Applying decomposition and combining to future projects with similar success may need more
management steps especially considering group tasks or larger problems. A structure such as
externalisation meetings for group tasks that involve discussions of individual findings, or re-
combing segments of related information in steps until all the knowledge is once again interrelated
for larger problems could help with this. Either way so long as there is an assessment to judge that
the payoff of an increased understanding is greater than the extra time invested in management and
decomposing the problem this method will suit well for other projects.
 There were many plans and designs made during the project in order to aid the
development of the solutions and to make sure it was implemented in time; from Gantt charts in the
initial report to requirements and architecture diagrams in the design section. What was consistent
throughout each plan or design was a justification. The list of potential charts, drawings and
documentations in a design phase are endless that designing the solution to the problem even when
guided through research could theoretically take up more time than the implementation itself.
Applying and thinking if a model is really necessary helped focus the design process and avoided
wasting resources creating additional material that did not actually contribute to better
implementation or time management. A more critical and justified approach to all areas, not just the
designing of the solution, will help clarify actions and have similar benefits of that discussed. This
may seem like an obvious method, but justifying actions and material can get lost once the project is
past its research phase and only thought of again at the end of the project when reflecting back.
Keeping and documenting a justified approach throughout helped greatly in this project to keep on
track to accomplishing the main objective on time and will continue to be applied in the future for
hopefully similar results.
 For implementing the object recognition software, even when following design
requirements and research results there were still unforeseen barriers such as those discussed in
“complications when implementing”. One specific problem, “SURF with OpenCV Android library”,
which occurred upon finding out that SURF was not available for Android could have been prevented
from a more iterative style of research. To expand, having known that SURF was to be used in the
system and later deciding to use Android and OpenCV. Combining research conclusions and
performing a secondary round of research looking at the specific OpenCV library for Android would
have found that it did not contain SURF and prevented this problem. To learn from this, although
prior in the reflection it was mentioned that decomposition was good at building up knowledge.

55

Using this built up knowledge and testing theories against once more for other tasks could help solve
problems only discovered this time when creating the solution.
 When testing the solution, following approved guidelines and test structures such as
usability heuristics, think-aloud evaluation and test cases helped I thought make the testing seem
official and validated. Even in the self-conducted experiments, following a common patterned form
of documenting experiments such as; abstract, equipment list, method, results and conclusions had
a similar affect. Testing is about assuring others not just the creator that the system is functional and
usable, using recognisable test methods gave confidence that the system should be working and
achieves its objectives. Another positive of using pre-defined testing and experiment
methods/documentation is that they are already in an applicable format to other scenarios. The
same usability heuristics for example could easily be used on another system interface for the same
testing purposes as this one. Given the discussed benefits, the method of using existing test formats
will be applied again for subsequent solutions for prospective problems.
 Overall I feel that there were some good methods used throughout the entire project that
can be further applied elsewhere. As with the group project last year, meetings with the supervisor
were key in expanding knowledge, producing results on a regular schedule and giving guidance when
necessary and I hope similar guidance systems can be applied in the future. Even reflecting on the
methods missed, such as the iterative like research approach, can lead to the creation of more
improved methods and principles to add to those that proved useful during the project. The ultimate
result of the reflection process is to create continuously improving results in the next manner of
work without repeating past mistakes. Making reflection itself a method to be transferred on in the
future, to forever improve and learn and create improving solutions to new problems as a result.

56

Bibliography

1. Android Developer, MediStore.Images, Viewed 08/02/2015 At:

http://developer.android.com/reference/android/provider/MediaStore.Images.Media.html

2. Android Developer, Performing Audio Capture, Viewed 30/04/2015 At:
http://developer.android.com/guide/topics/media/audio-capture.html

3. Ben Coxworth, StickNFind system uses your phone and coin-like tags to find lost items,

Viewed 30/04/2015 At: http://www.gizmag.com/sticknfind-finding-system/25238/

4. C. Harris and M. Stephens, 1986, “A combined corner and edge detector”, pages 147–151

5. Caleb Woodruff, Feature Detection and Matching, Viewed 03/02/2015 At:
https://courses.cs.washington.edu/courses/cse576/13sp/projects/project1/artifacts/woodrc
/index.htm

6. Deepak G. Viswanathan, Features from Accelerated Segment Test (FAST), Viewed

04/02/2015 At:
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/AV1FeaturefromAccel
eratedSegmentTest.pdf

7. Dr Alia Abdelmoty, Human Factors: Colour Desig, Viewed 30/04/2015 At:

https://learningcentral.cf.ac.uk/bbcswebdav/pid-3028051-dt-content-rid-
4304435_2/courses/1314-CM2101/lect10-2101-%20Colour%20Design-st-slides.pdf

8. Eric Ravenscraft, I Want to Write Android Apps. Where Do I Start?, Viewed 05/02/2015 At:

http://lifehacker.com/i-want-to-write-android-apps-where-do-i-start-1643818268

9. Ethan Rublee, Vincent Rabaud, Kurt Konolige & Gary Bradski, ORB: an efficient alternative to
SIFT or SURF, Viewed 04/02/2015 At:
https://www.willowgarage.com/sites/default/files/orb_final.pdf

10. Eveliotc, How To: Voice Commands into an android application, Viewed 30/04/2015 At:

http://stackoverflow.com/questions/11798337/how-to-voice-commands-into-an-android-
application

11. Gil Levi, A tutorial on binary descriptors – part 2 – The BRIEF descriptor, Viewed 04/02/2015

At: https://gilscvblog.wordpress.com/2013/09/19/a-tutorial-on-binary-descriptors-part-2-
the-brief-descriptor/

12. Grant D. McKenzie, How to Calculate Hamming Distance, Viewed 04/02/2015 At:

http://classroom.synonym.com/calculate-hamming-distance-2656.html

13. Imping, How Do RIFD System Work, Viewed 30/04/2015 At:
http://www.impinj.com/resources/about-rfid/how-do-rfid-systems-work/

14. iOS Developer Library, Start Developing iOS Apps Today, Viewed 06/02/2015 At:

https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/

57

15. Jones V, What does the distance attribute in DMatches mean? , Viewed 03/02/2015 At:
http://stackoverflow.com/questions/16996800/what-does-the-distance-attribute-in-
dmatches-mean

16. Konstantinos Avgerinakis, Which are the best open source tools for image processing and

computer vision?, Viewed 06/02/2015 At:
http://www.researchgate.net/post/Which_are_the_best_open_source_tools_for_image_pr
ocessing_and_computer_vision

17. Lanshan, A problem in OpenCV with Android using SURF, Viewed 02/03/2015 At:

http://answers.opencv.org/question/14966/a-problem-in-opencv-with-android-using-surf/

18. Lin Longfei, Image Processing: Difference between SURF and SIFT? , Viewed 03/02/2015 At:
http://www.quora.com/Image-Processing/Difference-between-SURF-and-SIFT-where-and-
when-to-use-this-algo

19. Michael Calonder, Vincent Lepetit, Christoph Strecha, & Pascal Fua, BRIEF: Binary Robust

Independent Elementary Feature, Viewed 04/02/2015 At:
https://www.robots.ox.ac.uk/~vgg/rg/papers/CalonderLSF10.pdf

20. Michael Stanford, Measures of distance between samples: Euclidean, Viewed 03/02/2015 At:

http://www.econ.upf.edu/~michael/stanford/maeb4.pdf

21. Naotoshi Seo, Tutorial: OpenCV haartraining (Rapid Object Detection With A Cascade of
Boosted Classifiers Based on Haar-like Features),Viewed 02/02/2015 At:
http://note.sonots.com/SciSoftware/haartraining.html#Kuranov

22. OpenCV, About OpenCV, Viewed 06/02/2015 At: http://opencv.org/about.html

23. OpenCV, Features2D + Homography to find a known object, Viewed 03/03/2015 At:

http://docs.opencv.org/doc/tutorials/features2d/feature_homography/feature_homograph
y.html

24. OpenCV, Camera Calibration and 3D Reconstruction, Viewed 04/03/2015 At:

http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.h
tml?highlight=findhomography#findhomography

25. P M Panchal, S R Panchal & S K Shah, A Comparison of SIFT and SURF, Viewed 03/02/2015

At:
http://www.ijircce.com/upload/2013/april/21_V1204057_A%20Comparison_H.pdf

26. P. L. Rosin, 1999 ,“Measuring corner properties. Computer Vision and Image Understanding”,

73(2):291 – 307

27. Rbaleksandar, The pro and con of BRIEF and ORB compared to SIFT, Viewed 04/02/2015 At:
http://stackoverflow.com/questions/13226554/the-pro-and-con-of-brief-and-orb-
compared-to-sift

28. Samarth Brahmbhatt & Mert Kilickaya, What is "Histogram of Oriented Gradients" and how

does it work? , Viewed 02/02/2015, At: http://www.quora.com/What-is-Histogram-of-
Oriented-Gradients-and-how-does-it-work

58

29. Sammy, How to match 2 HOG for object detection?, Viewed 02/02/2015 At:

http://answers.opencv.org/question/877/how-to-match-2-hog-for-object-detection/

30. Sherice Jacob, Speed Is A Killer – Why Decreasing Page Load Time Can Drastically Increase
Conversion, Viewed 08/02/2015 At: https://blog.kissmetrics.com/speed-is-a-killer/

31. Sue Smith, Capture and Crop an Image with the Device Camera, Viewed 08/02/2015 At:

http://code.tutsplus.com/tutorials/capture-and-crop-an-image-with-the-device-camera--
mobile-11458

32. The MathWorks, Train a Cascade Object Detector, Viewed 02/02/2015 At:

http://uk.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html

33. Tile, How Tile Works, Viewed 30/04/2015 At: https://www.thetileapp.com/how-it-works

34. Tony Lindeburg, Scale Invariant Feature Transform, Viewed 03/02/2015 At:
http://www.scholarpedia.org/article/Scale_Invariant_Feature_Transform

35. Unknown, Difference of Gaussians, Viewed 03/02/2015 At:

http://en.wikipedia.org/wiki/Difference_of_Gaussians

36. Unknown, RANSAC, Viewed 04/03/2015 At: http://en.wikipedia.org/wiki/RANSAC

37. Unknown, What Colors Mean, Viewed 30/04/2015 At:
http://www.factmonster.com/ipka/A0769383.html

38. Unknown, Scale-invariant feature transform, Viewed 03/02/2015 At:

http://en.wikipedia.org/wiki/Scale-invariant_feature_transform

39. Unknown, SURF (Speeded Up Robust Features), Viewed 03/02/2015 At:
http://en.wikipedia.org/wiki/SURF

40. UxMovement, When to Use White Text on a Dark Background, Viewed 30/04/2015 At:
http://uxmovement.com/content/when-to-use-white-text-on-a-dark-background/

41. VLFeat.org, About VLFeat, Viewed 06/02/2015 At: http://www.vlfeat.org/about.html

Image references

Fig. 1. Creating descriptors in SURF (left) and SIFT (right), Viewed 03/02/2015 At:

http://www.quora.com/Image-Processing/Difference-between-SURF-and-SIFT-where-and-when-to-

use-this-algo

Fig. 2. FAST & the Bresenham circle, Viewed 04/02/2015 At:
http://www.edwardrosten.com/work/fast.html

Fig. 3. Incremental Development Model, Viewed 09/02/2015 At:
https://learningcentral.cf.ac.uk/bbcswebdav/pid-2763056-dt-content-rid-3198509_2/courses/1213-
CM1202/Week%204%20-%20after%20waterfall.pdf

http://en.wikipedia.org/wiki/SURF
http://www.vlfeat.org/about.html

59

Fig. 4. Prototype Development Model, Viewed 09/02/2015 At:
https://learningcentral.cf.ac.uk/bbcswebdav/pid-2763056-dt-content-rid-3198509_2/courses/1213-
CM1202/Week%204%20-%20after%20waterfall.pdf

