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Abstract 
This dissertation attempts symbolic music sentiment transfer across Russell’s four 

quadrants through bar-level control of musical attributes associated with changes in perceived 

sentiment. Based on a survey carried out by Panda et al., musical attributes associated with 

changes in perceived sentiment were identified and methods to extract them were created 

(2023). These were added to the existing MuseMorphose model, a program designed for style 

transfer through attribute control. The model was retrained on these additional attributes and 

sentiment-transferred output was generated to be fed back into an emotion classification tool. 

The results from this research support found that transferring high valence pieces to 

low valence while leaving arousal unchanged were the most often correctly identified as their 

target sentiments. In addition, modifications to control of attributes related to changes in 

perceived arousal yielded higher accuracy in classification in later experiments, although no 

cases where accuracy rose above 25%. This suggests that through further changes to how 

attributes are controlled in sentiment transfer, symbolic music sentiment transfer across 

Russell’s four quadrants through control of musical attributes will be achievable. Suggestions 

for further work are included in the conclusion of this dissertation. 
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Introduction 
The expression of emotion is one of music’s core functions. Whether one’s 

engagement with music is its creation or its consumption, music’s inherent ability to 

communicate emotion is a major factor in our appreciation of it. As Roger Scruton said, 

“music inspires and consoles us partly because it is unencumbered by the debris that drifts 

through the world of life” (1999). It is no surprise, then, that an active research area within 

the field of music information retrieval is the development of programs which can identify 

emotion in music and generate music to fit a target emotion. In the last few years, there has 

been particular interest in the use of machine learning methods to achieve sentiment 

identification and sentiment-based generation of symbolic music, or non-audio 

representations of music. This is largely due to the relative simplicity compared to audio-

based sentiment identification and generation. The investigations in this dissertation fall 

within the field of symbolic music emotion recognition and generation. 

To categorise the sentiment conveyed by a piece of music, a method of categorising 

emotions needs to be defined. While there are a few approaches to this task, the most 

prevalent is based on Russell’s four quadrants (1980), in which emotions are mapped across 

the axes of arousal and valence. For example, contentment would fall in the low arousal high 

valence quadrant, while anger would fall in the high arousal low valence quadrant. 

While there has been substantial work done in music emotion recognition and 

generation, there has not yet been a tool developed which can carry out sentiment transfer on 

symbolic music, or the modification of a piece of music to express a given sentiment. Such a 

program could prove incredibly useful to composers, particularly composers for media, 

where a single piece of music may need to be used in multiple emotional contexts (Kalinak 

2010). Therefore, the central research question of this dissertation concerns the development 

of such a tool: can symbolic music sentiment transfer across Russell’s four quadrants be 

achieved through musical attribute extraction and control? 
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Beyond aiming to close a research gap, a tool for symbolic music style transfer could 

be relevant to several fields. In any area where the emotion conveyed by music is a priority, 

being able to quickly produce music to fit a given sentiment could be of benefit. 

One example of where a sentiment transfer tool could be useful is in composition of 

music for film and TV, where recurring themes are often repeated and adapted to enhance the 

emotion conveyed in a scene (Kalinak 2010). Such a tool could by used by a composer to 

generate ideas on how to alter an existing piece to fit a different emotional context. This 

could both serve as a valuable tool in a composer’s workflow, enabling them to quickly 

generate ideas when working on short deadlines; and provide composers with ideas for how 

to develop an existing piece of music in ways they may not have otherwise considered, 

thereby enriching their output. 

A sentiment transfer tool may be useful to software developers working on projects 

where the sentiment conveyed by music needs to change dynamically. An example of such a 

project is DearDiary.ai, a web application where music is generated as a user inputs text, 

informed by the sentiment of the text being entered (Lane et al. 2021). 

Finally, such a tool could also be useful to music listeners for a variety of reasons. 

Music listeners may desire a song which sounds like one they have a particular bond with, 

but which fits a different sentiment, for creative purposes such as storytelling, or for personal 

explorations of music. Additionally, being able to listen to songs they are familiar with in 

different emotional contexts may help listeners better understand why certain songs elicit 

particular emotions in them, helping them become more thoughtful consumers of music. 

Attempting to create a sentiment transfer program from scratch would be beyond the 

scope of this dissertation. Therefore, sentiment transfer in this project will be attempted 

through extending an existing symbolic music style transfer tool, MuseMorphose (Wu and 

Yang 2022). This program was found to be suitable for the task as it approaches style transfer 
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through musical attribute control, and as it is well-suited to extension for novel applications. 

A discussion of how it is well-suited to extension is presented in Section 3. 

The methodology adopted in this dissertation involves first selecting attributes which 

are found to be suitable for extraction from symbolic music, and which have an apparent 

relationship with changes in perceived sentiment. Then, functions for extracting these 

attributes from symbolic music is developed. The MuseMorphose architecture is updated to 

be able to handle the additional attributes, and then the model is retrained. Once the model 

has been retrained, a sentiment annotated dataset is used as input to the program for the 

generation of sentiment-transferred output. This output is passed into a separate music 

emotion recognition tool and the accuracy of identifying the target sentiment in generated 

music is measured. 

Attempting symbolic music style transfer is a novel task with many considerations. 

For this reason, and to maintain feasibility of completing this project within the limitations of 

this dissertation, the scope of the project is limited in a few ways. As mentioned earlier, 

development of the program will involve extending the functionality of the existing 

MuseMorphose model, instead of building an entirely new program. This model was trained 

predominantly on pop music for solo piano, so this program will similarly be limited to this 

genre and instrumentation. Finally, it is not within the scope of the project to assess the 

musical quality of the generated sentiment transferred music. This would be a potential area 

for future research if the results indicate that the proposed approach for symbolic music 

sentiment transfer is successful, and will be discussed further in Section 5 of this dissertation. 

This project draws together research from a number of areas, which are explored 

more thoroughly in Section 1. In particular, the fields of music emotion recognition, symbolic 

music generation, style transfer, musical attribute extraction, and music theory will be 

relevant. 
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Section 2 of the dissertation will explore the central research question in more depth 

and outline in detail the methodology used. Section 3 will contain a review of 

MuseMorphose and its potential for extension; in particular, this section will focus on design 

features of MuseMorphose which increase the ease with which the model can be extended for 

new applications. 

Section 4 will cover the process of modifying MuseMorphose for sentiment transfer 

in depth, from the selection of an appropriate dataset through to modifying the music 

generation function so that sentiment-transferred music can be generated for analysis. Section 

5 will then present the results of this music generation, along with a discussion of the results, 

what they indicate about how successful the project was, and what could be changed in future 

experiments in symbolic music sentiment transfer. 

The results obtained in this project indicate that symbolic music sentiment transfer is 

possible through attribute control. However, this is an area in which further research is 

required, with some suggestions of future research directions discussed in Section 6. 

な. Background 

I. Introduction 

This section introduces research areas and concepts which are required for this 

project. An explanation of music theory concepts relevant to this project is presented. The 

field of music emotion recognition is introduced, with examples of relevant projects 

provided. Panda et al.’s review audio attributes and their relationship to perceived emotion is 

discussed, as it is used extensively in identifying musical attributes suitable for use in 

sentiment transfer. This is followed by an overview of style and sentiment transfer in 

symbolic music, with a focus on MuseMorphose and another relevant project undertaken by 

Sigel et al. (2021). Finally there is a brief discussion of relevant symbolic representations of 

music. 



8 

II. Music Theory 

As feature extraction from music is a core component of this project, several musical 

concepts need to be understood going forwards. 

In music, notes are auditory events comprised of a pitch (the perceived frequency of 

the underlying sound wave), duration, and volume. Pitches in Western music are organised 

into twelve repeating and evenly spaced classes with unique names (C, C#, D, D#, E, F, F#, 

G, G#, A, A#, B). There are seven unique letters as most scales contain seven pitches. For 

example, a C Major scale contains the notes (C, D, E, F, G, A, B). A related concept is pitch 

class sets, which refers to pitches with numbers 0-11, and is used when the relationships 

between pitches are more important than the pitches themselves. For example, the pitch set of 

a major scale is (0, 2, 4, 5, 7, 9, 11). By normalising the first pitch to zero, major scales 

beginning on any pitch can be expressed this way. 

Numbers are added to pitch classes to indicate specific frequencies. For example, the 

pitch A4 refers to 440Hz; A3 refers to 220Hz, which is one octave lower than A4; and A5 

refers to 880Hz, which is one octave higher than A4. In MIDI, these specific frequencies are 

instead described with integer numbers, and the notes contained on a standard piano 

keyboard represented by numbers in the range 21-108. 

All musical samples in this project are taken from the EMOPIA dataset (Hung et al. 

2021) or the AILabs.tw-Pop1k7 dataset (Huang and Yang 2020), which exclusively contain 

pieces in the time signature 4/4 (also referred to as common time due to its prevalence in 

Western music). This means that the music is divided into beats of equal durations, which are 

grouped into bars of four beats. The rate at which beats occur is called tempo. There can be 

many notes within a single beat, and notes can occur on beats, in between beats, and across 

multiple beats. The patterns that emerge from note onset times are referred to as rhythm. 

Rhythmic intensity refers to the density of note onset events. 

Some instruments are monophonic, meaning they can produce only one note at a time. 
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This project is concerned with music for solo piano, which is a polyphonic instrument. This 

means it can produce multiple notes at a single time. A standard piano in standard tuning has 

88 keys which each produce notes of a different pitch, which makes the piano capable of 

producing up to 88 notes simultaneously. Polyphony refers to any period of time in a piece of 

music which features multiple notes occurring at the same time. 

Harmony in music is a means of organising notes which occur during polyphony. 

Three or more notes occurring together is called a chord, and there are many categories 

chords can fit into. Chords which are of particular relevance to this project are displayed in 

the table below. 

 

Chord Quality Pitch-class set notation Example Chord 

Augmented 0, 4, 8 D Augmented: D-F#-A# 

Major 0, 4, 7 C Major: C-E-G 

Dominant 7 0, 4, 7, 10 Bb Dominant 7: Bb-D-F-Ab 

Sustained 0, 2, 7 or 0, 5, 7 G Sustained: G-A-D or G-C-D 

Minor 0, 3, 7 A Minor: A-C-E 

Minor 7 0, 3, 7, 10 E Minor 7: E-G-B-D 

Diminished 0, 3, 6 B Diminished: B-D-F 

Table I: Examples of chord qualities 

 

Melody refers to an identifiable monophonic line. The melody notes of a piece often 

stand out, either by being extreme in pitch, or significantly louder than non-melody notes. An 

intuitive way to determine the melody in a piece of music is to listen to it and try to sing 

along. An important feature of melody is melodic contour, which refers to the shape of 

melody over time. For example, the melodic contour of the first four bars of “Twinkle 
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Twinkle Little Star,” as displayed in Figure I, follows a convex shape, as it ascends and then 

descends. 

 

 

Figure I: The first four bars of “Twinkle Twinkle Little Star” with pitch-class set 

indicated. 

 

The final musical feature relevant to this project is tonality. Tonality, or key, refers to 

the underlying sense of harmony during a given portion of music. Music without a clear 

underlying sense of harmony is described as atonal. The tonality of a portion of music can be 

described in terms of the mode, or scale, which best fits the implied harmony. The most 

common modalities in Western music are major (described earlier), and minor (0, 2, 3, 5, 7, 

8, 10), although there are many others such as lydian, mixolydian, and phrygian, which all 

have unique pitch class sets. 

The terms described here are important to understand as they relate to musical 

features which have a bearing on perceived emotion. They relate directly to the musical 

attributes extracted from sentiment data and controlled for sentiment transfer. 

III. Music Emotion Recognition 

Music Emotion Recognition (MER) is an area of study within the broader field of 

Music Information Retrieval (MIR) concerned with the use of technology, often machine 

learning, to classify pieces of music by their emotional content. It is a task with many 

applications, ranging from music recommendation systems to music therapy (Han et al. 

2023). There are two major decisions in approaching MER that affect the approach and the 

resulting implementation: how the musical data is represented, and how emotions are 
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classified. 

While music is an auditory art, it can also be represented symbolically, such as with 

music notation. Audio representations of music are stored as audio files (such as .WAV files). 

Symbolic representations of music, meanwhile, do not contain audio of a piece of music. 

Instead, they store information that can be decoded to recreate the music (for example, using 

a digital audio workstation or a virtual instrument) by containing information about the 

piece’s tempo, time signature, note velocity, and note position. Music notation is a widely 

used form of symbolic music, where the symbolic music is “decoded” by a human performer 

using an instrument. 

 The computational approaches to understanding these two types of musical data are 

quite different from each other. As a result, choosing whether to work in the audio or 

symbolic domain majorly influences the design of MER implementations. Both musical 

representations have advantages and disadvantages. 

One key advantage of working with symbolic music instead of audio is that it requires 

significantly less pre-processing. While audio data requires pre-processing to extract features 

such as the piece’s spectrogram and Mel Frequency Cepstral Coefficients (MFCCs) from the 

waveform from which information about musical features can be inferred (Han et al. 2023), 

symbolic music already contains numerical representations of many key musical features. A 

flaw with SMER, however, was its limited scope for applications compared to audio domain 

MER, since a major application of MER is to aid in music retrieval for casual listening (Yang 

and Chen 2012). Thanks to a growing number of tools that can accurately transcribe audio to 

symbolic music representations, like the piano transcription tool proposed by Kong et al. 

(2021), this gap in applicability is reducing. 

Having decided whether to work with music in the audio or symbolic domain, the 

next major decision in designing a MER tool is determining how to define the emotions being 
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classified. In MER, sentiments need to be clearly defined so that the program’s model can 

understand them. There are many approaches to classifying emotions, which all fall into one 

of two broader methods: categorical or dimensional. 

A categorical approach to classifying emotion involves the definition of several basic 

emotions. For example, MUSEC uses the emotions of happy, sad, angry, surprised, joy, and 

love to form the basis of its emotion classification function (Abboud and Tekli 2020). From 

the identified emotions, each one is given a weight, with the idea that human emotions of any 

complexity can be described as combinations of different amounts of a handful of simpler 

emotions (Yang and Chen 2012). This approach is viewed as being an intuitive way to 

understand emotions. One major issue with the categorical approach is the absence of a 

consensus on which basic emotions can be combined to fully encapsulate the range of human 

emotion. As a result, different tools using a categorical approach to emotion classification 

often cannot share datasets. Another issue with a categorical approach is in annotating 

emotions. It has been found that many tools do not identify enough basic emotions to capture 

the full range of complex emotions conveyed in music, and the subjective use of language 

around emotions can confuse subjects responsible for annotating sentiment in music (Yang 

and Chen 2012). 
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Figure II: “Direct circular scaling coordinates for […] 28 affect words” (Russell 

1980). 

 

The dimensional approach to classifying emotions is based on the idea that all 

emotions can be described by the combination of scalar values. The most common 

application, shown in Figure 1, is to use two scales: arousal (or how energetic an emotion is) 

and valence (or whether an emotion is positive or negative) (Russell 1980). By plotting 

arousal against valence, a two-dimensional space is created comprising four quadrants (high 

arousal, high valence; high arousal, low valence; low arousal, high valence; low arousal, low 

valence). This approach is standardised in MER, making it possible for datasets and results 

from different models to be applied to new contexts. However, it has been criticised for 

lacking the fidelity of a categorical approach in defining emotions (Yang and Chen 2012). 

This can be seen in the diagram above; fear and anger, for example, are two emotions which 

are experienced in very different ways, which can be observed in the different physiological 

differences they elicit (Ax 1953). However, when using four quadrants, these emotions are 
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contained within the same category, thereby losing nuance in emotion categorisation. This 

flaw is sometimes mitigated by the inclusion of a third dimension, however the increased 

complexity in using a three-dimensional model rather than a two-dimensional one is not 

matched by the increase in accuracy of emotion classification (Eerola et al. 2009). 

Many MER tools use a machine learning approach. As a result, two factors to 

consider during their development are the selection of an appropriate dataset and the design 

of an effective model architecture. 

To train a model for MER, a dataset of sentiment-annotated musical data is required. 

The dataset selection is dependent on the approach being used, since there is not a consensus 

on how musical data should be formatted or how sentiment should be classified. For instance, 

the MTG-Jamendo dataset (Bogdanov 2019) uses a categorical classification approach for 

audio representations of music; this would not be suitable for MidiBERT-Piano, which 

classifies emotion in MIDI representations of music dimensionally (Chou et al. 2021). 

In addition to selecting a suitable dataset, it is essential to choose an appropriate 

model architecture. In the field of MER, it is customary practice to select an existing model 

architecture and modify it to suit the task, as opposed to creating a completely new 

architecture (Yang and Chen 2012). Support vector machines (SVMs) have demonstrated 

high accuracy in emotion classification, but newly developed emotion classification tools 

tend to implement modern models specifically designed for natural language processing 

(NLP). 

IV. Audio Attributes for Music Emotion Recognition 

In 2020, Panda et al. conducted a survey into the relationships between musical 

features and sentiment. This survey identified eight large-scale musical features (melody, 

harmony, rhythm, dynamics, timbre, expressivity, texture, and form), and multiple attributes 

for each feature. Several papers exploring the relationships between musical attributes and 
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perceived emotion were referenced in drawing conclusions about the relationships between 

these features and categorical sentiment. Additionally, methods to extract these attributes 

from audio are described. 

This survey found that for many attributes, different studies found contradicting 

associations with sentiment. For example, two studies found that monophonic music was 

viewed as happier than homophonic music, while two different studies found the opposite to 

be true (Panda et al. 2023). However, there were also many attributes found to have clear 

associations with specific sentiments consistent across multiple studies. An example of this 

can be found in dynamics, as louder dynamics are consistently associated with high arousal 

emotions such as happiness and anger. In several cases, it is suggested that the relationship 

between a given attribute and perceived sentiment is more complex than a direct correlation, 

and that the attribute should be considered in its surrounding musical context to better 

understand its implications. 

The results of this survey indicate that while some musical attributes have a clear and 

direct relationship to sentiment, others need to be considered in broader the context of the 

music, through taking other attributes into account or through considering how means of 

expressing emotions can vary across genres. Within the field of MIR, when considering 

musical attributes, it is important to be aware of the distinction between those that directly 

correlate to sentiment, and those which have a relationship to sentiment more affected by 

other musical features. Initial searches did not result in finding any research into attempting 

to model the relationships between perceived sentiment and shifts in multiple attributes; 

research in this area would likely be greatly beneficial to the field of MER. 

V. Style and Sentiment Transfer in Symbolic Music 

Sentiment transfer falls within the larger topic of style transfer, a process in which the 

content of one source is modified to match the style of another. For example, in the visual 
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domain, a style transfer may take a photograph and a famous artist as input and generate a 

variation of the photograph in the style of the artist. In the context of music, style transfer is a 

process in which an input piece is reimagined in a different style. In recent years, there have 

been a growing number of papers concerned with style transfer in music, however 

background research yielded only one paper addressing sentiment transfer (or the transfer of 

the perceived emotion in a piece while maintaining its overall structure). 

One project, focussed on audio-domain one-shot timbre transfer, uses the application 

of a vector-quantised variational autoencoder (VAE) (Cífka et al. 2021). VAEs traditionally 

work by encoding input data into a latent space representation, then using the latent space to 

reconstruct the input. The approach used by Cifka et al. varies from traditional VAEs by 

using discrete instead of continuous latent variables (2021). For this timbre transfer task, two 

encoders were used; one to encode the input, and the other to encode the target style. This 

approach followed previous symbolic music-domain work, Groove2Groove (Cífka et al. 

2020). Groove2Groove aimed to conduct style transfer in the accompaniments of popular 

music and jazz by similarly using two encoders and one decoder. 

A recent paper approached the topic of sentiment transfer in symbolic music (Sigel et 

al. 2021). This approach is based on CycleGAN (Zhu et al. 2020), a generative adversarial 

network (GAN) which uses two sets of generator and discriminator modules to generate new 

data and attempt to reconstruct the original input. In their work, Sigel et al. applied this 

principle, though full results have not yet been published. However, the authors 

acknowledged that further work would benefit from the inclusion of music composition 

knowledge in the tuning of parameters. 

Though not concerned with sentiment transfer, MuseMorphose approaches this aim 

by using attribute extraction and modification as means for controlling style transfer (Wu and 

Yang 2022). In MuseMorphose, two attributes (rhythmic intensity and polyphonicity) are 
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extracted from symbolic music and each organised into eight equally sized bins. These 

attributes can then be controlled during generation, which is undertaken by a model which 

combines a VAE with a transformer, to overcome the issue of VAEs performing poorly over 

longer sequences (Wu and Yang 2022). The model developed in MuseMorphose is the basis 

on which this project has been built. 

VI. Attribute Specification and Modification 

As demonstrated in MuseMorphose, it is possible to control the output of a VAE-

based generation model by manipulating attributes extracted from the input file (Wu and 

Yang 2022). As identified by Panda et al., there are a substantial number of attributes or 

features that could be extracted from music, many of which have strong relationships with 

perceptions of different sentiments in the Western music tradition (2023). By carefully 

selecting which musical attributes are selected as input for a VAE, the generated music can 

be more directly controlled. However, not all attributes are suitable for use in a VAE, since 

VAEs perform better when using continuous attributes rather than categorical ones. 

In the case of MuseMorphose, the two attributes selected (rhythmic intensity and 

polyphony) were selected for their ease of identification for listeners, and their association 

with musical arousal (Wu and Yang 2022). Owing to these factors, modifying rhythmic 

intensity and polyphonicity produces a recognisable change in arousal between the input 

piece and the new generation. 

In their review of audio features for music extraction, Panda et al. identified many 

musical attributes, and their relationships to different sentiments (2023). While several 

attributes have associations with contradictory emotions (for example, both monophonic and 

homophonic music are identified as being happier than their counterparts), several have 

clearer associations (such as a major key being associated with positive emotions and a minor 

key being associated with negative emotions). By extracting continuous attributes with clear 
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emotional connotations from a musical input, a VAE could be used to transfer the sentiment 

expressed by a piece. 

VII. Symbolic Representations of Music in MIR 

To facilitate data processing for symbolic music, data is often reformatted. One 

symbolic representation of music used in many MER programs, including MuseMorphose, is 

REMI (Revamped MIDI Derived Events), proposed by Hsiao et al. (2021). 

To understand REMI, we must first have a basic understanding of MIDI data. MIDI 

data contains tempo and time signature data at the start and whenever changes in these values 

occur. At regular intervals there is a temporal event to indicate the current position within the 

MIDI file. The notes within the piece are then described by note-on and note-off events 

which accompany the relevant temporal event. A note-on event indicates the start of a note, 

while a note-off event indicates the end. One way to understand these events as they relate to 

acoustic instruments is by considering a single key on a piano; note-on events correspond to 

the action of pressing down a piano key, while note-off events correspond to the action of 

releasing the piano key. Note-on and note-off events contain the pitch of the note being 

played, represented by a number in the range 0-127, and the velocity of the event, which 

corresponds to the note’s volume, represented in the range 0-127. 

REMI shares the use of time signature and tempo data, containing bar events at the 

start of every bar, and sixteen evenly spaced beat events per bar. It is worth noting that there 

are four beat events per musical beat; this is to facilitate the representation of notes which do 

not occur precisely on a musical beat. 

REMI also stores note events in a separate way from MIDI. In REMI, a note is 

comprised of three events: note pitch, note duration, and note velocity. Note pitch contains 

the pitch of the note, while note velocity contains the velocity. Note duration contains the 

length of the note in number of REMI beats; for example, a note which lasts one beat in a 
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common time bar would be represented by the number 4. In MuseMorphose, a slightly 

altered implementation of REMI is used, which multiplies the duration by 120 (Wu and Yang 

2022). 

The final difference between MIDI and REMI is that REMI contains chord events at 

the start of each bar, to represent the underlying harmony in each bar of music. 

VIII. Gap Analysis 

A background to several research areas has been covered in this section. This 

dissertation brings together these research areas to close a gap in the existing literature 

concerning sentiment transfer in symbolic music by drawing from all these areas. An 

understanding of music theory and musical attributes aids in their implementation in MER 

tasks, which has been found to improve the accuracy of emotion recognition (Yang and Chen 

2012). Existing MER approaches are summarised, as this dissertation will be building on 

these approaches to attempt sentiment transfer. Specific existing tools which demonstrate 

success in similar applications have been discussed, with a particular focus on 

MuseMorphose, which will form the basis for the program developed in this dissertation (Wu 

and Yang 2022). 

に. Problem Statement 

I. Problem Definition 

As outlined in Section 1, there have been several MER projects concerned with using 

NLP machine learning architectures to achieve improved results in classifying symbolic 

music by sentiment. There have also been applications of style transfer models (such as 

GANs and VAEs) to achieve symbolic music style transfer, and one attempt at sentiment 

transfer by valence. However, there has not yet been a program developed which approaches 

the task of sentiment transfer across the four sentiment quadrants commonly identified in 

MER. The closest attempt at time of writing attempts sentiment transfer only across the 
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valence plane and has not yet published results (Sigel et al. 2021). As such, this dissertation is 

concerned with closing this research gap. 

MuseMorphose proves that style transfer can be controlled through the manipulation 

of musical attributes (Wu and Yang 2022), and there is a strong relationship between some 

musical attributes and emotion (Panda et al. 2023). In addition, Sigel et al identify in their 

research that the consideration of musical features may strengthen their model’s capacity for 

sentiment transfer (2021). These factors in combination lead to the central research question 

for this dissertation: can symbolic music sentiment transfer across Russell’s four quadrants be 

achieved through musical attribute extraction and control? 

II. Primary Goal 

It is beyond the scope of this dissertation to train a new model from scratch. 

Therefore, a suitable existing model must be identified which can be adapted to fit this 

project’s goal. Sentiment transfer in symbolic music can be regarded as a style transfer task, 

therefore a model for style transfer is the most appropriate choice to make. Given the 

intention to base this transfer on attribute extraction and control, MuseMorphose is the most 

appropriate choice of a model on which to build from those reviewed in the background (Wu 

and Yang 2022). 

With the decision made to use the MuseMorphose architecture as the base of this 

project, the approach becomes more concrete. Since MuseMorphose extracts attributes from 

symbolic music and then manipulates those attributes in generation, this project will attempt 

sentiment transfer by identifying attributes that have a strong and independent correlation 

with perceived sentiment and controlling those attributes during symbolic music generation. 

The success of this approach will be analysed by measuring how often a generated piece of 

symbolic music is accurately classified as representing its target sentiment. Analysing the 

quality of generated symbolic music by this model is beyond the scope of this dissertation but 
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would be an interesting area for potential future research. 

III. Supporting Secondary Goals 

To approach the primary goal, secondary supporting goals can be identified which aid 

in dividing the project into more manageable steps. First, a suitable dataset of sentiment 

annotated MIDI data will need to be selected so that it can be used as input for sentiment 

transferred generations. Next, attributes suitable for sentiment transfer must be identified. 

Attributes will be selected for their correlation to variances in perceived sentiment. Once 

attributes have been selected, a means to extract them from input MIDI data will need to be 

created. MuseMorphose’s architecture will need to be modified and the model will need to be 

retrained so that it can support the addition of these new attributes. Having retrained the 

model, sentiment transferred symbolic music will then be generated from the sentiment 

annotated dataset previously selected. The generated data will be analysed to determine how 

accurately each sample reflects its target sentiment. Finally, these results will be analysed and 

discussed. 

IV. Methodology 

The methodology of this dissertation involves selecting an appropriate sentiment 

annotated dataset from which to generate sentiment transferred samples; selecting attributes 

with a clear association with music emotion perception to consider in music generation; 

implementing programmatic extraction of these attributes from symbolic music and adding 

these methods to the MuseMorphose model; retraining the MuseMorphose model to be able 

to use these methods in new music generation; and finally assessing the accuracy of the 

sentiment transfer through using an existing MER tool to classify the generated music by 

sentiment. Each of these stages will be described in more detail in the following sections. 

a. Sentiment Annotated Dataset Selection 

To generate sentiment-transferred symbolic music, the model will require sentiment 
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annotated symbolic music input. To this end, an appropriate sentiment annotated dataset of 

symbolic music must be selected. As described in the background portion of this dissertation, 

the dataset selected will be informed by the selected emotion classification method. For this 

project, a dimensional categorisation approach based on two dimensions has been selected as 

it is more standardised than categorical approaches, which vary from project to project. Given 

these limitations, there are two publicly available datasets suitable for this project: VGMIDI, 

which contains 200 sentiment-annotated MIDI representations of music from video game 

soundtracks (Ferreira and Whitehead 2021); and EMOPIA, which contains 1,087 sentiment-

annotated MIDI clips of piano covers of popular songs (Hung et al. 2021). A relevant 

recently developed dataset of expert-annotated Bach chorales was recently created by 

Grekow; however, the dataset does not appear to be publicly available (2023). 

b. Attribute Selection 

To select which attributes to control for sentiment transfer, attributes which have a 

strong correlation with perceived sentiment need to be identified. To achieve this goal, a 

review of the relationships between attributes and perceived sentiment will be conducted, to 

identify attributes which have a straightforward correlation with perceived sentiment. This 

will be conducted by first reviewing which attributes are identified in Panda et al.’s review as 

having consistent associations with given sentiments (Panda et al. 2023). Then, for each 

identified attribute, a function for extracting said attribute from a REMI file will be 

developed. These functions will be developed in Python and designed to match the output 

format of existing MuseMorphose attribute extraction functions. Both decisions have been 

taken with the aim to minimise the change in complexity of the model resulting from the 

introduction of new attributes. 

Once all attribute extraction functions have been developed, samples from the 

selected sentiment annotated dataset will have the selected attributes extracted. Then, using 
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standard Python statistical analysis libraries (such as Pandas, NumPy, and Matplotlib), the 

distribution of attribute values across different sentiment quadrants will be determined. This 

process will enable identification of which selected attributes have clear differences in 

distribution across different sentiment quadrants. 

c. Model Architecture Modification and Retraining 

Having identified appropriate attributes and developed functions to extract them from 

the input REMI data, the next step of the project will be to modify the MuseMorphose 

architecture so that it can support these new attributes, and then to retrain the model on the 

updated architecture. The training will be done on an Nvidia V100 Tensor Core GPU, 

accessed remotely via Google Colab. While the university provides students access to 

computers with high-powered GPUs, limited memory allocation per student user presents 

difficulties in using these computers for model training purposes. 

The initial training will be conducted across 60 epochs, to match the training process 

of the original MuseMorphose paper (Wu and Yang 2022). However, given the changes 

made to the model, it may be that best results occur after more or less training steps; for that 

reason, further training may be conducted if predicted improvements in results does not 

outweigh the computational costs. The training step which achieves the best balance between 

a low Kullback-Leibler divergence loss and a low reconstruction loss will be selected and the 

checkpoints from that training step stored. 

d. Generation Modification and Results Analysis 

After completing model training, output will need to be generated so that the accuracy 

of the model can be assessed. To generate new files based on sentiment, the MuseMorphose 

generation method will need to be updated. In the implementation provided in the code 

accompanying Wu and Yang’s paper, attributes are randomly modulated by +/- 3 attribute 

classes (2022). So that this method can be applied to sentiment transfer, it will be modified 
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such that attributes are modulated by a fixed amount depending on the difference in average 

attribute class between the input sentiment and the target sentiment. 

Using this modified generation modification process, three new MIDI pieces will be 

generated per piece in the selected dataset: one for each sentiment quadrant, except for the 

input sentiment quadrant. These generated samples, along with the original samples from 

which they were generated, will then be passed through the EMOPIA classification tool. By 

feeding the original samples through a classification tool, a baseline accuracy will be 

identified; then, the classification accuracies for different subsets of the generated data can be 

compared to the classification tool’s accuracy on real data. The accuracy will be measured by 

target quadrant, as well as by unique transfers (e.g. Q1 transferred to Q2 considered 

separately from Q3 to Q2) and by transfers across only one dimension (e.g. high arousal to 

low arousal) so that any variations in accuracy can be identified. 

ぬ. Features of MuseMorphose and Potential for Extension 

I. Introduction 

In this section, the MuseMorphose model is discussed with a particular focus on its 

potential for extension (Wu and Yang 2022). This is undertaken to demonstrate that the 

MuseMorphose model is suitable for extension with an aim to approach the task of sentiment 

transfer, and to highlight ways in which this extension will be approached. 

II. MuseMorphose Architecture 

MuseMorphose is a Transformer-based VAE model for conducting symbolic music 

style transfer through attribute control (Wu and Yang 2022). First, bar-level attributes are 

extracted and classified into one of eight discrete classes. These bar-level attributes, along 

with bar-level latent conditions, are passed into the model’s Transformer encoder as segment-

level conditions. The in-attention Transformer decoder then considers the input as a whole 

while frequently referring back to the segment-level conditions. This asymmetry is how the 
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model achieves both fine-grain attribute control and long-term coherence. 

The proposed extension of this model for this dissertation concerns only modifying 

the attributes which are being extracted from the input data, and minimally changing the 

architecture of the model itself to support these newly added attributes. Many 

hyperparameters for the model are stored in a YAML configuration file, as shown in this 

extract: 

model: 
  enc_n_layer:      12 

  enc_n_head:       8 
  enc_d_model:      512 
  enc_d_ff:         2048 

  dec_n_layer:      12 
  dec_n_head:       8 
  dec_d_model:      512 

  dec_d_ff:         2048 
  d_embed:          512 
  d_latent:         128 

  d_polyph_emb:     64 
  d_rfreq_emb:      64 
  cond_mode:        in-attn 

  pretrained_params_path:      null 
  pretrained_optim_path:       null 

 

In this sample, d_polyph_emb and d_rfreq_emb refer to the embedding dimensions 

for the two attributes. Here, adding support for new attributes only requires adding 

consistently named embedding dimensions for new attributes; for instance, if volume was an 

attribute being controlled, it could be referred to as d_volume_emb, and given a value of 64 to 

maintain consistency with the existing attribute embedding dimensions. Implementing these 

changes to the model itself, however, involves updating values in several more places. 

Consider the following sample code of the MuseMorphose class: 

class MuseMorphose(nn.Module): 
  def __init__(self, enc_n_layer, enc_n_head, enc_d_model, enc_d_ff,  
    dec_n_layer, dec_n_head, dec_d_model, dec_d_ff, 

    d_vae_latent, d_embed, n_token, 
    enc_dropout=0.1, enc_activation='relu', 
    dec_dropout=0.1, dec_activation='relu', 

    d_rfreq_emb=32, d_polyph_emb=32, 
    n_rfreq_cls=8, n_polyph_cls=8, 
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    is_training=True, use_attr_cls=True, 
    cond_mode='in-attn' 

  ): 
   

    # 42 lines of code omitted for brevity 

 
    self.d_rfreq_emb = d_rfreq_emb 
    self.d_polyph_emb = d_polyph_emb 
    self.rfreq_attr_emb = TokenEmbedding( 

      n_rfreq_cls, d_rfreq_emb, d_rfreq_emb 
    ) 

    self.polyph_attr_emb = TokenEmbedding( 

      n_polyph_cls, d_polyph_emb, d_polyph_emb 
    ) 

 

In this sample, there are multiple references to these attribute embedding values; to 

extend the model to support additional attributes, variables for the new attributes must be 

added at every point where the existing attribute variables are used. Although having to make 

these changes manually increases the potential for human error, the variables are named 

consistently and meaningfully, making it more straightforward to find references to them and 

add new variables as needed. 

III. Processing of Existing Attributes 

To facilitate the addition of new attributes to MuseMorphose, the methods for 

extraction and the ways they are represented will aim to maintain congruity with those 

already included in MuseMorphose. The new attributes added will be selected for their 

associations with changes in perceived sentiment, then functions for extracting these 

attributes and means to handle them in the model itself will be added to MuseMorphose. 

The existing attributes in MuseMorphose are both considered at bar-level and 

organised into eight numerical classes. For instance, in the existing attribute of polyphonicity, 

the more notes there are playing at any given point, the higher the mean notes per sub-beat 

for that bar will be. The bar is then assigned a polyphonicity class (a number in the range 0-7 

inclusive) depending on how high the mean is; the higher the mean, the higher the bar’s class. 

Boundaries between these eight classes were determined so that the distribution between the 
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classes was as even as possible, and these boundaries were provided as variables in the code 

itself. 

There are a couple of ways the approach used in attribute extraction lends itself well 

to extension, which can be understood by looking at the code itself. 

 

for p in pieces: 

  polyph_raw = np.reshape( 

    compute_polyphonicity(events, n_bars=len(bar_pos)), (-1, 16) 
  ) 
  rhythm_raw = np.reshape( 

    get_onsets_timing(events, n_bars=len(bar_pos)), (-1, 16) 
  ) 
 
 

  polyph_cls = np.searchsorted(polyphonicity_bounds, 
np.mean(polyph_raw, axis=-1)).tolist() 

  rfreq_cls = np.searchsorted(rhym_intensity_bounds, 
np.mean(rhythm_raw, axis=-1)).tolist() 

 

In this sample code, taken from the attribute extraction program within 

MuseMorphose, compute_polyphonicity and get_onsets_timing are functions which 

return 1-dimensional arrays with a value that correspond to every sub-beat within the piece 

(Wu and Yang 2022). These arrays are then reshaped to be 2-dimensional arrays with each 

second level array corresponding to a single bar in the piece. This facilitates getting a bar-

level mean for each attribute, which can be stored for later use in the project. 

The consistency of this approach enables the addition of new attributes, as it is clear 

how attributes should be formatted. However, the code could be made more readable by 

abstracting the approach shown above and minimising repetition. This change would also 

greatly increase the simplicity of extracting additional attributes at this stage of the project, 

although the manual changes discussed previously would still need to be made. Below is an 

example of how the code shown above may look with these changes implemented, and the 

relevant data for each attribute stored in a dictionary. Additionally, the boundaries for each 
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attribute are updated to look for relevant data in a YAML configuration file, rather than being 

hard-coded. 

 

all_attrs = { 
   'polyph': { 

      'bounds': config['attribute_bounds']['polyphonicity'], 
      'function': compute_polyphonicity 
   }, 

   'rhythm': { 
      'bounds': config['attribute_bounds']['rhythm_intensity'], 
      'function': get_onsets_timing 

   } 
} 
 
 

for p in pieces: 
  for attr in all_attrs: 

    attr_raw = np.reshape( 
      all_attrs[attr]['function']( 
        events, n_bars = len(bar_pos) 

      ), (-1, 16) 
    ) 
 

    attr_cls = np.searchsorted( 

      all_attrs[attr]['bounds'], np.mean(attr_raw, axis=-1) 
    ).tolist() 

 

With these changes made, adding an additional attribute to the attribute extraction 

process becomes significantly simpler, requiring only a new attribute extraction function to 

be written, and the relevant data to be added to the attribute dictionary and the configuration 

YAML file. 

IV. Training Process 

Once extraction methods for new attributes have been developed, and the architecture 

of the model has been updated to be able to operate on these attributes in generation, the 

model will need to be retrained to work with the additional attributes. 

The MuseMorphose model is based on a Transformer encoder paired with a Transfer 

decoder, with a Kullback-Leibler divergence regularised latent space in between the two (Wu 
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and Yang 2022). A Transformer encoder encodes an input sequence to a sequence of 

continuous representations, along with positional encodings, which then provide context to 

the decoder in constructing output data (Vaswani et al. 2023). Both the encoder and the 

decoder contain attention mechanisms, which enable the model to consider the surrounding 

context of any point in the sequence when determining a suitable output. Both the encoder 

and the decoder contain multiple layers; in the original proposal, 6 layers were used. 

MuseMorphose combines this Transformer architecture with a Kullback-Leibler divergence 

regularised latent space to represent data about attributes extracted from the music (Wu and 

Yang 2022). 

For MuseMorphose, training the model took place over two broad steps; first, the 

model (particularly the Transformer decoder) was conditioned to determine the best 

architecture and hyperparameters to use. These best results were then implemented, and the 

updated model was trained on a dataset more relevant to the program’s purpose of generating 

solo piano symbolic music. 

The initial training phase for MuseMorphose involved using a portion of the LPD-17-

cleansed dataset to conduct model conditioning (Dong and Yang 2018; Wu and Yang 2022). 

The LPD-17-cleansed dataset contains over 20,000 songs, and the subset used for training 

MuseMorphose consisted of 10,026 songs, selected with the parameters that a piano was 

present for at least half of the song, and the song’s time signature was 4/4 (Wu and Yang 

2022). This subset contained 650 hours of music, and training with this dataset took 2 days to 

complete 20 epochs. The purpose of this training stage was to identify which transformer 

decoder model provides the best results in the context of generating symbolic music, and to 

select hyperparameters for further training. The training was conducted with different 

conditioning mechanisms applied in the model (pre-attention, in-attention, and post-attention 

conditioning), to determine which conditioning mechanism yielded the best results. The 
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results indicate that in-attention conditioning provides the best results for symbolic music 

generation. This conditioning was carried out on the transformer decoders before introducing 

the use of bar-level attributes; for this reason, along with the amount of computational 

resources required for the conditioning, further model conditioning will not be carried out for 

this project. 

The purpose of the next stage of training was to fine-tune the model for solo piano 

symbolic music generation, as opposed to being trained more generally on a larger dataset. 

For the purposes of this project, this stage of training will need to be conducted from scratch 

so that the model can correctly work with newly added attributes. Early experiments with 

retraining the model used the EMOPIA dataset to train the model, which is smaller than the 

AILabs.tw-Pop1k7 dataset. This decision was made under the belief that training on the 

AILabs.tw-Pop1K7 dataset would take several days, following a misinterpretation of the 

information presented in the MuseMorphose paper; the paper states that training over 20 

epochs took 2 days, however this information only relates to conditioning the model on the 

LPD-17-cleansed dataset, with no information provided on time taken to train the model on 

the AILabs.tw-Pop1k7 dataset. Once this misunderstanding was identified, further model 

training tasks were undertaken using the AILabs.tw-Pop1k7 dataset, since it contains 

significantly more data than the EMOPIA dataset (108.8 hours’ worth of music, as opposed 

to 12.0 hours of music) (Chou et al. 2021). Training with the AILabs.tw-Pop1k7 dataset does 

take longer than the EMOPIA dataset, with 60 epochs on the EMOPIA dataset taking 

approximately 4.5 hours, and training on the AILabs.tw-Pop1k7 dataset taking approximately 

7.5 hours. However, 7.5 hours is still substantially less than 48 hours. 

V. Generation 

The final portion of MuseMorphose which will be modified for this project is the 

symbolic music generation functionality. In its existing state, symbolic music is generated by 
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selecting a random file from the dataset specified in the configuration file. Then, each bar-

level attribute is randomly offset by +/- 3 attribute classes (with the same offset applied 

across the whole input sequence), and a new piece is generated by passing the input piece and 

the new target attributes into the MuseMorphose model. The resulting symbolic music is then 

saved in both REMI and MIDI format. This process is carried out on a number of pieces 

specified by the user and repeated for each piece a number of times specified by the user (Wu 

and Yang 2022). 

To achieve sentiment transfer through attribute control, randomly determining an 

amount by which to offset attributes is not a suitable approach. Instead, the program will need 

to be able to identify the sentiment of the selected symbolic music being used as a basis; it 

will need to be able to control the offset of attributes depending on the input and target 

sentiments; and it will need to repeat this process so that for any input, symbolic music that 

conveys each sentiment other than the input sentiment is generated. 

First, the function will be updated to identify the sentiment of the input piece. While 

this could be achieved by the addition of a separate MER tool concerned with emotion 

classification, such an approach would fall outside the scope of this project. Since the 

samples from which output will be generated will already be classified by sentiment, this 

information will be stored in the input’s filename and read directly from there. 

The next change to the existing symbolic music generation concerns determining the 

amount by which to offset each attribute. The method implemented in MuseMorphose is to 

determine offset by a randomly generated number. A random number is generated in a given 

range (default -3 to 4) for each new sample to be generated. This number represents the 

amount by which each bar-level attribute will be offset. To enable control over the offset of 

attributes, the random offset function will be replaced with one in which the amount to offset 

each attribute is passed in as a variable. This function can be used in the generation of any 
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sentiment, using an offset value that depends on its starting and target sentiments. The exact 

values for this will be determined by conducting data analysis on the average attribute classes 

for attributes across different sentiments. 

Finally, the program will need to be updated so that the process of offsetting attributes 

and generating new symbolic music is conducted for every sentiment quadrant except the 

input sentiment. In MuseMorphose, the user can specify a number of samples to generate 

from an input piece where each time, a new offset amount is generated. This offset amount is 

then added to each bar-level attribute class in the input piece, and from the newly generated 

attribute classes, an output is generated. To maintain user control, the ability to specify a 

number of samples to generate for each piece will be retained; however, instead of generating 

one new sample each time the programme runs, it will generate three: one for each sentiment 

quadrant besides that of the input piece. 

ね. Extending MuseMorphose for Sentiment Transfer 

I. Introduction 

While the previous section outlines how MuseMorphose is suited to extension, and 

details ways in which it is extended or modified to achieve sentiment transfer, this section 

focusses more specifically on the selection and implementation of new attribute extractions, 

the processes and results from retraining the model with the addition of new attributes, and 

how offset of these attributes is controlled in the generation of sentiment transferred music. 

II. Dataset Selection and Issues 

As noted earlier, there are two publicly available sentiment-annotated symbolic 

domain datasets which would be applicable for use in this project: VGMIDI (Ferreira and 

Whitehead 2021), which contains 200 sentiment-annotated MIDI files representing piano 

arrangements of music from video game soundtracks; and EMOPIA (Hung et al. 2021), 

which contains 1087 sentiment-annotated MIDI files representing solo pop piano 
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performances. Both datasets have pros and cons. VGMIDI features significantly more 

datapoints per piece than EMOPIA, giving the ability to track changes in sentiment 

throughout the duration of a piece; however, this data is presented in JSON format with an 

individual object for data from each participant who provided sentiment annotation. This 

increases the amount of pre-processing required before the dataset can be meaningfully used 

in this application. EMOPIA, meanwhile, only provides a single sentiment for each piece, 

presented as a simple label (Q1, Q2, Q3 or Q4 for high arousal high valence, high arousal 

low valence, low arousal low valence, or low arousal high valence respectively). The reason 

change in sentiment over time is not measured is that pieces in the EMOPIA dataset are split 

into emotionally consistent short segments, averaging 14.8 bars of music per piece (Chou et 

al. 2021). 

For this project, EMOPIA is a more suitable choice for several reasons. The foremost 

of these reasons is the greater number of samples per quadrant, which means more output 

samples can be generated and the accuracy of the sentiment-dependent generation can be 

better assessed. Additionally, the EMOPIA dataset contains files already in the correct format 

for this project. While a MIDI-to-REMI method is provided in the public repository 

associated with the paper in which REMI was first described, using that method results in a 

slightly different format than the one used in the AILabs.tw-Pop17k dataset (Huang and 

Yang 2020). The process used requires beginning from audio domain music and going 

through several stages of processing. The REMI files presented in the EMOPIA dataset are 

presented in the format achieved from using this process, making it immediately suited to use 

in MuseMorphose. The REMI files are provided for 1064 of the 1087 samples in the 

EMOPIA dataset. These REMI files in the EMOPIA dataset will be used as the input for this 

project. 
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III. Review of Attributes 

a. Method 

In their review of musical attributes and their relationships to perceived emotions, 

Panda et al. provided tabular displays of attributes alongside associated emotion categories 

from various sources about the perception of emotion in music (2023). To understand how 

these relate to Russell’s four quadrants, these categorical emotions have been translated to 

quadrants based on the categorisation of language associated with specific emotions given in 

Russell’s paper (1980). Q1 refers to high arousal, high valence pieces; Q2 to high arousal, 

low valence; Q3 to low arousal, low valence; and Q4 to low arousal, high valence. These are 

the same quadrant labels used in the EMOPIA dataset (Hung et al. 2021). 

b. Melodic Elements 

Attribute Associated Quadrants 

High pitch Q1, Q4 (high valence) 

Low pitch Q2, Q3 (low valence) 

Large pitch variation Q1 (high arousal) 

Small pitch variation Q3, Q4 (low arousal) 

Wide pitch range Q1, Q4 (high valence) 

Narrow pitch range Q2 (low valence) 

Ascending melodic contour Q1, Q2 (high arousal) 

Descending melodic contour Q3, Q4 (low arousal) 

Table II: quadrants of emotions perceived associated with melodic musical attributes. 

 

The table above represents most data on melodic elements and their relationship to 

perceived sentiment as found in Panda et al.’s review (2023). Pitch variation refers to the 

number of unique pitches in a piece of music, while pitch range refers to the distance between 
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the lowest and highest notes in the piece. This table omits the relationship between specific 

melodic intervals and perceived sentiment, as the data in the review is not representative of 

all possible melodic intervals, which presents issues in how to categorise such intervals. This 

table also omits data on melodic motion (whether concurrent melody notes tend to be 

sequential in the scale of the underlying tonality or not) as this attribute always falls into one 

of three categories: all melodic notes move stepwise (to an adjacent tone), all move skipwise 

(not to an adjacent tone), or a melody contains a combination of the two. This shape of data 

would not be suitable to map to eight categories, as would be required to maintain congruity 

with the shape of the original MuseMorphose attributes. 

It can be seen from the above table that different melodic traits have clear associations 

with different emotional dimensions; pitch height and pitch range are both associated with 

valence, while pitch variation and melodic contour are both associated with arousal. For each 

dimension, there is one element which is associated with sentiments across both quadrants of 

each plane; these two attributes (pitch height and melodic contour) will be selected for 

development and further testing. It is important to note that both attributes are relevant only 

to the melody of the piece, and not every note in the piece; for that reason, a melody 

extraction method will also be created. 
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c. Harmonic Elements 

Consonant harmonies Q1, Q4 (high valence) 

Dissonant harmonies Q2, Q3 (low valence) 

High-pitched harmonies Q1 

Low-pitched harmonies Q4 

Major mode Q1, Q4 (high valence) 

Minor mode Q2, Q3 (low valence 

Table III: quadrants of emotions perceived associated with harmonic musical 

attributes. 

 

The table above represents data from Panda et al.’s review on harmonic elements and 

relationship to perceived sentiment (2023). There is one omission, concerning whether the 

harmony implies an underlying tonality or not. This has been omitted as the data is separated 

into tonal, atonal, or chromatic (using a scale comprising all 12 tones). This results in a scale 

between purely tonal music (where all notes present fit within the underlying scale of the 

piece) and purely atonal music (where the distribution of notes and harmonies is such that an 

underlying tonality cannot be identified). However, chromatic harmonies can be present in a 

piece without the piece being fully atonal. This adds a complexity that makes the feature less 

suitable for use in this project. Of the three attributes shown above, two indicate a 

relationship with perceived valence, while variation in harmonic pitch height seems to result 

in a shift in both arousal and valence. Given the time scale of this project, a method for 

extracting the consonance of harmonies will not be developed, as it would likely be more 

complex than extracting either of the remaining two attributes. 
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d. Rhythmic Elements 

Fast tempo Q1, Q2 (high arousal) 

Slow tempo Q3, Q4 (low arousal) 

Fast tempo and short notes Q1, Q2 (high arousal) 

Slow tempo and long notes Q3, Q4 (low arousal) 

Table IV: quadrants of emotions perceived associated with rhythmic attributes. 

 

The table above shows only two of the four rhythmic elements identified by Panda et 

al in their review (2023). The first of the omitted rhythmic elements is rhythmic type, which 

is unsuitable for this application as it is sorted categorically without a clear definition for each 

category. The categories identified are “regular/smooth,” “irregular/rough,” “complex,” 

“varied,” “firm,” and “flowing/fluent.” While the regularity of a rhythmic pattern could be 

given a position on a scale, there would still be an issue with the perceived sentiments 

themselves; regular rhythms have associations that cover three of the four quadrants (Q1, Q2, 

and Q4), and irregular rhythms are associated with two of those three quadrants (Q1 and Q2). 

The other omitted attribute concerns the use of rests (or absence of notes) in the piece; 

however, the emotive effect of this attribute is dependent on co-occurring harmonic elements 

(Panda et al. 2023). 

Tempo and note density (short notes at a high tempo or long notes at a low tempo) 

seem to both have a straightforward association with arousal. The latter attribute is already 

integrated into the MuseMorphose model, described as “rhythmic intensity” (Wu and Yang 

2022). It was selected for its straightforward relationship with perceived arousal and for its 

ability to be perceived by a casual listener (Wu and Yang 2022). Analysis on this existing 

attribute will be conducted to confirm its relationship to sentiment in the EMOPIA dataset. 

Given the similarity in perception between the two attributes, tempo will not be developed 
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further. 

e. Remaining Musical Attributes 

Of the remaining musical attributes discussed by Panda et al, there are few which 

stand out as suitable for use in this project. There are three contributing factors to this. Firstly, 

for attributes relating to expressivity (which covers articulation, ornamentation, and presence 

of vibrato), none were found to be suitable for use in this project. Articulation (which in this 

paper refers to whether a note is long and overlaps with other notes, or short and detached) 

tends towards one extreme or the other; notes are predominantly attached or predominantly 

detached. Ornamentation concerns specific musical gestures, which are not common in pop 

music, and vibrato is not possible on a piano. 

Secondly, few remaining attributes have relationships with valence and arousal that 

can be as simply described as those outlined above; for example, monophonic samples are 

identified as being perceived as “happier” than homophonic pieces, but homophonic pieces 

are also identified as being perceived as happier than monophonic pieces (Panda et al. 2023). 

Finally, textural information does not contain any attributes with clear sentiment 

associations besides polyphonicity, which is already extracted in MuseMorphose. 

Polyphonicity refers to how many layers or simultaneous musical lines a piece has, with more 

layers being associated with higher valence (Panda et al. 2023). This attribute’s relationship 

to sentiment in the EMOPIA dataset will be analysed and, if significant differences across 

quadrants are found, it will be included in the generation of sentiment-conditioned symbolic 

music. 

IV. Development of Attribute Extraction Methods 

a. Melodic Extraction 

To be able to conduct analysis on melodic elements, the melody from a piece of 

music must first be extracted. This is a task which has been covered before, with 
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Uitdenbogerd and Zobel making a significant contribution through their development of a 

skyline algorithm which takes the highest note at any given point in a MIDI piece and 

considers it part of the melody (2002). At times, note durations are shortened if the next onset 

occurs before the end of the previously identified melodic note. 

An issue found with this algorithm is the inclusion of harmonic notes with unique 

onset times; to demonstrate this issue, consider the following extract from Mozart’s Fantasy 

in D Minor: 

 

Figure III: Fantasia in D Minor by W.A. Mozart, bars 12-13 

 

All notes are depicted by circles positioned on the horizontal lines, with notes that are 

vertically aligned occurring simultaneously. The notes are read from left to right. In this 

extract, the melody notes are all on the upper stave (the higher set of five lines), while the 

accompaniment notes are in the bottom stave (the lower set of five lines). However, the 

algorithm as proposed by Uitdenbogerd and Zobel would yield this melody: 

 

Figure IV: Melody extracted from Fantasia in D Minor by W.A. Mozart bars 12-13 

using the skyline method. 

 

In this melodic extraction, the sustained first note is shortened to include notes from 

the lower accompaniment (indicated by the addition of rests, the short horizontal lines in 

between notes), and non-melody notes are also included in the second bar of music. This 

distorts both the rhythm and the contour of the melody. To avoid this effect, an alternative 
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approach is to take a first melodic note and skip ahead to the note’s end point, not 

considering any notes that occur in between. While this does not achieve perfect melodic 

extraction, as non-melody notes that occur while there is a rest in the melody will still be 

included, and in some cases overlap with the next melody note, it avoids the problem of 

sustained notes being shortened to include notes from the accompaniment. 

To create this algorithm, first the existing REMI structure was modified; rather than 

three distinct events creating an event, these events were replaced with a single object, 

created from a new Note class which contained the note’s pitch, velocity, and duration. The 

updated events list, containing single note events instead of three note events per note, is then 

fed into the melodic extraction function, which iterates through the modified event list, 

passing all non-note events to a new list of REMI events, and adding note events only if they 

meet the requirements of the skyline algorithm defined above. 

 

Pseudocode algorithm for Skyline melody extraction method 

 

In this approach, each time a melody note is found, it is added to a new REMI event 

list containing only melody notes, and a new melody note is not checked for until the 

previous melody note has run its full duration. At the next beat after the end of the previous 

melody note, all notes are tested and the highest is selected as the next melody note. 

This function gets the pitches from all notes passed into it and returns the note with 

FOR event in events list: 

IF event is a beat and duration of last note has 

elapsed: 

Append note with highest pitch in 

notes_in_beat to output list 

  Clear notes_in_beat 

 IF event is a note: 

  Append note to notes_in_beat 

  Continue 

 Append event to output list 

 

RETURN output list 
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the highest pitch. The resulting REMI list of events from the melody extraction function can 

then be passed forwards into melodic feature extraction methods. 

b. Melodic Pitch Height 

Determining melodic pitch height is one of the more straight forward attributes to 

extract, once the melody has been isolated. Since all attributes are considered at the bar level, 

for each bar, an average height of melodic pitch notes can be determined. This is achieved 

through adding the pitch of each melodic note to a list, and at the end of each bar, adding the 

average of all pitches to a list. 

Pseudocode for pitch height extraction 

 

This is a relatively straightforward approach. Some complexity, however, is 

introduced in cases when there are bars which do not contain any melody notes. One 

approach could be to pass a value of None in these cases, however this may pose issues when 

the attribute data is passed on to the model, as this would not match the input data format the 

model expects from classified attributes. Another option would be to provide an average of 

zero, but depending on where boundaries are identified in between classes, this could result 

in bars where there are no melody notes being considered categorically the same as bars 

where all melodic notes are low in pitch. It also means that decreasing the attribute class for 

melodic pitch height may result in the loss of melodic notes instead of a lower average pitch. 

The code implemented in this project simply does not store any data for bars which do 

not contain any melodic notes. While this approach does not account for situations where 

there are bars without any melodic notes, this edge case is not one that occurs in either of the 

FOR event in melodic events list: 

 IF event == bar: 

Append mean of all pitches in bar to 

output list 

 

RETURN output list 



42 

datasets used in this project. 

c. Melodic Contour 

Extracting data about melodic contour from a sample of music is a more complex 

process than extracting melodic height. 

The first attempt at extracting this attribute created an array of zeros, with a zero for 

each beat in the input piece. Then for each melody note, if the preceding note was higher than 

it, every list item between the melody note’s position and the previous melody note’s position 

was set to -1; if the preceding note was lower, every list item in between was set to 1; and if 

the two notes were the same, every list item was set to 0. 

First algorithm to determine melodic contour 

 

While this conveyed melodic direction throughout each bar, from which contour 

could be gleaned, this method was not compatible with the requirement that attributes need to 

be categorisable into eight similarly sized classes, as bar-level averages were very heavily 

skewed towards 0, with less extreme biases towards averages of 1 and -1. A different 

approach attempted was to get the pitch of every melodic note in a bar and normalise the 

values to be centered around the average pitch of all melodic notes in the bar; for example, if 

the bar contained the notes [60, 62, 68, 61, 57, 70], an average of 63 would be determined, 

pos = 0 

output list = [0 for beat in events list] 

FOR event in melodic events list: 

 IF event == beat: 

  pos += 1 

IF event is a note pitch: 

IF note pitch > previous note pitch: 

  list[pos] = 1 

IF note pitch < previous note pitch: 

  list[pos] = -1 

ELSE: 

  List[pos] = 0 

 

RETURN output list 
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and all values would have 63 subtracted from them, to result in [-3, -1, 5, -2, -6, 7]. The 

intention of this approach was to achieve, for each note, a distance from the average, in order 

to determine melodic direction. However, this approach still resulted in bar-level attributes 

heavily skewed towards zero. 

At this stage, a new approach was considered. Goldstein et al were able in their 

melodic contour research to identify a number of common contour shapes: concave 

(descending then ascending), convex (ascending then descending), ascending, descending, 

and wavy (a combination of ascending and descending) (2023). By splitting the wavy contour 

into two shapes, depending on whether the melody ascends or descends first; and adding flat 

contour (all melodic notes are the same) and no contour (no melodic notes found), eight 

classes of melodic contour can be identified. These can also be ordered by valence by 

considering no/flat contour as neutral, and waves which ascend before descending as more 

positive due to the primacy effect (in order: descending; concave; wave which descends 

before ascending; no contour; flat contour; wave which ascends before descending; convex; 

ascending). Further experimentation in the attribute analysis and output analysis stages will 

need to be carried out to determine whether considering melodic contour in this way still has 

a relationship with sentiment, and whether the model is able to reconstruct data for this 

attribute. Below is the pseudocode of the function used to determine the melodic contour 

class, which is called from within another function to get melody notes by bar: 
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Algorithm of approach to get melodic contour type from notes in bar 

 

This approach involves testing first for directionless contours, then for one-direction 

contours (ascending or descending), then bi-direction contours (concave or convex). Finally, 

having determined that the melody both ascends and descends, the sample is categorised into 

one of two wave shapes depending on whether it reaches its highest value or its lowest value 

first. 

d. Harmonic Pitch Height 

Having already written a function to extract melodic pitch height, extracting harmonic 

pitch height involves simply modifying the existing function to be able to handle concurrent 

notes. However, given the issues concerning handling cases where there are no melody notes 

in a given bar, and that melodic and harmonic pitch height have the same relationship to 

perceived sentiment (Panda et al. 2023), a single function was instead created to determine 

average pitch height at each bar of the input data. This is functionally identical to the 

previous melodic height function, but takes the full REMI events list as input instead of only 

the melody notes. While this means melodic notes are considered when determining the 

average harmonic pitch height, melody notes are a smaller sampling of notes than harmonic 

IF no notes in bar: 

 RETURN no contour (class 3) 

IF length of unique pitches in bar == 1: 

 RETURN flat contour (class 4) 

IF first note in bar is highest and last note in bar is lowest: 

 RETURN descending contour (class 0) 

IF first note in bar is lowest and last note in bar is highest: 

 RETURN ascending contour (class 7) 

IF all notes between first and last note are higher than first note and last note: 

 RETURN convex contour (class 6) 

IF all notes between first and last note are lower than first note and last note: 

 RETURN concave contour (class 1) 

IF lowest note occurs before highest note: 

 RETURN descending-first wave contour (class 2) 

IF highest note occurs before lowest note: 

 RETURN ascending-first wave contour (class 5) 
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notes; therefore, the resulting pitch height class will still be more heavily biased towards the 

harmony than the melody. 

This function has the same issue as the melodic pitch height function of what to do in 

the trivial case of bars that do not contain any notes. In the code presented here, such a case is 

simply ignored, as it is unlikely to occur in most music, and has not presented an issue when 

tested on the EMOPIA dataset. 

e. Tonality 

There are two challenges to extracting the bar-level tonality from REMI. First, the 

underlying tonality of a bar needs to be determined; and second, a method to organise the 

extracted tonality into eight ordinal classes needs to be determined. A straightforward way to 

extract bar-level tonality from REMI is to look at the chord event within the REMI, which 

contains the root of the chord, the quality of the chord (major, minor, diminished, augmented, 

and whether a seventh is present), and the position of the chord. For each bar, the chord 

present at the start of the bar is considered to represent the underlying harmony for the bar. 

This decision is informed by the understanding that the first beat of a bar is perceived as 

stronger than other beats. Where a chord cannot be found or identified, REMI uses a chord 

event with the value “n_n” instead of a chord symbol to indicate this. Having decided how to 

identify the tonality of a bar, the next task is to order that information. 

In Western music, there are seven “modes,” or types of scale, that are commonly 

used. 
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Scale Pitch class set Sharps/flats required in C 

Major 

Lydian 0, 2, 4, 6, 7, 9, 11 1 sharp 

Ionian (major) 0, 2, 4, 5, 7, 9, 11 None 

Mixolydian 0, 2, 4, 5, 7, 9, 10 1 flat 

Dorian 0, 2, 3, 5, 7, 9, 10 2 flats 

Aeolian (minor) 0, 2, 3, 5, 7, 8, 10 3 flats 

Phrygian 0, 1, 3, 5, 7, 8, 10 4 flats 

Locrian 0, 1, 3, 5, 6, 8, 10 5 flats 

Table V: Pitch class sets of the seven commonly used modes in Western music. 

 

Vincent Persichetti proposed a method of organising these modes from “brightest” to 

“darkest,” defined by the number of sharps or flats required to play the mode starting and 

ending on C (Persichetti 1961). This concept can also be applied to the chords used in REMI. 

The first consideration in the brightness of a chord is the quality of its third. The only 

difference between a major and a minor chord is whether the third scale degree (or the middle 

note of the triad) is natural or flattened; therefore, scales with flattened third degrees are 

perceived as darker than scales with natural thirds. Beyond the quality of the third scale 

degree, chords can be organised following Persichetti’s approach of defining chords with 

more sharps as brighter, and chords with more flats as darker (when the root of the scale is 

normalised to C). 
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Chord Quality Pitch class set Third degree Quality Sharps/flats required 

in C Major 

Augmented 0, 4, 8 Natural 1 sharp, 0 flats 

Major/Major 7 0, 4, 7 (11) Natural 0 sharps, 0 flats 

Dominant 7 0, 4, 7, 10 Natural 0 sharps, 1 flat 

Minor 0, 3, 7 Flat 0 sharps, 1 flat 

Minor 7 0, 3, 7, 10 Flat 0 sharps, 2 flats 

Diminished 0, 3, 6 Flat 0 sharps, 3 flats 

Table VI: Pitch class sets and third qualities of chord qualities found in REMI 

 

Additional to the chords outlined here, there are also sustained chords used in REMI – 

these are chords in which the third scale degree is replaced with either the fourth or second. 

Since there is no third scale degree, the chord cannot be easily identified as major or minor; 

therefore, it can be positioned in between the dominant 7 chord and the minor chord. The 

final possible chord value in REMI is “n_n” referring to no chord identified. This could either 

be a case where less than three notes are playing, or the underlying harmony cannot be 

accurately described by any of the chords available in the vocabulary. Therefore, chords of 

this quality will be positioned in between dominant 7 and minor again; but assumed to be 

darker than sustained chords, since monophonic lines are perceived as “more lonely” than 

polyphonic lines (Panda et al. 2023). Below is a table showing how the quality of each chord 

was arranged into classes for this project. 
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Chord Quality Attribute Class 

Augmented 0 

Major or Major 7 1 

Dominant 7 2 

Sustained 3 

No identified chord 4 

Minor 7 5 

Minor 6 

Diminished 7 

Table VII: Chord qualities and their corresponding tonality attribute classes 

V. Attribute Analysis 

To understand how to best use the extracted attributes to control sentiment during 

symbolic music generation, the relationships between attribute classes and perceived 

sentiment needs to be understood. By determining if there are significant differences in 

attribute class distributions across different sentiment quadrants, the relationship between the 

selected attributes and their affect on perceived sentiment can be confirmed. Additionally, an 

understanding of how to modify these attribute classes in sentiment transfer will be gleaned 

from being able to establish the difference in attribute classes across different quadrants. For 

instance, if it is found that Q1 tends to have higher attribute classes for polyphonicity than 

Q2, then generating a Q1 piece from a Q2 input would involve offsetting the polyphonicity 

classes by a positive number. 

In aid of this, some data analysis has been carried out. First, the mean classes for all 

attributes across each quadrant was calculated. Then for each attribute, it was determined 

whether there is a significant difference in the mean attribute class across different quadrants. 
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The test used to determine if the difference is significant depends on whether both sets of 

data are normally distributed or not; therefore, the distribution of each attribute by quadrant 

must also be determined. The samples are all independent from each other. Therefore, when 

data is normally distributed, the independent samples T-test will be used; otherwise, the 

Mann-Whitney U test will be used. Since this data requires sentiment-labelled input, 

attributes are extracted from the EMOPIA dataset. 

Throughout this section, all values are given to 4 significant digits. 

a. Rhythmic Intensity 

 

Figure V: A graph showing the mean rhythmic intensity class by quadrant. 

 

The mean rhythmic intensity class for Q1 is 3.480; for Q2 is 4.340; for Q3 is 2.848; 

and for Q4 is 2.820. The classes are not normally distributed across any of the four quadrants. 

For this reason, the Mann-Whitney U test is used for all comparisons. The following table 

shows the difference in mean rhythmic intensity between pairs of quadrants where a 

significant difference was found. 

  



50 

 

 Q1 Q2 Q3 Q4 

Q1 -- 0.8595 0.6323 0.6603 

Q2 0.8595 -- 1.492 1.520 

Q3 0.6323 1.492 -- No significant 

difference 

Q4 0.6603 1.520 No significant 

difference 

— 

Table VIII: Significant differences in mean rhythmic intensity class by quadrant 

 

These results indicate that rhythmic intensity does not differ significantly between 

low arousal quadrants. However, the two high arousal quadrants have significantly different 

rhythmic intensity mean values. This suggests that arousal plays a role in rhythmic intensity, 

with both high arousal quadrants being significantly different from the two low arousal 

quadrants. It also seems that valence plays a role in rhythmic intensity, as Q1 and Q2 are 

significantly different from each other, despite both being high arousal quadrants. 

b. Polyphonicity 

 

Figure VI: A graph showing the mean polyphonicity class by quadrant 
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The mean polyphonicity class for Q1 is 3.839; for Q2 is 4.077; for Q3 is 3.042; and 

for Q4 is 3.099. The classes are not normally distributed across any of the quadrants. The 

following table shows the difference in mean polyphonicity between pairs of quadrants where 

a significant difference is found. 

 

 Q1 Q2 Q3 Q4 

Q1 -- 0.2276 0.8071 0.7503 

Q2 0.2276 -- 1.035 0.9780 

Q3 0.8071 1.035 -- No significant 

difference 

Q4 0.7503 0.9780 No significant 

difference 

— 

Table IX: Significant differences in mean polyphonicity class by quadrant 

 

Similarly to rhythmic intensity, the low arousal quadrants are not significantly 

different from each other, while the high arousal quadrants are. A difference in this case is 

that while Q1 is significantly different from all other quadrants, the absolute difference 

between Q1 and Q2 is lower than the absolute difference between both of the low arousal 

quadrants. However, since there is still a significant difference between Q1 and Q2, it can be 

concluded that valence does still play some role in polyphonicity, as well as arousal. 
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c. Melodic Contour 

 

Figure VII: A graph showing the mean musical contour class by quadrant 

 

The mean musical contour class for Q1 is 3.578; for Q2 is 3.523; for Q3 is 3.406; and 

for Q4 is 3.321. The classes are normally distributed across all quadrants except Q4; for this 

reason, the independent samples T-test is used when comparing classes from different 

quadrants, except when Q4 is one of the quadrants; in those cases, the Mann-Whitney U test 

is used instead. The following table shows the difference in mean musical contour between 

pairs of quadrants where a significant difference is found. 
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 Q1 Q2 Q3 Q4 

Q1 -- No significant 

difference 

0.1719 0.2569 

Q2 No significant 

difference 

-- 0.1172 0.2023 

Q3 0.1719 0.1172 -- No significant 

difference 

Q4 0.2569 0.2023 No significant 

difference 

— 

Table X: Significant differences in mean melodic contour classes 

 

Since there is no significant difference between Q1 and Q2, and there is no significant 

difference between Q3 and Q4, it can be concluded that arousal does not influence the 

melodic contour of a piece. 

d. Pitch Height 

 

Figure VIII: A graph showing the mean pitch height class by quadrant 
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The mean pitch height class for Q1 is 3.867; for Q2 is 3.133; for Q3 is 3.957; and for 

Q4 is 3.371. The classes are not normally distributed across all quadrants except Q4; since T-

tests require that both datasets be normally distributed, the Mann-Whitney U test is used for 

all comparisons. The following table shows the difference in mean pitch height between pairs 

of quadrants where a significant difference is found. 

 

 Q1 Q2 Q3 Q4 

Q1 -- 0.7339 No significant 

difference 

0.4957 

Q2 0.7339 -- 0.8244 No significant 

difference 

Q3 No significant 

difference 

0.8244 -- 0.5862 

Q4 0.4957 No significant 

difference 

0.5862 -- 

Table XI: Significant differences in mean pitch height class by  quadrant 

 

The results indicate an unclear relationship between pitch height and changes in 

quadrant, as the two pairs of attributes with similar mean values contain attributes which vary 

by both arousal and valence. There does, however, seem to be some indication of relationship 

with perceived sentiment and pitch height. To better understand this, further analysis is 

undertaken. 
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Figure IX: A graph showing the mean pitch height by plane 

 

These results show that when grouped by plane, there is a less obvious difference 

between mean pitch height and attribute class. Further significant difference testing confirms 

that there is no significant difference between any of these four results. This seems to indicate 

that the relationship with pitch height and perceived sentiment depends on both the arousal 

and valence of the music. 

e. Tonality 

 

Figure X: A graph showing the mean tonality class by quadrant 

 

The mean tonality class for Q1 is 2.494; for Q2 is 3.268; for Q3 is 3.112; and for Q4 

is 2.497. The classes are normally distributed across all quadrants except Q2; for this reason, 
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the Mann-Whitney U test is used in all tests. The following table shows the difference in 

mean tonality class between pairs of quadrants where a significant difference is found. 

 

 Q1 Q2 Q3 Q4 

Q1 -- 0.7746 0.6182 No significant 

difference found 

Q2 0.7746 -- 0.1565 0.7710 

Q3 0.6182 0.1565 -- 0.6145 

Q4 No significant 

difference found 

0.7710 0.6145 -- 

Table XII: Significant differences in mean tonality class by quadrant 

 

There is no significant difference found between Q1 and Q4, which are two high 

valene quadrants with differing arousals. There are significant differences in tonality found 

between all other quadrant pairings. The significant differences in most quadrants suggests 

that there is a relationship between tonality and perceived sentiment, but it is unclear from 

these results how that relationship is associated to valence and arousal. However, although 

there is a significant difference between the mean classes of Q2 and Q3, the two low valence 

quadrants, there is overlap in the confidence intervals of these mean attribute classes. This 

suggests that there is a greater difference in tonality between pieces of different valence 

levels. 

VI. Model Retraining 

Having developed the new attributes, the next step in the process was to retrain the 

model to work with the new attributes. Several attempts at this process were made, with 

varying results. 
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In training the model, reconstruction loss and Kullback-Leibler divergence loss were 

measured, both for training data and for validation data. Kullback-Leibler (KL) divergence 

loss is a metric used to measure the difference between two data distributions. In the context 

of MuseMorphose, the KL divergence loss measures the difference between the posterior 

distribution of each bar’s encoding as estimated by the encoder, and the prior distribution of 

each bar’s encoding. In the case of MuseMorphose, the prior distribution for each bar’s 

encoding is set to the standard gaussian �(0, ���), where ⅆ� represents the dimensionality of 

the latent space, and ��� represents the identity matrix of that dimensionality (Wu and Yang 

2022). The reconstruction loss, meanwhile, is the conditional negative log-likelihood (NLL) 

for the model to reconstruct the input given the Transformer encoding of the piece and the 

values of the bar-level attributes.  

a. Experiment One 

In the first attempt at retraining the model, only the melodic contour and tonality 

attributes were added to the program. This was because the function for mean pitch height 

extraction had not yet been developed. The methodology in training the model was adopted 

to maintain as much similarity as possible to the training process used for the original 

MuseMorphose, since the model conditioning was undertaken before attributes were added to 

the model (Wu and Yang 2022). For that reason, the model was trained with the same 

hyperparameters in place as used on the original model, and it was trained across 60 epochs 

as a starting point. The EMOPIA dataset was used, as the misunderstanding on how long 

training with the AILabs.twPop-1k7 dataset would take had not yet been identified. An 

80/10/10 train/test/evaluation split was created by randomising the order of samples in the 

EMOPIA dataset and selecting the first 80% for training, then the next 10% for testing, and 

storing the remaining 10% for evaluation. 
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Figure XI: A graph showing the reconstruction loss and KL-divergence loss across 

training steps. 

 

This graph shows the training and validation loss values from training the model 

across 60 epochs. The steps marked indicate the last point at which training results were 

validated in every ten epochs. The graph shows that while the reconstruction loss was 

consistently descending (with a levelling out in validation at later training steps), the KL 

divergence loss was almost constantly increasing. These results indicated that the model was 

not learning how to recreate input pieces. Additionally, the continuing decrease in training 

reconstruction loss towards the end of training while the validation reconstruction loss 

becomes constant suggests that the model is starting to overfit to the training data. To attempt 

to determine a root cause, the next experiment was to retrain the model, replacing all classes 

for the added attributes with 0. 

b. Experiment Two 

In the second experiment, almost everything was kept the same, except for setting the 

values for the melodic contour attribute and the tonality attribute to zero. The purpose of this 

was to determine whether the cause of the poor results in the previous step was to do with the 

dataset or the attributes. 
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Figure XII: A graph showing the training results from the second training experiment. 

 

Similar to the first experiment, the reconstruction loss initially fell while the KL 

divergence loss rose. However, in this experiment, the KL divergence loss began rapidly 

decreasing after 10,000 steps. Meanwhile, after initially falling the reconstruction loss began 

to slightly increase beyond step 10,000, and the gap between the training and validation 

reconstruction loss gradually increased. This is indicative of the model beginning to overfit to 

the training data, and since this is occurring relatively early in the training, it suggests that the 

EMOPIA dataset does not provide the model with enough varied training data to be able to 

deduce the underlying patterns in the data. 

The results of this experiment seem to indicate that while the initial increase in the KL 

divergence loss is not caused by the attributes themselves, there is still some issue, since 

when given the real attribute data the model does not demonstrate the same dramatic decrease 

in divergence loss after 10,000 steps. 

This realisation informed the decision to reassess the attributes being extracted. The 

largest change resulting from this reassessment was the decision to remove the melodic 

contour attribute from the model. This decision was based on a number of factors; first, the 

model had no way of differentiating between melody and non-melody notes, increasing the 
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complexity in learning trends in the attribute; and secondly, the attribute classification system 

was not as well defined as the other attributes, since the distinction between attributes with 

more than one change in direction had been made for the purpose of making the attribute fit 

into eight classes, instead of being based on any research. 

At this stage, the decision to include the pitch height attribute was made, as it was the 

next best candidate to be an attribute added to the model. Since the model had already been 

modified to support four attributes instead of two, it was straightforward to replace the 

contour extraction function and rename contour attributes to reflect the new attribute. 

The final change made was due to a mistyped character discovered in the tonality 

extraction function. The function was written to first give an early return for chords 

containing “m7,” and to then return a class of 6 if an “m” was present and the function was 

still active. However, instead of returning a 6 if “m” was present, the function was returning 6 

if “7” was present. Due to the structure of the function, all chords containing a “7” were 

filtered out if the chord reached this stage; therefore, a class of 6 was never being returned for 

this attribute. Once this error had been identified, it was very simple to fix. 

c. Experiment Three 

By the time the changes recognised as necessary from the second experiment had 

been implemented, the misunderstanding regarding which dataset took 2 days to complete 20 

epochs had been resolved. Therefore, to avoid the apparent overfitting issues from the 

previous training experiments, the training dataset was changed from EMOPIA to AILabs.tw-

Pop1k7. While this significantly increased the amount of time to complete 60 epochs of 

training, the training still took substantially less than the anticipated 6 days. Since the 

AILabs.tw-Pop1k7 dataset contains more samples than the EMOPIA dataset (1747 as 

opposed to 1078), more training steps were required to complete 60 epochs of training. 
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Figure XIII: A graph showing the training results from the third training experiment 

 

In this training experiment, the same initial trend emerged: the KL divergence loss 

increased until training step 10,000, and then rapidly decreased. The same pattern of the 

reconstruction loss initially decreasing before increasing slightly is also present; however, 

there is not a significant increase in the difference between the training and validation results 

for the reconstruction loss. 

A pattern seems to emerge in further training steps: both losses remain fairly constant 

for a number of steps, then the KL divergence sharply increases as the reconstruction loss 

sharply decreases, before both values begin to gradually decrease and increase respectively. 

The first time this occurs, at step 15090, the KL training divergence increases to 2.066 (to 4 

significant figures), and the reconstruction loss has decreased to 0.9286 (to four significant 

figures). The second time this occurs, at step 20043, the KL training divergence increases to 

2.355 (to 4 significant figures), while the reconstruction loss has decreased to 0.8347 (to 4 

significant figures). The training ended before the third time this pattern could occur, 

however depending on how this pattern continues, there may be better results if training 

continues over further steps. The pattern seems to occur every 5000 steps; therefore, to see if 

it continues to be true, training was carried out for a further 16000 steps. This was so that the 



62 

pattern would occur a further three times (if it remained consistent), and to allow trailing 

steps, in order to determine if the pattern continues further. Since each epoch lasts for 393 

steps, training for a further 16000 steps would take 40.71 epochs. This was rounded up to 41 

epochs. 

 

Figure XIV: A graph showing training results from training for a further 41 epochs 

 

After training for a further 41 epochs, it is apparent that the pattern noticed was 

indeed continuing. It also became clear that there was an overall decrease in the 

reconstruction loss, while the lowest point to which the KL divergence loss was returning in 

between peaks was remaining largely consistent. From every validation point across the 

training, the checkpoint at which the sum of the KL divergence loss and the reconstruction 

loss was lowest was at step 39300, with a reconstruction loss of 0.8084 and a KL divergence 

loss of 0.5728. For that reason, this checkpoint is the one that will be used to generate output 

in the next stage of the project. 

While it seems likely from the trends in the training results that further training would 

yield better results, after training for 101 epochs, the cost of time and computational 

resources to the benefit of reduced loss is diminishing. 
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VII. Output Generation 

For output generation, changes to the structure of the generation program need to be 

made; this is partially discussed in Section 4. Further to these changes, methodology for 

generation of any sentiment from any input sentiment needs to be implemented. To target a 

specific sentiment, the mean attribute classes for different sentiments will be used. 

To determine the offsets for each input and target sentiment pair, the difference 

between attribute means where a significant difference was found is rounded up to the nearest 

whole number. The decision to round up the difference was informed by the number of 

attributes where the differences between mean attribute classes were either predominantly or 

entirely below 1. For each attribute, this information was organised into a two-dimensional 

array. The following table represents this data. 

 Q1 Q2 Q3 Q4 

Rhythmic 

Intensity 

To Q2: +1 

To Q3: -1 

To Q4: -1 

To Q1: -1 

To Q3: -2 

To Q4: -2 

To Q1: +1 

To Q2: +2 

To Q4: 0 

To Q1: +1 

To Q2: +2 

To Q3: 0 

Polyphonicity To Q2: +1 

To Q3: -1 

To Q4: -1 

To Q1: -1 

To Q3: -2 

To Q4: -1 

To Q1: +1 

To Q2: +2 

To Q4: 0 

To Q1: +1 

To Q2: +1 

To Q3: 0 

Pitch height To Q2: 0 

To Q3: -1 

To Q4: -1 

To Q1: 0 

To Q3: -1 

To Q4: -1 

To Q1: +1 

To Q2: +1 

To Q4: 0 

To Q1: +1 

To Q2: +1 

To Q3: 0 

Tonality To Q2: +1 

To Q3: +1 

To Q4: 0 

To Q1: -1 

To Q3: -1 

To Q4: -1 

To Q1: -1 

To Q2: +1 

To Q4: -1 

To Q1: 0 

To Q2: +1 

To Q3: +1 

Table XIII: Attribute offset amounts for each attribute when transferring from each 

input sentiment. 

For each sample being generated, the type of transfer is determined from the input and 

target sentiment, and the relevant attribute offset amounts added to each bar-level attribute 

for the input data. The initial intention, since the AILabs.tw-Pop17k dataset was used in 

training, was to use the full EMOPIA dataset to generate 3192 sentiment-transferred sample 

(with three new samples generated for each of the 1064 samples in the EMOPIA REMI 

dataset), however for each sample in the dataset, on a V100 Tesla GPU, it takes 
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approximately 40 seconds to generate three sentiment-transferred pieces of symbolic music, 

resulting in a total time of around 12 hours. Therefore, only a subset of the EMOPIA REMI 

dataset will be used. To exceed the 1064 samples in the original dataset, 356 samples will be 

selected from the EMOPIA dataset, with 89 samples randomly selected from each input 

quadrant. This reduces the generation time to slightly under 4 hours. 

In the following section, the results from this modified generation will be discussed. 

の. Results and Discussion 

I. Results 

a. Results from First Generation Experiment 

Having decided to use 89 samples for each quadrant to generate output, the generation 

program was updated accordingly. First, 89 samples were randomly selected from each input 

quadrant in the EMOPIA dataset. The ID from each piece was determined by extracting the 

integer ID from the filename. Then for each sample selected, output was generated modifying 

that sample to match each other sentiment quadrant in Russell’s four quadrants. 

Once three samples for each input piece had been generated, all generated pieces were 

used as input to the EMOPIA classification tool, using the pre-trained weights available as a 

supplemental download in the Github repository (Hung et al. 2021). This was called 

repeatedly using the Python subprocess module. The number of successes for each transfer 

type was stored as a value in a dictionary to be used for analysis. To determine the success 

rates for each quadrant, a percentage of successes was calculated alongside a ratio of 

successes to total number of pieces in each transfer category. A few drawbacks from this 

attempt became apparent during this processing. First, the input pieces are not sorted into 

which quadrant they belong to. This means there is no way to determine whether the 

classification tool achieves different success rates in different quadrants. Second, and more 

pressingly, several input samples had their quadrants mislabelled during the generation 
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process. 

For the purposes of this project, files in the REMI EMOPIA dataset were renamed to 

contain the piece’s quadrant and a unique ID number. For example, the first piece in the 

dataset when sorted alphabetically is ‘Q1_0001.pkl’. By taking the ID as an integer value, 

there were cases where searching for the piece by ID would return multiple results; for 

instance, the piece with ID 1 would return matches for any piece with a ‘1’ at any position in 

its 4-digit ID. This error resulted in many samples being incorrectly labelled, and therefore 

the attribute offsets being inaccurate for the real input sentiment and target sentiment. The 

results obtained from this experiment, therefore, cannot be considered accurate. 

The table below shows the results from this experiment, except for accuracy in 

determining the quadrant of unmodified samples, as that data was not captured per quadrant 

in this experiment. Across all unmodified samples, 209/356 pieces, or 58.71%, were 

identified as matching the quadrant in their input string. However, it is worth bearing in mind 

that due to the previously described error, an unknown number of these samples were 

mislabelled. Since Q1 and Q2 samples have lower IDs, they are more likely to be 

mislabelled; however, since Q3 and Q4 are both as likely as the other quadrants to contain 

mislabelled samples, they cannot be considered more accurate. 
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Input quadrant Q1 Q2 Q3 Q4 

Output quadrant     

Q1 N/A 21/101 

20.79% 

12/98 

12.24% 

17/102 

16.67% 

Q2 25/55 

45.45% 

N/A 21/98 

21.43% 

9/102 

8.824% 

Q3 3/55 

5.455% 

14/101 

13.86% 

N/A 43/102 

42.16% 

Q4 0/55 

0% 

3/101 

2.970% 

11/98 

11.22% 

N/A 

Table XIV: Number of successful sentiment categorisations and percentage 

accuracies for each transfer type. 

 

Before the error in sentiment labelling was realised, a few features about these results 

were noticed. First, the areas with the best transfer results are Q1 to Q2; Q4 to Q3; and to a 

lesser degree, Q2 to Q1. These are all transfers where only valence is changing. The worst 

results are seen in Q1 to Q4, Q2 to Q4, and Q1 to Q3. These are all high arousal to low 

arousal transfers. 

On reviewing the results of attribute analysis, it was found that while there was a 

significant difference between Q2 and Q3 in average tonality attribute class, they were the 

two attributes closest to each other, and there was no significant difference between Q1 and 

Q4. This supports the findings of Panda et al. that changes in tonality are related to changes 

in perceived valence (2023). Based on this observation, and the improved accuracy when 

transferring by valence rather than arousal, the tonality attribute was fully removed to see 
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how arousal transfers were affected. 

Given the flaws in sentiment labelling for this experiment, the results will not be 

further discussed. 

b. Results from Second Generation Experiment 

For the second experiment, the error in sentiment labelling was fixed by storing the 

piece ID as a four-character string. This ensured that the correct piece was identified, so 

therefore the correct quadrant was identified. In addition, the tonality attribute was removed 

from consideration, to see how transfers by arousal were affected. The table below shows the 

results from this experiment. 

 

Input quadrant Q1 Q2 Q3 Q4 

Output quadrant     

Q1 54 

60.67% 

19 

21.35% 

12 

13.48% 

17 

19.10% 

Q2 39 

43.82% 

62 

69.66% 

16 

17.98% 

4 

4.494% 

Q3 7 

7.865% 

12 

13.48% 

60 

67.41% 

24 

26.97% 

Q4 0 

0.0% 

3 

3.371% 

11 

12.36% 

53 

59.55% 

Table XV: Number of successful sentiment categorisations and percentage accuracies 

for each transfer type. 

 

These results again show lower accuracy in all categorisation tasks where a transfer 

has taken place, and the most accurate results in transferring Q1 to Q2, Q4 to Q3, and Q2 to 
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Q1, which are all cases where sentiment is being transferred only by valence and not by 

arousal. The least accurate results are found in transferring Q1 to Q4, Q2 to Q4, and Q4 to 

Q2. These are all cases where sentiment is being transferred by arousal, although valence is 

sometimes also a factor. Another similarity between these results is that they all involve 

transfer to or from Q4. 

Given the errors in quadrant labelling in the previous experiment, the impact of 

removing the tonality attribute cannot be assessed. Therefore, it was restored to the program 

for the next round of experiments. However, further consideration of the attribute led to a 

decision to change how it was transferred. The table below shows the quality of chords along 

with their class. 

Tonality Class Chord Quality Pitch class set 

0 Augmented 0, 4, 8 

1 Major or Major 7 0, 4, 7, optionally 11 

2 Dominant 7 0, 4, 7, 10 

3 Sustained 0, 5, 7 or 0, 2, 7 

4 No chord identified Unknown 

5 Minor 7 0, 3, 7, 10 

6 Minor 0, 3, 7 

7 Diminished 0, 3, 6 

Table XVI: Tonality class, corresponding chord quality, and pitch class set 

 

In the tonality attribute, the scale moves from brightest (lowest class) to darkest 

(highest class), with the central classes being relatively neutral. However, in generation, the 

tonality class is modified by +/- 1-2 attribute classes without consideration of the change in 

tonality when moving from one side of the scale to the other. 
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Given this observation, combined with the findings of Panda et al. that pieces with a 

major tonality are perceived as high valence while pieces with a minor tonality are perceived 

as low valence (2023), an alternative method is adopted for changes in the tonality attribute. 

If there is a change in valence between the input sentiment and the target sentiment, the 

tonality attribute values are reflected around the centre of the scale; for instance, class 0 

would become class 7, and class 5 would become class 2. This is achieved by taking the 

absolute value of subtracting 7 from each bar-level attribute. This is not a perfect approach, 

as not all high valence pieces are in a major tonality, and not all minor valence pieces are in a 

minor tonality; however, since the overall tonality of a piece is not known while carrying out 

generation, it isn’t possible to differentiate by that factor. 

c. Results from Third Generation Experiment 

In the final attempt at generating output, the described updated method for modifying 

the tonality attribute was implemented. Additionally, given the poor performance in arousal 

transfer, the attribute offset for the remaining attributes was increased by a factor of 2. Rather 

than manually changing all offset amounts, an optional factor argument was added to the 

function to set attribute offsets with a default value of 1; all return values would be multiplied 

by this value. This value was set to 2 in all cases for this generation. 

With these changes made, a further 1068 samples were generated and classified. 
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Input quadrant Q1 Q2 Q3 Q4 

Output quadrant     

Q1 55 (+1) 

61.80% 

25 (+6) 

28.09% 

11 (+1) 

12.36% 

11 (+6) 

12.36% 

Q2 44 (+5) 

49.44% 

58 (-4) 

65.17%% 

17 (+1) 

19.10% 

7 (+3) 

7.865% 

Q3 12 (+5) 

13.48% 

19 (+7) 

21.35% 

61 (+1) 

68.54% 

38 (+14) 

42.70% 

Q4 5 (+5) 

5.618% 

1 (-2) 

1.124% 

12 (+1) 

13.48% 

52 (-1) 

58.43% 

Table XVII: Number of successful sentiment categorisations and percentage 

accuracies for each transfer type. 

 

These results show an increase in success rates across many transfer categories, as 

well as a decrease in success rate in one category. The largest increases in success rate can be 

observed in transferring from Q4 to Q3, although increases in accuracy can be observed 

across all transfer categories except for transferring from Q2 to Q4. The largest increases in 

success rates are all observed where either valence or arousal transfer is occurring. 

The sum of increased positive categorisations in transfers only by valence was 26, 

while the sum of increased positive categorisations in transfers only by arousal was 19. This 

indicates that transfer by arousal had increased accuracy, but not to the same extent as the 

increase in transfer by valence. 
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II. Discussion 

a. Second Generation Experiment 

From the results of the second experiment, there are no cases where the accuracy 

reaches the same accuracy seen when classifying real data. However, there are a few transfers 

which show promising results. For example, a Q2 sample generated from a Q1 input was 

correctly categorised 39/81 times, or 43.82% of the time. Considering that there are four 

possible quadrants which an input could be sorted into, an accuracy of 43.82% is 

significantly higher than a random chance, or 25%. The only other transfer type to achieve an 

accuracy greater than 25% is transferring Q4 to Q3, In this case, generated samples were 

correctly classified 24/89 times, or 26.97% of the time. Given that this is fairly close to 25%, 

it is possible that further tests would reveal that this quadrant is not always correctly 

categorised this often. However, due to having limited computational resources while 

working on this project, further runs of the same experiment were not possible. 

It is worth noting that for these two categories (Q4 to Q3 and Q1 to Q2), these are 

both cases where valence is going from high to low, while arousal is remaining constant. This 

suggests that the generation method used in the experiment has potential to successfully 

achieve sentiment transfer when going from high valence to low valence. 

The remaining accuracies across different transfer types show varying degrees of 

success, although none exceed 25%. There are a few which show extremely low accuracy. 

The worst is transfer from Q1 to Q4, in which no generated samples were correctly 

categorised. Similarly poor results were observed in transferring from Q4 to Q3 (4/89 

successes, or 4.494%), and Q2 to Q4 (3/89, or 3.371%). Q2 to Q4 and Q1 to Q4 are both 

quadrants which involve a decrease in arousal, while Q4 to Q3 involves a decrease in 

valence. Looking at other transfers where arousal is decreasing (Q1 to Q3 and Q2 to Q3), 

results are still low (7/89 and 12/89 respectively), although not quite as low as those 
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transferring into Q4. Transferring from Q3 into Q4 results in similarly low accuracy (11/89, 

or 12.36%), which suggests that the current generation method performs poorly at generating 

Q4 samples. Alternatively, it may be that the poor performance is due to the model not 

successfully producing low arousal samples, which is only mitigated in transferring Q4 to Q3 

because the model is successful in increasing valence. 

b. Third Generation Experiment 

In the third generation experiment, accuracy in classifying generated samples 

increases in almost every type of generation. 

The largest increase in accuracy was seen in transferring from Q4 to Q3, with 38/89 

successes for an accuracy of 42.70%. Increases in accuracy were seen in all cases of transfer 

by valence, which suggests that mirroring each tonality class around the centre of the list of 

possible classes is contributing to successfully transferring by valence. In every case of 

transfer only by valence except for transfer from Q3 to Q4, accuracy rose above 25%, 

indicating slight success in valence transfer. 

Accuracies when going from low valence to high valence (49.44% and 42.70%) 

remain higher than accuracies found when going from high valence to low valence (28.09% 

and 13.48%), suggesting that the model is better at transferring by increasing valence than 

decreasing valence. One possible reason for this remaining true, even with the introduction of 

changes in tonality attribute classes, is the difference in harmonic complexity in high valence 

and low valence music. Panda et al. found in their review of musical attributes that more 

complex harmonies were associated more with low valence sentiments (2023). Complex 

harmonies are more likely to contain a wider variety of tonality classes, therefore low valence 

pieces may be more likely to contain a wide variety of tonality classes than high valence 

pieces, which could be a reason for this discrepancy in accuracy depending on direction of 

valence transfers. 
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Increases were also observed in transfers where arousal was changed, with the largest 

increase found in transferring from Q2 to Q3, with 19/89 samples being accurately 

categorised, or 21.35%. However, all transfers involving arousal still had a lower accuracy 

than 25%. 

The increases in accuracy from the changes made to the generation model suggest that 

there is potential for sentiment transfer through attribute control, although further work would 

be required to achieve meaningful results. 

は. Conclusion 
This dissertation set out to answer the question: can symbolic music sentiment 

transfer across Russell’s four quadrants be achieved through musical attribute extraction and 

control? The approach to answering this question was to modify an existing model for music 

generation by attribute control, MuseMorphose, by adding attributes associated with changes 

in perceived sentiment. 

Once methods for extracting these attributes were written, the model was updated to 

be able to handle these attributes, and then retrained across 101 epochs. Three retraining 

experiments were undertaken. First the model was retrained to accept a melodic contour 

attribute and a pitch height attribute and retrained using the EMOPIA dataset. However, 

results indicated that the model was not learning how to model these attributes. To determine 

whether the issue was the dataset or the attributes, a second training experiment was carried 

out with all attribute classes in the two added attributes set to zero. The model achieved better 

results in this experiment, indicating that the issue likely was with the attributes being 

extracted. However, in later training stages the model was showing a decrease in 

reconstruction loss in training but a constant reconstruction loss in validation. Therefore, in 

the final model training experiment, the melodic contour attribute was removed due to its 

high level of abstraction, and replaced with a tonality attribute which provided a way to 
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differentiate between high valence and low valence music, and the EMOPIA dataset was 

replaced with the AILabs.tw-Pop17k dataset. The model was trained over 101 epochs, and 

stopped as decreases in loss over time began to plateau. 

Finally, output was generated and fed into the EMOPIA sentiment classification tool 

(Hung et al. 2021). This was also done over three distinct experiments. The first experiment 

was of limited use, due to an error in labelling sentiment of input samples. The second 

experiment removed changes in tonality classes from generation to see if there was an impact 

on accuracy in arousal transfer. In the final experiment, a new method for transferring 

tonality attribute classes was introduced, and the amounts by which other attributes were 

offset was increased. Results from this final experiment indicated increased accuracy in 

classifying generated music by sentiment, although further work is required to achieve high 

accuracy sentiment transfer. 

Although this dissertation did not result in a program which could consistently 

transfer music across Russell’s four quadrants, the increasing accuracy in classification 

through repeated experiments suggest that sentiment transfer through attribute control has 

potential to be successful and warrants further research. Some possible approaches may 

include implementing methods to change the distribution of attributes classes across an entire 

song; testing offsetting attributes by different amounts; and attempting to achieve lower 

reconstruction loss and KL loss values. This dissertation also does not assess the quality of 

generated samples; future work to assess this parameter, and to try to improve the quality if 

necessary, will also be beneficial. 

ば. Learning Reflection 
This dissertation has been a substantial undertaking, and I have learned a great deal 

about both machine learning and project management. 

When I chose this dissertation topic, I understood very little about machine learning 
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models and methods. In the months leading up to beginning the dissertation I began some 

background reading about transformers and VAEs, so that when I began the work in earnest I 

would have at least some understanding of the programs I was working with. However, this 

background reading only began to feed into concrete understanding once I began working on 

the dissertation and engaging with the MuseMorphose model. 

Throughout the project, I found myself regularly running into problems, finding the 

solution was far more straightforward than I had thought it was, and cursing myself for not 

realising the issues sooner! This was particularly the case when it came to tasks which 

required a GPU, such as model training and symbolic music generation (which, while not 

strictly requiring a GPU, took far less time to complete when one was used). It was the case, 

more often than I would have liked, that a minor oversight in the code would not be realised 

until several hours of training or generation had been completed. This was a valuable process 

to go through, despite the frustrations it caused, as it has taught me the importance of 

thoroughly checking and double-checking code before running it - especially when it 

involves computationally heavy processes, or when it is overwriting a file. I have also 

developed a deeper appreciation of the value of version control, to save me from irreparable 

file changes that go wrong. 

Another major takeaway from this project has been the importance of good time 

management. I owe both of my supervisors a great debt of gratitude for being willing to meet 

regularly, as these regular meetings gave me an incentive to ensure I was making enough 

progress to discuss from week to week. Before beginning the project I had outlined steps I 

would take in developing the program, and approximate amounts of time to allow to each of 

these steps, but it often took having my supervisors telling me that it was time to move on 

before I would step away from a section where I knew there was more I could do, even once 

time allowed for it had passed. 
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Working on a large project like this has involved a less linear timeline than I had 

anticipated. Before beginning the project, I had planned allotted timelines for each stage of 

the process. However, as I was working on the project, it became clear that it wouldn’t be a 

case of moving neatly from one stage to the next. Instead, it would be more a case of moving 

through several steps, making observations about the project, what worked and what didn’t, 

then stepping back considerably and taking another run at it. I had to learn to open myself up 

to be more flexible to changes in my planned timeline for the project. 

This lesson was really driven home after I encountered a major setback in the project. 

I became quite unwell, and for close to a month I was unable to make meaningful progress on 

the project. I was quite fortunate that this came after I had completed the bulk of the 

programming itself, however it was still incredibly frustrating. However, despite the added 

complexity presented by this situation, it was still an opportunity for learning. Having to push 

back my schedule by a substantial amount meant that I had to accept that I wouldn’t meet the 

internal project deadlines I’d set myself, which was something I struggled with initially. This 

setback caused me quite a bit of uncertainty, and for a few weeks I wasn’t confident that I 

would be able to complete the project on time, even once an extension had been granted. 

However, with the continued encouragement of my supervisor, I continued to make progress 

through the project and those uncertainties waned. 

Overall, throughout this project I feel I have learned a great deal about both 

computing and project management. These are skills that I am confident I will be able to 

carry forward with me as I engage with new projects and challenges. 
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