
 pg. 1

Project 242

BSc Computer Science – Cardiff University

CM3203 – One Semester Individual Project

40 credits

Secure mobile chat with
message routing

Student Name: Daniel Randell
Student Number: C1120409

Supervisor: Dr. George Theodorakopoulos
Moderator: Mr. Michael W. Daley

Submitted: 5/5/2015

 pg. 2

Abstract

This dissertation outlines the aims, designs and ultimately the implementation of the application

CryptoChat that has been created for this project. The application has been developed with the

aid of a variety of tools, such as Eclipse and the Android SDK using the Java & XML programming

languages.

This application attempts to answer the questions of various security and privacy

concerns that become threats to users when they communicate using public infrastructure and

cellular networks. The project attempts to negate these issues from occurring by making use of

direct communication with peers via WiFi Direct and using cryptographic measures, namely

Diffie-Hellman to provide the secure communication exchanges. The application also details it

use of the Spray and Wait network routing protocol and details all aspects of the project that

have been successful and those that have not.

Acknowledgements

With many thanks to my project supervisor Dr. George Theodorakopoulos for his support and

guidance throughout my project. His comments and feedback helped keep me on track and in

the right direction.

I would also like to thank my family and friends for their ongoing support during my studies at

Cardiff University.

 pg. 3

Contents
Figures ... 5

1. Introduction .. 6

1.1 Preface .. 6

1.2 The Application ... 6

2. Background .. 7

2.1 The Problem .. 7

2.2 Stakeholders .. 8

2.3 Existing Solutions .. 8

2.4 Code Resources Used .. 8

3. Specification & Design ... 9

3.1 Overview ... 9

3.2 Changes from Initial Plan .. 9

3.3 Designs Principles .. 10

3.4 Design Feature Functionality .. 10

3.5 Visual Designs ... 11

3.6 System Requirements .. 16

3.7 Use Cases .. 17

4. Implementation ...21

4.1 Acknowledgments ... 21

4.2 Change after Final Design ... 21

4.3 Overview of CryptoChat UI .. 22

4.4 Overview of Cryptography Measures .. 24

4.4.1 Diffie-Hellman Key Exchange .. 24

4.4.2 AES Cipher ... 26

4.5 Overview of Spray & Wait Routing Protocol ... 27

4.6 Problems Encountered .. 29

4.6.1 Connected Peers & the Wait Message File ... 29

4.6.2 Initialisation Vector ... 29

5. Source Code Explained ...30

5.1 Key Exchange .. 30

5.2 Spray & Wait Routing Protocol ... 32

5.3 Crypto Class ... 35

 pg. 4

6. Results and Evaluation... 36

6.1 Quantifiable Results (CPU, Battery, Network).. 43

7. Future Work .. 46

8. Conclusion ... 48

Reflections on Learning ... 49

Glossary ... 50

References ... 51

Appendix A – Battery Timeline .. 54

Appendix B – Program Listing ... 55

Appendix C – Extra Resources ... 58

 pg. 5

Figures

Figure 1: Start Screen Design .. 11

Figure 2: Settings Screen Design ... 12

Figure 3: Settings Screen Design with Android OS overlay ... 13

Figure 4: Chat Screen Design .. 14

Figure 5: Chat Screen Design with keyboard .. 15

Figure 6: Use-Case Diagram .. 20

Figure 7: MainActivity.java and the fragments it contains .. 22

Figure 8: SettingsActivity.java and the fragment it contains ... 23

Figure 9: Key Exchange Diagram .. 25

Figure 10: CBC Mode Diagram .. 26

Figure 11: Spray & Wait Network Routing Protocol Diagram .. 28

Figure 12: CryptoChat Start Screen – Peer search active .. 36

Figure 13: A peer has been found ... 37

Figure 14: Shows a user has found our device and wants to connect .. 38

Figure 15: Debugging text, importantly error code 2, a connection attempt has already begun 39

Figure 16 & Figure 17: Settings Screens in Application .. 40

Figure 18 & Figure 19: Chat Screens in Application .. 41

Figure 20 & Figure 21: CPU Usage Pie Charts ... 42

Figure 22: CPU usage during peer discovery ... 43

Figure 23: CPU usage during chat screen state .. 44

file:///C:/Users/Daniel/Desktop/University%20Work/Third%20Year/Final%20Year%20Project/Final%20Report/Dissertation.docx%23_Toc417679765
file:///C:/Users/Daniel/Desktop/University%20Work/Third%20Year/Final%20Year%20Project/Final%20Report/Dissertation.docx%23_Toc417679766
file:///C:/Users/Daniel/Desktop/University%20Work/Third%20Year/Final%20Year%20Project/Final%20Report/Dissertation.docx%23_Toc417679767
file:///C:/Users/Daniel/Desktop/University%20Work/Third%20Year/Final%20Year%20Project/Final%20Report/Dissertation.docx%23_Toc417679768

 pg. 6

1. Introduction

1.1 Preface

More people than ever before are now using “smart” devices for a variety of everyday tasks,
the most prominent of these being communication applications that use Wi-Fi & Cellular
networks to send messages. A simple look at the top applications in the Google App Store for
example [1], show that the top two applications are in fact instant messaging applications.
These applications are used practically on a daily basis by their users. This increase in digital
communications data being sent over public networks makes communications data sent
susceptible to attacks & methods of eavesdropping and interception which leaves it highly
vulnerable and therefore making it a privacy and security concern for users.

The aim of this project is to therefore provide an alternative to the instant messaging
applications available, the project aims to create a method of communication that is direct to
each user’s device by making use of cryptography techniques and algorithms to provide security
procedures so that data sent is better protected against the various methods of eavesdropping,
interception and attacks that are in practice today. It will aim to do this with “1-to-1”
communication and also with groups of users communicating. Secure communication
exchanges will mainly be text exchanges however the project aims to implement secure picture
messaging as-well. The project will also aim to implement the Spray and Wait network routing
protocol so that message(s) sent to devices not available to communicate or out of range will
still at some point in time receive the intended message(s).
 Finally the project will aim to be light and efficient in how it handles such areas as CPU
usage, power consumption, end-to-end delay, and memory footprint.

1.2 The Application

This report will focus on the core deliverable of this project, the application built. It will state
and detail the methods used to create the application, the challenges faced during the
development of the application and ultimately what was achieved during the time period spent
on this project.
 The application that was built is titled CryptoChat and was created for the Android
operating system using the Android SDK in the Java & XML programming languages. All of the
code (unless stated in this report or in the source code) was written by myself in the Eclipse IDE
(Integrated Development Environment) on my desktop computer.

 pg. 7

2. Background

The rise of smart “devices” namely smartphones in the developed and developing world has led
to a huge change in how people communicate today. Coupled with the emergence of ever
increasing cellular networks and public WiFi networks, more people than ever before are now
communicating using a mobile device. It is however apparent that people are not using mobile
devices to make phone calls, this research article carried out by the regulator Ofcom [2], shows
the widespread adoption of text messaging using services such as instant messaging and social
media in the UK to communicate with others.

This increase in the amount of communications data now being sent across unsecured &

public infrastructure networks means there is an increased risk in how that data can be

intercepted, monitored and captured by unwanted third parties. We also have the dominance

of data going to specific companies, namely Facebook and the Facebook owned “WhatsApp”

which as this article states [3] “controls the future of messaging”. Facebook owned products

are used globally on a regularly basis by over 1 billion people worldwide [3], to place that into

perspective; ⅟7 of the world’s population intrusts their communications data to one company. It

is through the use of these services that the world communicates, but it is also through the use

of these services that government & intelligence agencies can “keep track” of its citizens and

what they are communicating. The issue of privacy and security between how we communicate

with each-other has never been more prominent than it is in today’s digital world.

Who we communicate with, what we communicate to them and how frequently we

communicate are extremely personal to us as individuals, not only are we expressing ourselves

in some manner, information about ourselves is also sent along with what we communicate

whether that be something as simple as a name or something more personal such as a location.

This data can be used by unwanted parties in ways that most users do not even fully

understand, it gives these people or agencies a glimpse into your life and for some individuals

this is not something that they desire. This raises the question of how we can communicate

with people that we want to talk too in a secure manner. That question is one this report and

application will try to answer.

2.1 The Problem

When data is sent out over a public domain to a cellular network or to connect to some form of
public network (such as the Internet) it becomes impossible to truly safeguard that data. The
data being in the public domain can as stated above be monitored, intercepted and if required,
captured by a third party listener. This use of public networks means we do not have definitive
control over our communications data and importantly we do not know who is making use of

 pg. 8

these networks and listening in to what is being sent over them, therefore it raises various
privacy and namely for this project, security concerns in using these networks.

To solve this problem direct communication with a party (an individual’s smartphone) is
the approach this project employs, using the technology standard developed by the WiFi
Alliance called “WiFi Direct” to avoid the use of public infrastructure networks and talking to a
party/peer directly. With the complete control over the flow of communications data
exchanged between parties/peers, is how this project and the application to be developed
attempts to negate the security & privacy concerns mentioned previously.

2.2 Stakeholders

Potential stakeholders for this project would be small businesses that require sensitive
discussions to be held across a small office space using mobile devices running the Android
operating system. It would provide an alternative, simple and ultimately free solution in
providing a secure, mobile LAN communication service which in normal circumstances could
cost thousands of pounds.
 Limitations in the communications range severely limits the appeal of this application to
the average consumer however in a local space and with the network routing protocol that this
application implements it does provide an alternative means of communicating that some
consumers may be interested in or currently looking for.

2.3 Existing Solutions

Various solutions exist that provide communications using the Android operating system & WiFi

Direct such as [4], there also exists solutions that provide group chat functionality [5]. The

Android SDK itself provides a demo application demonstrating this technology in use [6].

 Throughout my research I could not however find any existing application that provided

secure communication using WiFi Direct, nor could I find any existing WiFi direct solution that

implemented the Spray and Wait network routing protocol.

2.4 Code Resources Used

The demo previously mentioned [6] provided by the Android SDK is the only core external code

that was not written by myself for this application. The demo code was merged within my

existing application after I had created a basic template UI.

The application implements the google provided PRNG (Pseudo-random number

generator) Fixes code [7] as a security precaution for Android devices running Android 4.1-4.3.

No third party security library was used (as stated would be in my Initial Plan).

 pg. 9

3. Specification & Design

3.1 Overview

The core aim of this application was to ensure its functionality in regards to the security and

privacy that it provided to users communicating with each other. The Android operating system

was chosen to support this aim due it is wide popularity and available resources. The Android

development landscape contains a vast array of guides, tutorials and code snippets online that I

knew would make the Android operating system the best fit for this project.

 For the implementation of the project, I plan on solely using the Android SDK in

collaboration with the Java & XML programming languages. After further research I came to the

conclusion that for the scope of this project and for the flexibility that I wanted, that having

complete control over the code implemented and running on the application would be the best

course of action therefore no external programming libraries were considered to be used. The

application is designed to be used with any compatible WiFi Direct device running the Android

Operating System 4.1+; WiFi Direct was introduced into the Android operating system in Ice

Cream Sandwich (version 4.0) [8] however the application requires some functions only found

in Android Jelly Bean (version 4.1). It will be created & tested on mobile devices running

different versions of the Android operating system to ensure functionality works across

different operating system versions. The application will be optimised for a mobile device, but

should also function on a larger device such as a Tablet.

3.2 Changes from Initial Plan

After the completion and subsequent feedback that I received from my Initial Plan, I realised

that some of the aims for the project were a bit ambitious considering the limited time-frame

available for the project. Thus the group messaging functionality & picture messaging were

made “sub-core” aims; aims that if time permitted, I would work towards implementing.

 After some thought I also decided that it should be a main aim of this application to be

simplistic and user-friendly, the application needed to have these properties to appeal more to

potential consumers and to make it viable as an alternative communications solution to the

‘mainstream’ applications available in the ‘app stores’.

 pg. 10

3.3 Designs Principles

The design plan for this project will follow several principles, as stated previously it must be

simplistic and user friendly. The design will also follow the minimalistic principle, it will not

provide or make use of many fancy effects or include many separate screens. It will be kept to a

clear, linear navigational structure with minimal customisation options available.

The design emulates and takes inspiration from principles found in the latest Android L

(Lollipop) material design philosophy [9], it does not however follow all of them for example,

the use of bright, vibrant colour is something material design emphasises, it is however not the

colour scheme used in this project and drop shadows (an effect very prominent in material

design) is kept to a minimum in this project in an attempt to be light on system resources

specifically battery & CPU consumption.

3.4 Design Feature Functionality

The overall approach of design to feature functionality in this application was to keep it

ultimately minimal and simplistic. This falls in line with the aesthetic design principles

mentioned above.

 The chat experience in this project is the key feature to this application, it would

however not suit well if the peer discovery was complex and overburdening on users. Therefore

the aesthetic approach had to compliment both chat & peer discovery feature sets. The design

of each screen had to give each unique feature set the user interface requirements needed so

that each unique feature could present itself fully to the user in a functional but pleasant way.

The application also was designed to offer users minimal feature settings and customisation

options, this included the ability to have themes (for light & dark environments, also to

conserve battery life), notifications, vibrate (on receiving messages) and font size customisation.

 The visual designs that are included below in this report detail how the design of the

feature functionality requirements and the design principles of this project have merged

together to create the application design.

 pg. 11

3.5 Visual Designs

The following images dedicate the original design mock-ups for the project, each figure includes

the heading of the screen state shown alongside annotations to further detail the design

choices of each screen state. Also included are design mock-ups of the screen in various

alternative states such as when an Android OS overlay is in place or when the keyboard is

shown.

Figure 1: Start Screen Design

The two states of the

WiFi peer discovery

button – active or

deactive.

Settings

Gear –

Takes the

user to the

settings

screen

List view

populated

with all

available

peers in-range

Rediscover

button –

rescans the

environment

for any new

peers

Logo &

Project title

Shadow effect

 pg. 12

Example list

view of

available

settings

options

Different forms

of UI elements

that will be used

and there states.

Important note:

These UI

elements will be

placed in the list

mentioned

above

Figure 2: Settings Screen Design

Logo & Project

title.

Arrow

navigation icon.

On touch takes

the user back to

the start screen

 pg. 13

Figure 3: Settings Screen Design with Android OS overlay

Showing the

check-box option

overlay.

Will partially

cover the screen

until the user

picks one of the

available options

 pg. 14

Figure 4: Chat Screen Design

Text entry box

& send button

Messages

received will be

left aligned in the

list view

Same logo &

title placement

throughout

application.

On touch of the

arrow will leave

the chat and

return the user

to the start

screen

Messages written

will be right

aligned in the list

view

Both messages

written &

messages

received will

contain & show

meta-data styled

differently from

sent or received

chat messages.

Important note:

Verification will take place on arrow touch & on Android OS back button touch

events which will be the two navigational methods of exiting the chat screen

back to the start screen. The application will not override home or recents OS

buttons.

Keyboard only

shown when text

entry box has

focus

 pg. 15

Figure 5: Chat Screen Design with keyboard

Keyboard

appearance &

disappearance

handled by

Android OS.

Text entered will

appear in the

text entry box

named.

Will partially

overlay bottom

of the screen as

shown

 pg. 16

3.6 System Requirements

The following table will detail the system requirements that have been agreed upon for this

project, these will include the functional and non-functional requirements that will be

implemented to ensure the application can deliver the experience required.

Functional Requirements Non-functional requirements

Description:
Must be able to have secure, direct
communication with a party/peer. This may
later be extended to include more than one
party/peer.

Description:
Should adhere to HCI policies and the design
principles set out in the design principles
section of this report. It should adhere to
some of the principles set forth in Android’s
material design [9].

Description:
Must consider the overall usage of system
resource to ensure a minimal memory
footprint, minimal data use, CPU usage and
power usage.
The system will also consider such factors as
end-to-end delay times between message
exchanges and throughput – e.g. the number
of bytes sent per minute.

Description:
Must ensure a consistent experience
throughout the application, the layout and
interactions of the application must be
simple, straight-forward and easy to navigate
& use.

Description:
Must implement the Spray and Wait network
routing protocol for out of range message
recipients using the vanilla version of the
protocol [10].

Description:
Messages must be sent with confidentiality
and integrity intact. The privacy between
messages is paramount thus the security
measures that will be used must be able to
secure the dialogue exchanged between
users so that it can ensure and uphold the
integrity of a private digital communication
exchange between users and eventually
groups of users.

Description:
To implement some customisation options
and provide the option of external settings
that can be alternated and changed to suit
the needs of the user. These must be saved
and kept so that a user can have the same
experience every time he/she launches the
application.

Description:
Must ensure that the style options and
colour scheme(s) that will be incorporated
within the application remain consistent
throughout and adhere to the design
principles set out for this project.

 pg. 17

3.7 Use Cases

After conducting research into this project and specifically looking at similar instant messaging

applications available, I have created below the following use cases that will define & state how

a user will interact with the application and how they will proceed to use the full feature set of

this application.

Use Case:- 1. Connecting to a peer

Actors:- User A, User B.

Description:- The two users (A & B) will start a connection
attempt.

Pre-Conditions:- Available peer(s) to make a connection
attempt with.

Basic Flow:- 1.) Peer discovery has completed and User A
has found User B.
2.) User A touches the screen’s list box
container and presses on User B’s entry in
the shown list of available peers.
3.) User B will then receive a prompt to
accept the connection.
4.) User B accepts the connection and the
connection attempt is made.

Alternate Flow:- 1A.) User B starts the process instead of
User A and therefore roles are reversed.
4A.) User B declines the connection request
and no connection attempt is made.

Post-Conditions:- User A and User B are now connected with
each other and can begin key exchange to
then chat securely.

Use Case:- 2. Send messages

Actors:- User A, User B.

Description:- User A will send a message to User B.

Pre-Conditions:- User A & User B have a secure connection.

Dependency:: Connected to a peer

Basic Flow:- 1.) User A types a message to send to User B.
2.) User A presses the send button.

Alternate Flow:- 1A.) User B starts the process instead of

User A and therefore roles are reversed.

 pg. 18

Post-Conditions:- User B will have received User A’s message.

Use Case:- 4. Alter Settings

Actors:- User A, User B

Description:- User A will alter his/her settings

Pre-Conditions:- User A will be on the start screen

Basic Flow:- 1.) User A will press the gear icon to navigate
to the settings screen.
2.) User A will observe and if he/she wishes
alter the available settings that are present.
3.) User A will press the back arrow in the
top left corner of the screen to return to the
start screen.

Alternate Flow:- 1A.) User B starts the process instead of

User A and therefore roles are reversed.

Use Case:- 3. Disconnecting from a peer

Actors:- User A, User B.

Description:- User A will disconnect from User B.

Pre-Conditions:- User A & User B have a secure connection.
Dependency:: Connected to a peer

Basic Flow:- 1.) User A will have pressed on the back
arrow button in the top corner of the screen
to exit.
2.) User A will receive a prompt that will
display a verification message on whether or
not he/she wants to leave.
3.) User A accepts to leave the conversation
and is returned to the start screen.

Alternate Flow:- 1A.) User B starts the process instead of
User A and therefore roles are reversed.
1B.) User A presses the Android OS back
button to commence leaving the chat.
1C.) User A presses the Android OS home
button to immediately leave the chat.
1D.) User A presses the Android OS recents
button to see all open applications, in the
process again immediately leaving the chat.
4A.) User A declines the prompt to leave the
chat and therefore stays talking and the
connection is still active.

Post-Conditions:- User A will have left the chat.

 pg. 19

3A.) User A will press the Android OS back

button to return to the start screen.

Post-Conditions:- User A will be on the start screen and his/her

new settings choices will have been saved.

Use Case:- 5. Re-search for new peers

Actors:- User A.

Description:- User A will re-search for any new peers that

have become available.

Pre-Conditions:- User A will be on the start screen.

Basic Flow:- 1.) User A will press the re-search button in
the action bar of the application to re-begin
the discovery of peers’ process.

Alternate Flow:- None.

Post-Conditions:- User A will have a populated list of peers that

are available to connect with.

Use Case:- 6. Store wait messages

Actors:- User A, User B.

Description:- User A will store messages that will be sent

to User B when they next connect.

Pre-Conditions:- User A will be on the chat screen and User B

will have disconnected.

Dependency:: Peer disconnected

Basic Flow:- 1.) User A will type a message.
2.) User A will press the send button.
3.) User A will be notified of the message
being saved upon exiting the chat.

Alternate Flow:- None.

Post-Conditions:- User A will have a file named after the

disconnected peer’s MAC address containing

the stored wait message(s).

 pg. 20

Figure 6: Use-Case Diagram1

The above use-case diagram details how the user(s) will interact with the system, and

importantly with each other. Various states of the system are shown that require some further

explanation for clarity. The use case connecting to a peer will enter the system into a connected

to a peer state, this will enable the user to send messages or disconnect from a peer. Only when

the system is in this state can the user execute those use-cases. Similarly for the use case store

wait messages to be executed, a peer has to have disconnected and left the other user in the

system state peer disconnected.

1 Created using https://www.draw.io/

https://www.draw.io/

 pg. 21

4. Implementation

4.1 Acknowledgments

The implementation of this project would not have gone as relatively smoothly as it did without

the following resources that will be accredited.

As mention previously the WiFi peer to peer example application [6] gave a great

starting point to incorporate into my existing project. It provided the basic functionality for the

chat exchanges and saved roughly two-three weeks development time on this project. The

documentation and guides that were provided by Google’s Android developers’ website,

specifically the guide on WiFi peer-to-peer [11], helped immensely in providing point of

reference code snippets and importantly understanding in how the underlying software

technology functioned.

 For the security side of implementation, the documentation provided by Oracle on the

cryptography architecture of the Java programming language [12] again provided a resource

which allowed me to gather a knowledge base on using these quite sophisticated & complex

functions. The example code on the Diffie-Hellman key exchange policy [13] (which will be

discussed in much further detail later) provided a solid understanding of how to implement the

required security functionality.

 The Eclipse IDE2 (Integrated Development Environment) alongside the ADT (Android

Development Tools) plugin3 provided the core Windows development environment and kept

the development of this project running smoothly. The Eclipse IDE in particular was very

comfortable to me with hours of prior experience developing in Java, it allowed me to quickly

set up the Android development environment and thus improved my productivity on this

project.

 Finally, Cardiff University’s School of Computer Science gladly provided another device

in the form of a Moto-E4 smartphone that without this essential item, I would not have be able

to carry out the testing and debugging of the application that was required.

4.2 Change after Final Design

Important to note one small change that occurred after the final design that became apparent

during development. The WiFi toggle button which was originally centred was moved to the

right side of the screen to avoid overlaying the list view.

2 Eclipse available at https://eclipse.org/
3 Android Development Tools plugin available at http://developer.android.com/sdk/installing/installing-adt.html
4 Moto E product page at http://www.motorola.com/us/smartphones/moto-e-1st-gen/moto-e.html

https://eclipse.org/
http://developer.android.com/sdk/installing/installing-adt.html
http://www.motorola.com/us/smartphones/moto-e-1st-gen/moto-e.html

 pg. 22

4.3 Overview of CryptoChat UI

The implementation of CryptoChat initially started with the creation of the two core Activities

(screen) files, these being the file MainActivity.java which actually handles (as referred to in this

report) the start screen and the chat window. And the file SettingsActivity.java, which handles

the settings screen. It is important to note now how Android and specifically the screen states

interact and change. To create a dynamic UI in Android the use of Fragments are required,

these are “a modular section of an activity, which has its own lifecycle, receives its own input

events, and which you can add or remove while the activity is running (sort of like a "sub

activity" that you can reuse in different activities)” [14]. Therefore it can be said that an Activity

defines the static environment of a screen state which include items such as the title bar

containing the logo & options and generally things that don’t change often or at all. A Fragment

defines the content that frequently changes or content that should only be displayed when

required. Thus with Activities & Fragments interacting with each-other, Android has the means

to create vivid and complex dynamic user interfaces.

Figure 7: MainActivity.java and the fragments it contains5

5 Android phone template provided by http://cache.preserve.io/kpj5tgwj/index.html

http://cache.preserve.io/kpj5tgwj/index.html

 pg. 23

Figure 7 shown on the previous page indicates the fragments that MainActivity.java contains.

To detail, WifiDirectServicesListFragment.java is a List Fragment (a special fragment type that

will only contain a list view of items), this is used to display the available peers onto the start

screen if the user has completed the peer discovery process.

WifiChatFragment.java, is as it states the chat fragment that will replace

WifiDirectServicesListFragment when a user connects with another and begins to chat away. On

disconnecting from a peer, that disconnecting user is return an empty MainActivity with the

WiFi toggle button disabled waiting for the user to re-begin his/her peer discovery process by

enabling (pressing) that button.

 Similar, Figure 8 (shown below) indicates the fragment that SettingsActivity.java

contains which is SettingsFragment.java. Note the choice of separating out the MainActivity

and the SettingsActivity, since the MainActivity already contained the core functionality of the

application I thought it was in the best interest of the code to separate out customisation

options from the functionality of the application since ultimately the settings are an extension

to the application. The SettingsActivity, as shown in my designs is only accessible from the start

screen during the peer discovery phase or when the MainActivity is empty (WiFi toggle button

is disabled).

Figure 8: SettingsActivity.java and the fragment it contains6

6 Android phone template provided by http://cache.preserve.io/kpj5tgwj/index.html

http://cache.preserve.io/kpj5tgwj/index.html

 pg. 24

4.4 Overview of Cryptography Measures

The following section will give an overview of the cryptography measures that have been

implemented into this application to provide security and privacy for a communication

exchange. The project makes use primarily of the Diffie-Hellman key exchange [15] to generate

a “common secret key” between parties and uses an AES (Advanced Encryption Standard)

Cipher alongside CBC (Cipher Block Chaining) and PKCS7Padding (Cryptographic Message Syntax

Standard) [16] for encryption & decryption of messages. The Spray and Wait network routing

protocol makes use of two methods of encryption/decryption and will be detailed further on is

this report.

4.4.1 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange [15] is vital to this project and is the underlying foundation

towards achieving the security and privacy required for sending messages between

parties/peers. The key exchange process takes place in this application after a connection

attempt has been successfully made between the parties/peers.

 The architecture of the connection will now need to be detailed. During the connection

attempt one of the devices is defined as the Group Owner, he/she acts as the server to which

the other will connect as the Client. The code for these socket set-ups was provided by the

demo application [6] and can be found in the files; GroupOwnerSocketHandler.java &

ClientSocketHandler.java. On the device which has been chosen as the Group Owner, that

device initialisation the key exchange.

 The Group Owner defines the prime root p and the primitive root modulo q, he/she will

then generate their public & private key. The private key is a randomly generated value x

satisfying 0 < x < p-1. From the private value, the public key value y is created by doing y = (qx)

(mod p) with 0 < y < p. The group owner then sends this public key to the Client.

When the Client receives our Group Owner’s public key it is important to note that

he/she does not know our primitive root p and primitive root modulo q, these are sent

alongside the key. The Client then generates their public key & private key using the same

process as above, and will finally now generate his/her secret key. Using the Group Owner’s

public key (y1) we generate our secret key: s = (y1x) (mod p). The Client now has a secret key,

he/she finally sends his/her public key to the Group Owner.

The Group Owner receives the Client’s public key (y2) and already knows p & q, and his

own secret value x thus he/she can also create his/her secret key: s = (y2x) (mod p). The key

exchange process is now complete. The key exchange remains secure because the secret value

x (held by the Group Owner & Client) which is required to derive s is not transmitted across the

 pg. 25

connection. Is it important to note here that we generate a common secret with a party/peer,

but we do not authenticate who that party/peer claims to be.

Figure 9: Key Exchange Diagram6

 pg. 26

4.4.2 AES Cipher

The Cipher chosen for the encryption and decryption methods is an AES (Advanced Encryption

Standard) Cipher, it is a symmetric block cipher for encrypting texts which can be decrypted

with the original encryption key, perfectly suited to what this project requires. The encryption

& decryption methods both use the above Diffie-Hellman secret key. The secret key generated

is in-fact much larger than the maximum key bit length that this Cipher (256 bits) can use,

therefore the secret keys that are generated are hashed using SHA-256 to produce the required

256 bit secret key length.

 The Cipher makes use of CBC which is short for cipher block chaining as its mode. The

mode consists of an initialization vector which you XOR the first block of plaintext against. Then

the block of plaintext is encrypted. The next block of plaintext is XOR'd against the last

encrypted block before you encrypt this block and the process repeats. In this application the IV

is randomly generated upon each new encryption, it is sent along with the encrypted message.

The IV itself is not encrypted and is extract from the first 16 bytes of the data package sent (a

data package consists of an IV & ciphertext).

Figure 10: CBC Mode Diagram7

 Finally, PKCS7Padding is used to apply padding (extra data) to the input data so that

every message size that is encrypted is a power of 8 (bytes), this is required by the AES cipher to

encrypt and decrypt successfully.

7 Image provided by Wikimedia commons - http://commons.wikimedia.org/wiki/File%3ACbc_encryption.png

http://commons.wikimedia.org/wiki/File%3ACbc_encryption.png

 pg. 27

4.5 Overview of Spray & Wait Routing Protocol

This application implements the Spray & Wait network routing protocol, specifically it makes

uses of the vanilla version [10] of the protocol. It is however not a necessarily ‘true’

implementation at-least in its current form. The protocol states that when we enter the wait

phase whereby wait messages are created, that they are devised a number, that number

represents the number of copies that are allowed to be sent to L distinctive relays during the

spray phase [10]. The implementation in this application does not send out any copies but they

are rather held locally in a file thus therefore the number of distinctive relays is currently set to

be a maximum of 1.

 It is important to clarify how the creation of wait messages are implemented in this

application. On the disconnection of a connected party/peer, the disconnecting party/peer is

simply returned to the start screen. The other party/peer will still be on the chat screen, he/she

is notified of the disconnection and any messages that are then typed & sent from that device

will be stored. When that party/peer decides to disconnect from the chat exchange, the wait

messages are saved into a file named after the locally administered MAC address of the

party/peer than had previously disconnected. These messages are encrypted using a simple

symmetric key.

 Whenever the party/peer that had disconnected comes into range again of the user

holding the wait message file, we verify that the locally administered MAC address that is being

broadcast matches the one named after our wait message file and then if they match a

connection attempt is made. If this is successful, the wait messages are decrypted using the

symmetric key and stored locally. The file is then deleted. The key exchange process will take

place and finally both user’s will be notified of the wait messages being sent or received

obviously the user receiving the message will see them but the user’s sending will simple get a

message appear saying “wait message sent” (this message will be displayed for the number of

messages sent i.e. 3 wait messages sent, the notification of the sending will appear 3 times).

Important to note that the wait messages are encrypted using the DH (Diffie-Hellman) secret

key and therefore are always sent securely, and the wait message file itself is never sent but

stored locally. The wait message file is stored inside the cache of the application alongside the

saved settings, the file can only be accessed with root access enabled on a device.

This approach therefore retains its integrity since we don’t compromise the relevantly

insecure wait message file and we also implement the verification of the wait messages by

comparing the name of the file (which again will be the locally administered MAC address of

the peer/party that disconnected) with that of the locally administered MAC address that is

being broadcast to our device holding the wait messages therefore we make sure the messages

 pg. 28

are sent to the correct party/peer. The protocol works regardless of the party/peer’s status i.e.

whether their device is Group Owner or Client and multiple wait messages can be stored &

sent/received. Figure 11 demonstrates the protocol in action.

Figure 11: Spray & Wait Network Routing Protocol Diagram6

 pg. 29

4.6 Problems Encountered

4.6.1 Connected Peers & the Wait Message File

One of the slight issues that occurred during the implementation was the ability to find out who

each device was connected with, this was due to the none-exchange of actual contact

information. The initial implementation of the application simple got the universal MAC that

was located and shown in the settings of the Android phone. This turned out to be an incorrect

solution since on connection to another device the MAC addresses are then locally

administered, therefore the second least significant-bit of the most significant byte of the

address changes. This bit is also referred to as the U/L bit, short for Universal/Local, which is

defined by the IEEE standards as; “The Universally/Locally administered address bit is the next

bit following the Individual/Group address bit. The U/L bit indicates whether the MAC address

has been universally or locally assigned” [18]. This was a particular problem for the saving of

the wait message file since the original universal MAC address that I would collect would be

different from the one used to save the wait message file and thus when it came to comparing

addresses, they would never be the same. To solve this issue, the locally administered MAC

addresses are exchanged between devices during the key exchange process so that the wait

message file would be saved with the correct address.

4.6.2 Initialisation Vector

The initialisation vector is used during the encryption and decryption process of messages &

wait messages that are exchanged after the creation of the DH secret key. It is used to apply

randomness to the AES Cipher when using CBC, this was for the initial weeks of implementation

a simple 256 bit length string of the same value. It became apparent after researching (and

specifically this article [19]), that the IV should be purely random. Thus to solve this I had figure

out how to pre-append the IV to a data package so that on decryption, the message can be

decrypted successful. Without the same IV used during encryption, the decryption would fail.

The IV is not encrypted and is separate from the encrypted message in the data package.

 The Eclipse IDE then produced another slight problem, the apparent security threat of

using the pseudo random number generator (to generate my random IV) used in Android OS

version’s 4.1-4.3 (versions this application supports), the article in [7] documents the threat and

provided the code to apply to fix this issue.

 pg. 30

5. Source Code Explained

5.1 Key Exchange

The following code snippet can be found in MainActivity.java, in the function

onConnectionInfoAvailable(WifiP2pInfo p2pInfo), this code executes when a connection

attempt is made, here we see that the key exchange is initialised by whoever is set to be the

Group Owner, the threadHandler is a Thread that handles the server/client connection:

if (p2pInfo.isGroupOwner) {
 Log.d(TAG, "Connected as group owner");
 isGroupOwner = true;
 isAPeer = false;

 try {
 threadHandler = new GroupOwnerSocketHandler(((MessageTarget)
this).getHandler());
 threadHandler.start();
 } catch (IOException e) {
 Log.d(TAG, "Failed to create a server thread - " + e.getMessage());
 }

 // Initialise our key so that it can be sent to the peer(s)
 try {
 myKey = new DHKeyAgreement();
 myKey.initalise();
 } catch (Exception e) {
 // Error initialising key, log what went wrong
 Log.e(TAG + "- Key Init error: ", e.toString());
 }
 } else {
 Log.d(TAG, "Connected as peer");
 isGroupOwner = false;
 isAPeer = true;

 threadHandler = new ClientSocketHandler(((MessageTarget)
this).getHandler(),
 p2pInfo.groupOwnerAddress);
 threadHandler.start();
 }

ChatManager.java is the core file that handles the sending of messages, it contains the class

ChatManager which is defined as a Runnable object, which runs on a Handler (“A Handler

allows you to send and process Message and Runnable objects associated with a

thread's MessageQueue. “Each Handler instance is associated with a single thread and that

thread's message queue. When you create a new Handler, it is bound to the thread / message

queue of the thread that is creating it -- from that point on, it will deliver messages and

runnables to that message queue and execute them as they come out of the message queue.

 pg. 31

There are two main uses for a Handler: (1) to schedule messages and runnables to be executed

as some point in the future; and (2) to enqueue an action to be performed on a different thread

than your own [17]”).

When we set the ChatManager object (code found in MainActivity.java line 682-684):

 @Override
 public boolean handleMessage(Message msg) {
...

case MY_HANDLE:
 Object obj = msg.obj;
 (chatFragment).setChatManager((ChatManager) obj);

To the MainActivity thread's MessageQueue, it is at this point, that our Group Owner’s key is

sent to another device;

 public void setChatManager(ChatManager obj) {
 chatManager = obj;

 // Send (Group Owner)Alice's public key to (Peer)Bob
 if (MainActivity.isGroupOwner) {
 byte[] address = MainActivity.myMacAddress.getBytes();

 // Pre-append the MAC address to public key
 byte[] combined = new byte[address.length +
MainActivity.myKey.keyPair.getPublic().getEncoded().length];
 System.arraycopy(address, 0, combined, 0, address.length);
 System.arraycopy(MainActivity.myKey.keyPair.getPublic().getEncoded(),
0, combined, address.length,
MainActivity.myKey.keyPair.getPublic().getEncoded().length);

 chatManager.write(combined);
 }
 }

public boolean handleMessage (Message msg)found in MainActivity.java, Lines 524-690

is the method that handles the receiving of Message objects. Each object contains the following

variables;

// Contains user-defined message tags to define each message
Public int what;

// For the purpose of this application it used to store the byte data of each
// messages sent
Public Object obj;

// Arg2 is not made use of. Arg1 simple keeps track of the byte size of each data
// package
Public int arg1;
Public int arg2;

 pg. 32

The remaining Key Exchange code can be found in MainActivity.java inside the function public

boolean handleMessage (Message msg) inside the case - case KEY_EXCHANGE, Lines 591-661

which details how both the Group Owner and Client handle their respective data packages

containing the locally administered MAC address of each other’s device and importantly the

public key that will be used to create the DH secret key used later in encryption/decryption.

5.2 Spray & Wait Routing Protocol

In the function public boolean handleMessage (Message msg) again found in

MainActivity.java, Lines 524-690 we have the code for the beginning of the spray phase

which occurs after a peer disconnects;

case DISCONNECT:
 if (isInChat) {
 // The group owner should have received a copy of a peer's MAC
address in key exchange
 // A peer will have gotten his copy when the group owner sent
over his public key
 // Thus both should have copies of each others MAC addresses
 (chatFragment).pushMessage("Buddy Disconnected");

 if (connectedPeers.get(0) != null) {
 (chatFragment).pushMessage("Mac: " +
connectedPeers.get(0));
 // We are now in the spray phase
 SPRAY_PHASE = true;
 // Create the file to store the "wait" messages
 waitIncrement = 0;
 waitMessages.clear();
 waitFile = new File(getFilesDir() + "//" +
connectedPeers.get(0));
 }
 }
 break;

We create our wait message file, clear out a List of strings containing any previous wait

messages and reset a wait increment value that is used during a while loop for the sending of

any wait message(s).

 pg. 33

When a user then disconnects and has wait messages stored, the method public void

disconnect () found in MainActivity.java Lines 886-934, saves the wait messages to the

wait message file;

if (waitMessages.size() > 0) {
 String encryptMsg = new String();

 for (String msg : waitMessages)
 encryptMsg = encryptMsg.concat(msg);

 try {
 encryptMsg = crypto.encrypt(encryptMsg,
WAIT_SECRET_KEY.getBytes());
 } catch (Exception e) {
 // TODO:
 e.printStackTrace();
 }
 // Save Encrypted Message to device in file name of disconnected peer
 Utils.writeToFile(waitFile, encryptMsg.getBytes());
 waitMessages.clear();
 }

Therefore we now have the wait message file present on the device, once peer

discovery is again re-enabled and our device is actively searching for other user’s, any new user

that our device comes across will have its MAC address compared with the filename of the wait

message file in the following code;

 @Override
 public void onPeersAvailable(WifiP2pDeviceList peerList) {
...
 // On a peer change i.e. a new peer has come into service
discovery or has left it
 // We get a list of all the available devices that are in range
 // The "Spray & Wait" protocol comes into play here
 // If a device's MAC address corresponds to a file available on
the device
 // Then we have messages that are needed to be delivered
 // Thus we notify our device that this is the case
 for (int i = 0; i < peers.size(); i++) {
 boolean waitMessages =
checkForWaitFile(peers.get(i).deviceAddress);
 WiFiP2pService service = new WiFiP2pService();
 service.device = peers.get(i);
 service.instanceName = "cryptochat";
 service.serviceRegistrationType = peers.get(i).primaryDeviceType;

 if (waitMessages) {
 MainActivity.WAIT_PHASE = true;
 connectP2p(service);
 }
 }
 }
 };

 pg. 34

The checkForWaitFile method simple checks if the file exists, if it does then it decrypts, stores

and deletes the wait message file, if it doesn’t exist it simple does nothing.

We then simple keep track of the fact we have wait messages to deliver (if

checkForWaitFile returns true) with the Boolean WAIT_PHASE and make the connection to that

device. Finally in the case - case MESSAGE_READ: the wait messages are sent, this case

specifically only occurs after the key exchange process has been completed;

else if (WAIT_PHASE) {
 (chatFragment).pushMessage("Messages to send");

 while (WAIT_PHASE) {
 String waitMsg = null;

 try {
 if (waitIncrement < waitMessages.size()) {
 waitMsg =
MainActivity.crypto.encrypt(waitMessages.get(waitIncrement), SECRET_KEY);
 (chatFragment).pushMessage("Wait
Message sent");
 } else {
 WAIT_PHASE = false;
 waitMessages.clear();
 break;
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 chatFragment.sendMessage(waitMsg.getBytes());

 // Sleep the thread, giving a small fraction of time in-
between broadcasts
 try {
 Thread.sleep(500);

 } catch (InterruptedException e) {
 // This is a very VERY bad exception
 e.printStackTrace();
 }
 MainActivity.waitIncrement++;
 }
 }

 break;

We encrypt the wait message with the AES Cipher that is located in the Crypto class (detailed

below) with the secret key generated from DH. We then send the byte data to our ChatHandler

object which is located in the chatFragment that then sends the data to the other device. We

importantly sleep the thread to give a slightly needed delay between data bursts sent out since

otherwise data packages (messages) would merge together.

 pg. 35

5.3 Crypto Class

The Crypto class as mentioned above is located in the Crypto.java file, it contains the AES

Cipher’s encryption and decryption methods;

// Encryption method
public String encrypt(String plainText, byte[] encryptionKey) throws Exception {

 SecretKeySpec key = new SecretKeySpec(encryptionKey, "AES");
 iV = new IvParameterSpec(generateIV());
 cipher.init(Cipher.ENCRYPT_MODE, key, iV);
 // Encrypt msg before attaching IV;
 byte[] encrypted = cipher.doFinal(plainText.getBytes("UTF-8"));
 byte[] data = new byte[iVLen + encrypted.length];
 // Append together plain IV and encrypted cipher text
 System.arraycopy(iV.getIV(), 0, data, 0, iVLen);
 System.arraycopy(encrypted, 0, data, iVLen, encrypted.length);

 return Base64.encodeToString(data, Base64.DEFAULT);
}

// Decryption method
public String decrypt(String cipherText, byte[] encryptionKey) throws Exception {
 // Get the initialisation vector used during encryption
 byte[] ciphertextBytes = Base64.decode(cipherText, Base64.DEFAULT);
 iV = new IvParameterSpec(ciphertextBytes, 0, iVLen);
 // Separate the IV bytes from the actual encrypted message
 ciphertextBytes = Arrays.copyOfRange(ciphertextBytes, iVLen,
ciphertextBytes.length);
 // Create our secret key and finally decrypt the message
 SecretKeySpec key = new SecretKeySpec(encryptionKey, "AES");
 cipher.init(Cipher.DECRYPT_MODE, key, iV);
 String decrypt = new String(cipher.doFinal(ciphertextBytes), "UTF-8");

 return decrypt;
}

The above methods detail the creation of a SecretKeySpec provided by the byte array

encryptionKey (which for all messages sent across the connection is our DH secret key) and it

shows how the IV is both appended and extracted in the respective methods. The only function

to note is generateIV (); note – IV is always 16 bytes in length, iVLen = 16

// Generate a random initialise vector for encryption/decryption
@SuppressLint("TrulyRandom")
public byte[] generateIV() {
 SecureRandom random = new SecureRandom();
 byte[] ivBytes = new byte[iVLen];
 random.nextBytes(ivBytes);
 return ivBytes;
}

 pg. 36

6. Results and Evaluation

The project implementation meets all of the core requirements of functionality and design, it

also implements some of the sub-core aims that were set out in the ‘Specification & Design’

section of this report. The group messaging and picture messaging sub core aims of this project

proved to be a step too ambitious for the scope of this project, mainly due to the limited time-

frame available coupled with my minimal knowledge of Android development, the learning

curve (to get up to speed) took somewhat longer than had originally anticipated. However, the

project and namely the application does achieve what it has originally set to-do; to provide

secure communications without the use of any network infrastructure and importantly most

features were implemented including the spray and wait network routing protocol along with

all of this being done in a very friendly & user centred approach.

Figure 12: CryptoChat Start Screen – Peer search active

 pg. 37

Figure 12 shows the developed start screen, the application follows the design principles of

being user-friendly and minimal. The WiFi enable button is enabled in the screenshot and thus

peer discovery is active, if it was pressed again it would appear red and the user would be

informed he/she is no longer in active peer discovery. The gear icon will take the user to the

settings page, the WiFi icon will re-search for any new peers.

Figure 13 shows the look of the start screen after a peer has been found;

Figure 13: A peer has been found

Any other available peers will not appear in the List view until a new peer discovery attempt is

made (by pressing the WiFi icon in the action bar). Any peers found will be displayed such as

the one in the screenshot defines; the name of the device broadcast, the service he/she is using

(currently set to be ‘cryptochat’ thus only users who have this application can talk to each

other), finally we have the locally administered MAC address of that device along with its

status.

 pg. 38

Once a user decides to start a chat exchange, he/she chooses a device from the List of available

peers to chat with. That user will then receive a prompt asking if they would like to have a WiFi

Direct chat exchange.

Figure 14: Shows a user has found our device and wants to connect

Is it important to note that this device as can be seen in Figure 14 is still in the peer search

process, this has no effect on this incoming connection attempt. Peers can still connect to this

device (as can be seen) and peer discovery will be stopped on the acceptance of this connection

attempt or continue on its decline.

 pg. 39

The text shown throughout Figures 12-14 is for debugging purposes and currently provides

minimal error assistance, for example; if that text details a failure to add a local service and a

failure to initialise search discovery, this is likely to be related to the WiFi being in-active. It also

details connection errors that are displayed, Figure 15 shows an example of one these;

Figure 15: Debugging text, importantly error code 2, a connection attempt has already begun

The application in its current prototype form does not handle many errors all that well, for

example the prior example of WiFi being in-active, should inform the user that he/she needs to

activate their WiFi. However it currently does not, implementation time was focused upon the

feature set. Error handling and informative user notifications will be detailed later in the future

work section of this report.

 pg. 40

 Figure 16 Figure 17

Figure 16 & Figure 17: Settings screens – showing theme support & available options

The settings screen shown in Figures 16 & 17 show that this application supports the use of

themes, these are currently limited to a simple light & dark variant but can be expanded upon

in the future. The themes are applied across all of the screen states, and the text displayed in

the screen states is adjusted accordingly to the theme that is currently applied. The notification

toggle is in place but currently no actual notification support is implemented. The vibrate

option is a simple ‘vibrate on message received’ option.

 pg. 41

 Figure 18 Figure 19

Figures 18 & 19: Chat screens – Key exchange completed and messages securely exchanged

The chat screens shown above detail the respective views of the devices that are commencing

the secure message exchanges. The first 4 entries in the List view (the white text in the dark

theme Figure 18, and the black text in the light theme Figure 19) are again debug text to show

the successful exchange of information has taken place and that both peers/parties have

calculated the correct (same) secret key. The red text displayed is a message that has been

received by that device, and a blue message is one that has been sent by that device. The meta-

data (sent & received) are both styled in a light grey colour to distinguish it from the actual

message exchanges. Note that the meta-data timings are now entirely synced specifically the

Moto-E test device (Figure 19), due to its lack of sim card the device became out of sync by a

fraction of milliseconds after an extended period of time turned on.

 pg. 42

 Figure 20 Figure 21

Figures 20 & 21: Chat screen – wait messages have been exchanged

The above Figures 20 & 21 detail the exchange of wait messages, here you see Figure 21 was

the device that had held the wait messages and was the device sending them. Figure 20 shows

the device receiving those wait messages, remember that the wait messages are only sent after

key exchange has taken place and a secure means of communication with the other device has

been created. After the wait messages are exchanged, normal secure message exchanges can

then re-commence between the devices. Notice the secret key is completely different from the

previous screenshots, demonstrating the strength of the DH approach.

 pg. 43

6.1 Quantifiable Results (CPU, Battery, Network)

The quantifiable results will show the results of data gathering and monitoring that has been

undertaking whilst the application has been running on the Android test device. The test device

used during the tests was my personal device, the Nexus 5. It must be stated that during testing

my sim-card for the device was removed and most background processes were closed but some

do remain and thus populate the results with some unwanted data but as CryptoChat was

always the forefront application running during these tests it does not obscure the results.

The CryptoChat APK installed on the Nexus 5 device takes up 2.44mb of space, it has a

cache of 0.3mb (saved settings options), and this will grow when a user creates a wait message

file for a limited period of time at-least. To compare a few similar messaging applications,

WhatsApp on the device takes up 33.50mb and (Facebook) Messenger takes up 22.37mb.

The CPU usage of the application is shown in Figures 22 & 23 below, the two pie charts

show the load of the CPU when searching for peers and for when inside the chat screen state;

Figure 22: CPU usage during peer discovery

 pg. 44

Figure 23: CPU usage during chat screen state

Both the pie charts show the minimal use of resources that the application demands the

red/pink colour details the user demands of the application and the blue/purple colour detail

the kernel demands of the application. The figures for the CPU usage during peer discovery

ranged from 15-10% and the CPU usage for chat exchanges ranged from 7-4% during testing. As

both of the pie charts show, the CPU is spending more resources sitting idle than it is providing

to the application. This is an extremely good sign of the efficiency of the application.

 Similarly for the battery consumption, the application is again extremely efficient in its

use of battery power. Appendix A shows a timeline of battery events that were report to the

Android operating system, the timeline was generated during a simple test chat exchange that

took place for 20 minutes and was produced using the Google provided tool Battery Historian

[20], it logs the events of battery consumption from all areas of the device. As you can see in

the timeline, screen and WiFi are the two biggest drains (to be expected) of the device’s

battery. The application does not make any form of significant battery drain except for its use

of WiFi, the WiFi power consumption can be specifically see in the sections WiFi full lock & WiFi

scan (it is important to state that the efficiency of the WiFi is very dependent on the calibre of

the hardware and by extension the value of the device, areas that are out of my control).

 Finally the network efficiency and specifically the throughput of bytes sent per minute

was data that was not feasible to obtain since data is only sent when messages are sent,

 pg. 45

therefore results would be entirely based upon the velocity of chat exchanges that would occur

between devices and would obviously range wildly. Some interesting facts where discovered

during my attempts to collect data however. The key exchange process was always 472 bytes

received by the Client and he/she would transmit 525 bytes to the Group Owner. The Group

Owner in comparison as expected transmits 472 bytes and received 525 bytes. A full one

sentence message exchanged between devices consisted of 325 bytes and a message

containing only one word will consist of 117 bytes. To place this into perspective, the maximum

size of a single SMS message is 140 bytes therefore you see we have a quite large overhead

applied to messages due to the encryption techniques that are applied. The use of WiFi offsets

this overhead however due to the higher data transmission speeds that are possible, making

the actually sending and receiving of the messages near instant and with the meta-data you can

clearly see throughout the screenshots, the time-delay that is present between devices occurs

in the hundreds of milliseconds therefore making the end-to-end delay period barely noticeable

to each end user communicating.

Ultimately with all the data and results that can be seen, I feel that the application

meets its aim of being very light and thoughtful in its use of system resources especially in the

areas of CPU and battery usage. The minimal aesthetic approach that this application employs

is another factor that contributes to its efficiency however this is offset by the limited feature

set that is currently available.

 pg. 46

7. Future Work

The application contains various areas that can be improved upon alongside the

implementation of the missing features proposed by this project namely the group messaging

and picture messaging features for the application.

 To begin, group messaging would be a major feature to implement and have

successfully working for the usability & appeal of this application, the ability to message more

than one person sounds straight-forward in principle but in reality when using WiFi Direct it

brings up various problems that would need to be overcome. Firstly since the architecture of a

connection requires a Group Owner and Clients, we are highly dependent on the Group Owner

since he/she handles most of the work in a chat exchange. This is escalated in a group chat

exchange scenario. The Group Owner would be the only device to know the information of

Clients, and therefore it would have to act as a relay node to send messages from a Client to the

remaining Clients in the group chat. If the Group Owner where to disconnect, then we would

have to re-establish a connection between the remaining devices that were connected, this

would be troublesome since the Group Owner as stated above would be initially the only device

to know which devices are connected to it. A potential solution to this would be to send a copy

of all the connected devices to each Client connected to the Group Owner (similarly to what is

being done with MAC addresses & wait messages currently). We would also have the problem

of group key exchange, which is again an extra burden of information that would have to be

exchanged between all the devices before we have even started to begin to communicate. The

Spray and Wait network policy would also provide another large obstacle, in its current form it

would not be applicable and would require some rather extensive modifications. Specifically

the Group Owner instead of relaying messages would first have to check for an active

connection with a Client then if that is not available, store the message in a wait file to be later

‘sprayed’ out to Clients. However, with multiple disconnects the complexity of the protocol will

grow, if for example two Clients left a group chat and then came back into range, should the

device holding the wait files try a group chat exchange to send the wait messages to each

device or should it connect (as it does now) to only one device? Finally, there is a limitation on

the number of devices that can connect which is only stated as, “The number of devices in a Wi-

Fi Direct-certified group network is expected to be smaller than the number supported by

traditional standalone access points intended for consumer use” [21], therefore this will have

an effect on limiting the appeal of this application.

It must be stated however that the problems discussed are achievable challenges to overcome,

[5] shows that group chat is defiantly a feature that could be implemented. The complexity

attached with key exchange, Group Owner relaying and the Spray and Wait network routing

protocol however add a layer of problems that will have to be clearly thought through before

attempting its implementation in this application.

 pg. 47

Picture messaging is another feature that would again add more appeal to this application,

similarly to group messaging it provides some more challenges that would need to be

overcome. Sending a picture would require the need for that image to be sent across devices in

manageable chunks since any modern phone now produces pictures of 5MP (mega-pixel) in

quality which will produce a file of 200+KB in size (depending on the image compression

techniques used, most commonly JPEG). Therefore we must ensure the integrity of the data

that is being sent across devices so that it can be assembled back together in the correct

manner. Then we also have the challenge whether or not to add picture messages to the Spray

and Wait network routing protocol, this would another aspect any future work would have to

consider.

 Finally the application in its current state does not handle error and warnings that occur

all that well, in-fact most of the information is either only logged during the debugging phase

with the device attached to a computer or via the debug text that is shown during connection

attempts. This will need to be improved upon in any further attempts in improving the

application and its user experience, so that the user is not left unknowing on how to proceed if

these errors or warnings occur.

 pg. 48

8. Conclusion

This project meets most of the aims that it set out to originally accomplish, specifically the

application built is minimal, user-friendly and provides basic functionality for having secure

communication exchanges between individuals. The Spray and Wait network routing protocol

implemented alongside the basic functionality gives users increased freedom when

communicating. The application provides this functionality but will need further development

on features such as group messaging and picture messaging for it to become a more viable

product.

 Time challenges and the higher than expected learning curve when developing this

application using the Android SDK made those features out of reach of my abilities, however

the features that have been implemented answer the fundamental question asked during this

report on how we can communicate securely with other people without using public

infrastructure or cellular networks. The choice of using WiFi Direct like any technology has its

pro and cons and furthermore, development of this application will have to address them as

they become apparent, however I feel that using WiFi Direct was the best option for this

application since it provides a universal standard to work upon. I also feel that the choice of

using Android even though it initial provided some large obstacles and challenges eventually

paid off in its masses of documentation and available resources that I could access online.

 The application built is most defiantly a prototype but it is a functional one that I feel

can be a solid starting point, to which can be expanded upon to implement the missing

features. With further development and polish, the application could be launched on public

‘app stores’ and provide a solid service to its potential users.

 pg. 49

Reflections on Learning

This project I feel has developed my skills as a programmer and more importantly I feel that this

project has given me some valuable experience in following the software development life cycle

and the challenges that come with it.

 In hindsight I defiantly under-estimated the challenges that Android development would

provide, the project had its fair-share of ‘speed-bumps’ along the way with some days where I

was becoming very frustrating with x feature that just would not work, my patience and

problem solving skills became important areas in which I was tested mentally and probably

more so than I ever have in my degree scheme. However my patience and problem solving skills

were not the most important factor during the development of this application. Rather it was

my research skills and knowledge that became crucial to the successful implementation of the

features this application provides, without the research that I was conducting online to find

resources that would aid my problem solving, I would have likely struggled to find the solutions

that I did (or even if I did these solutions would have taken much longer to find). My research

skills became invaluable towards the latter stages of this project specifically concerning areas of

cryptography which was a fun but challenging area that was very much mostly unknown to me.

 The choice of Android and Java in this regard was a ‘blessing in disguise’ since the

available documentation, tutorials, wikis and other resources that were used provided key

insights in how to tackle certain problems, such as key exchange and theme support. I feel now

that if I were to continue development of this application using Android and Java I would be

starting off in a much stronger place than I was when I started this project.

 In regards to my project plan and the time-frame that I set out in my initial plan, not

much of this was actually followed during the development of this application. I was probably

over ambitious in my goals especially with the limited time-frame available and this is

something that I must be sure to carry forward with me in the future, to recognise what can be

accomplished in the time provided. I also feel that my goals were not clearly stated and planned

all that well during my initial plan, in the future I should take more time to think about what

precisely I should be accomplishing on a week by week basis to make my project plan more of

an effective tool and help guide the development of future projects.

 Ultimately this project has tested and expanded upon my skillset that I have acquired

through my own personal time and university studies, I have more experience now with Java &

the Android SDK and feel these are valuable assets for the future of my career. Overall I have

thoroughly enjoyed my time during the development of this project and the challenge that it

provided and look forward to working on future projects like this.

 pg. 50

Glossary

Name Description
DH Refers to the Diffie-Hellman key exchange.

Secret Key Refers to the output key produced by the Diffie-
Hellman key exchange.

Wait Message File Refers to the file that contains the ‘wait
message(s)’ that will be delivered at some point
to the intended recipient.

Wait Message(s) Refers to messages that have been sent to an out
of range or not available recipient that will be
stored in the ‘wait message file’.

AES Refers to the Advanced Encryption Standard.

IV Refers to the initialisation vector used during
encryption & decryption.

APK Refers to an Android Application Package.

MAC address Refers to the media access control (MAC) address
of a device.

Spray Phase Refers to the Spray & Wait network routing
protocol; the spray phase occurs when a
party/peer disconnects and the other party/peer
is generating ‘wait message(s)’.

Wait Phase Refers to the Spray & Wait network routing
protocol; the wait phase occurs when a
party/peer has been discovered that has a ‘wait
message file’ associated with it and thus the
messages contained within that file are sent
during this phase.

Group Owner Refers to the device that will act as the ‘server’
for the connection between the devices message
exchanges.

Client Refers to the device that will act as a ‘Client’
which connects to the Group Owners ‘device
during the message exchanges.

JPEG Refers to the Joint Photographic Experts Group
standard for lossy compression of digital images.

 pg. 51

References

[1] Android Apps on Google Play. 2015. Available at:

https://play.google.com/store/apps/top?hl=en_GB. Accessed April 6, 2015.

[2] Ofcom - The Communications Market Report: United Kingdom. 2015. Available at:

http://stakeholders.ofcom.org.uk/market-data-research/market-data/communications-market-

reports/cmr14/uk/. Accessed April 6, 2015.

[3] Frommer D. How Facebook Controls the Future of Messaging. The Atlantic. 2015. Available

at: http://www.theatlantic.com/technology/archive/2015/03/how-facebook-

messaging/389171/. Accessed April 6, 2015.

[4] WiFi Social. 2015. Available at:

https://play.google.com/store/apps/details?id=com.ajaraj.wifisocial&hl=en. Accessed April 12,

2015. Accessed April 12, 2015.

[5] WiFi Direct Group Chat. 2015. Available at:

https://play.google.com/store/apps/details?id=esnetlab.apps.android.wifidirect.discovery&hl=e

n_GB. Accessed April 12, 2015.

[6] Android.googlesource.com. Samples/WiFiDirectServiceDiscovery - platform/development -

Git at Google. 2015. Available at:

https://android.googlesource.com/platform/development/+/512cc91be2cce9566807bd7248da

448c0a91e2ed/samples/WiFiDirectServiceDiscovery/. Accessed April 12, 2015.

[7] Some SecureRandom Thoughts | Android Developers Blog. Android-

developers.blogspot.co.uk. 2013. Available at: http://android-

developers.blogspot.co.uk/2013/08/some-securerandom-thoughts.html.

Accessed April 12, 2015.

[8] Android 4.0 APIs | Android Developers. 2015. Available at:

http://developer.android.com/about/versions/android-4.0.html. Accessed April 12, 2015.

[9] Google design guidelines. Introduction - Material design - Google design guidelines. 2015.

Available at: http://www.google.com/design/spec/material-design/introduction.html. Accessed

April 13, 2015.

https://play.google.com/store/apps/top?hl=en_GB
http://stakeholders.ofcom.org.uk/market-data-research/market-data/communications-market-reports/cmr14/uk/
http://stakeholders.ofcom.org.uk/market-data-research/market-data/communications-market-reports/cmr14/uk/
http://www.theatlantic.com/technology/archive/2015/03/how-facebook-messaging/389171/
http://www.theatlantic.com/technology/archive/2015/03/how-facebook-messaging/389171/
https://play.google.com/store/apps/details?id=com.ajaraj.wifisocial&hl=en.%20Accessed%20April%2012,%202015.
https://play.google.com/store/apps/details?id=com.ajaraj.wifisocial&hl=en.%20Accessed%20April%2012,%202015.
https://play.google.com/store/apps/details?id=esnetlab.apps.android.wifidirect.discovery&hl=en_GB.%20
https://play.google.com/store/apps/details?id=esnetlab.apps.android.wifidirect.discovery&hl=en_GB.%20
https://android.googlesource.com/platform/development/+/512cc91be2cce9566807bd7248da448c0a91e2ed/samples/WiFiDirectServiceDiscovery/
https://android.googlesource.com/platform/development/+/512cc91be2cce9566807bd7248da448c0a91e2ed/samples/WiFiDirectServiceDiscovery/
http://android-developers.blogspot.co.uk/2013/08/some-securerandom-thoughts.html.
http://android-developers.blogspot.co.uk/2013/08/some-securerandom-thoughts.html.
http://developer.android.com/about/versions/android-4.0.html.
http://www.google.com/design/spec/material-design/introduction.html

 pg. 52

[10] Delay Tolerant Networks. 2015. Available at:

https://books.google.co.uk/books?id=2ERN5lgs3AwC&pg=PT56&lpg=PT56&dq=spray+%26+wai

t+vanilla&source=bl&ots=f8DJLSGQ76&sig=PdEwUKGiZyku4F7mw4r6VsXTedE&hl=en&sa=X&ei

=r5stVdagM4TmapelgdgK&ved=0CC4Q6AEwAw#v=onepage&q=spray%20%26%20wait%20vani

lla&f=false. Accessed April 14, 2015.

[11] Creating P2P Connections with Wi-Fi | Android Developers. 2015. Available at:

http://developer.android.com/training/connect-devices-wirelessly/wifi-direct.html. Accessed

April 16, 2015.

[12] Java Cryptography Architecture (JCA) Reference Guide. 2015. Available at:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html.

Accessed April 16, 2015.

[13] Java Cryptography Architecture (JCA) Reference Guide (DH2EX). 2015. Available at:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#DH2

Ex. Accessed April 16, 2015.

[14] Fragments | Android Developers. 2015. Available at:

http://developer.android.com/guide/components/fragments.html. Accessed April 16, 2015.

[15] Diffie-Hellman Key Agreement Method. 2015. Available at:

https://www.ietf.org/rfc/rfc2631.txt. Accessed April 16, 2015.

[16] PKCS #7: Cryptographic Message Syntax. 2015. Available at:

http://tools.ietf.org/html/rfc2315. Accessed April 16, 2015.

[17] Handler | Android Developers. 2015. Available at:

http://developer.android.com/reference/android/os/Handler.html. Accessed April 17, 2015.

[18] Standard Group MAC Addresses: A Tutorial Guide. 2015. Available at:

http://standards.ieee.org/develop/regauth/tut/macgrp.pdf. Accessed April 18, 2015.

[19] CWE - CWE-329: Not Using a Random IV with CBC Mode (2.8). 2015. Available at:

http://cwe.mitre.org/data/definitions/329.html. Accessed April 18, 2015.

[20] GitHub - Google/battery-historian. 2015. Available at: https://github.com/google/battery-

historian. Accessed April 19, 2015

https://books.google.co.uk/books?id=2ERN5lgs3AwC&pg=PT56&lpg=PT56&dq=spray+%26+wait+vanilla&source=bl&ots=f8DJLSGQ76&sig=PdEwUKGiZyku4F7mw4r6VsXTedE&hl=en&sa=X&ei=r5stVdagM4TmapelgdgK&ved=0CC4Q6AEwAw%23v=onepage&q=spray%20%26%20wait%20vanilla&f=false.%20
https://books.google.co.uk/books?id=2ERN5lgs3AwC&pg=PT56&lpg=PT56&dq=spray+%26+wait+vanilla&source=bl&ots=f8DJLSGQ76&sig=PdEwUKGiZyku4F7mw4r6VsXTedE&hl=en&sa=X&ei=r5stVdagM4TmapelgdgK&ved=0CC4Q6AEwAw%23v=onepage&q=spray%20%26%20wait%20vanilla&f=false.%20
https://books.google.co.uk/books?id=2ERN5lgs3AwC&pg=PT56&lpg=PT56&dq=spray+%26+wait+vanilla&source=bl&ots=f8DJLSGQ76&sig=PdEwUKGiZyku4F7mw4r6VsXTedE&hl=en&sa=X&ei=r5stVdagM4TmapelgdgK&ved=0CC4Q6AEwAw%23v=onepage&q=spray%20%26%20wait%20vanilla&f=false.%20
https://books.google.co.uk/books?id=2ERN5lgs3AwC&pg=PT56&lpg=PT56&dq=spray+%26+wait+vanilla&source=bl&ots=f8DJLSGQ76&sig=PdEwUKGiZyku4F7mw4r6VsXTedE&hl=en&sa=X&ei=r5stVdagM4TmapelgdgK&ved=0CC4Q6AEwAw%23v=onepage&q=spray%20%26%20wait%20vanilla&f=false.%20
http://developer.android.com/training/connect-devices-wirelessly/wifi-direct.html.
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html.
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html%23DH2Ex.
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html%23DH2Ex.
http://developer.android.com/guide/components/fragments.html.
https://www.ietf.org/rfc/rfc2631.txt.
http://tools.ietf.org/html/rfc2315.
http://developer.android.com/reference/android/os/Handler.html.
http://standards.ieee.org/develop/regauth/tut/macgrp.pdf.
http://cwe.mitre.org/data/definitions/329.html.
https://github.com/google/battery-historian.
https://github.com/google/battery-historian.

 pg. 53

[21] How many devices can connect? | Wi-Fi Alliance. 2015. Available at: http://www.wi-

fi.org/knowledge-center/faq/how-many-devices-can-connect. Accessed April 24, 2015.

http://www.wi-fi.org/knowledge-center/faq/how-many-devices-can-connect.
http://www.wi-fi.org/knowledge-center/faq/how-many-devices-can-connect.

 pg. 54

Appendix A – Battery Timeline

 Screen grab of the battery information produced by Battery Historian [20], full information can be found in the

In the folder ‘extras’ (uploaded along with the source code) in the file – battery_stats.html.

 pg. 55

Appendix B – Program Listing

CryptoChat

 .settings

 assets

 bin

 extras

o battery_stats.html – contains the full data of battery information displayed in Appendix A

 gen

o com

 example

 cryptochat

o BuildConfig.java – auto generated file

o R.java – auto generated file that states the android resources that have been used such as

colours, layouts, strings etc.

 libs

o android-support-v4 – “support android.app classes to assist with development of applications for android API level

4 or later. The main features here are backwards-compatible versions of FragmentManager and LoaderManager”

 res

o drawable-hpdi

o drawable-ldpi

o drawable-mdpi

o drawable-xhdpi

o drawable-xxhdpi

The following folders contain drawable images, namely logos

and icons that are used in this application. The only

difference between the logos and icons used and present in

these folders is the size of the images.

.settings contains Eclipse settings

assets is an empty folder

bin contains compiler output

 pg. 56

o layout

 activity_main.xml – defines the layout for MainActivity.java

 activity_settings.xml – defines the layout for SettingsActivity.java

 devices_list.xml – defines the layout for devices found during peer discovery

 fragment_chat.xml – defines the layout of the chat screen state

 settings.xml – defines the preferences of SettingsActivity.java

o menu

 main_activity_actions.xml – defines the actions a user can undertake during the start screen

o values

 arrays.xml – contains arrays that are used for the theme choice combo box

 colors.xml – contains hexadecimal values of colours that are used in this application

 strings.xml – contains strings that are used in this application

 styles.xml – contains the styles (text and theme) that are used in this application

o values-v11

o values-v14

 src

o com

 example

 cryptochat

o ChatManager.java* – Handles chat exchanges between devices

o Circle.java – Simple class used to create a circle object to draw to screen

o ClientSocketHandler.java* – Handles client socket creation & connections

o Crypto.java – Class that defines the encryption/decryption methods used in this application

o DHKeyAgreement.java – Class that defines the DH key exchange/agreement procedures

o GroupOwnerSocketHandler.java* – Handles the group owner socket creation & connections

o MainActivity.java – The main file, defines most of the application functionality

o PRNGFixes.java – [7]

 pg. 57

o SettingsActivity.java – Settings, defines the activity and what fragment it should use

o SettingsFragment.java – Defines the content and UI of the SettingsActivity

o Utils.java – Static helper class that provides access to widely used methods

o WiFiChatFragment.java* – Defines the chat screen and its look

o WiFiDirectBroadcastReceiver.java* – Defines the broadcast receiver used to react to events

that occur during the running of the application

o WiFiDirectServicesListFragment.java* – Defines the view for discovered peers found in

during peer discovery

o WiFiP2pService.java* – Defines a structure to hold service information

 .classpath

 .project
 AndroidMainfest.xml – Defines properties of the application such as what activity to run/show first, what logo to use,

what hardware it has the right to access etc.

 proguard-project.txt

 project.properties

Note: * indicates files that

were provided by [6], nearly

of these files have been

modified and added to in

some form.

 pg. 58

Appendix C – Extra Resources

The following extra resources (.zip files) have been uploaded, these contain the following:

 Designs – Contains all of the full-sized design images shown in Figures 1-5.

 Graphs – Contains the full-sized pie charts shown in Figures 22 and 23 and the battery historian image, Appendix A.

 Implementation Diagrams – Contains the full-sized diagrams shown in Figures 7-11.

 Result Screenshots – Contains the full-sized screenshots shown in Figures 12-21.

