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Abstract

This report examines the results of three image forgery detection algorithms,
Error Level Analysis, Copy-Paste Cloning Detection and Fourier based Resam-
pling Detection. Each algorithm was implemented within MATLAB and run
on a sample library of forged and unmodified images, including a selection of
images from an image manipulation dataset. Each method was found to have its
own set of advantages and limitations, however with all three methods combined
the overall detection rate was an impressive 80%. Error Level Analysis provided
decent results on previously compressed, high-quality JPEG files, but struggled
with newly compressed images or low quality samples. Copy-Paste Cloning De-
tection was highly successful on images forged using cloning methods, however
the overall runtime was much higher than the other methods, and due to the na-
ture of the algorithm false positives were routinely detected. Image Resampling
Detection operated on a wide variety of images, provided good overall results
on each dataset, and the rate of false positives was low. The algorithm was also
highly efficient, however resampling must have occurred in order for any forgery
to be detected, and it was therefore unsuitable for direct copy-paste forgeries.
Metadata Tag Detection was also run on each image, however it was found to be
too rudimentary to be considered a method in its own right, as tags within files
can be cleared or removed without much effort. This project therefore provides
an ideal base for a user to determine the most applicable image forgery detection
method for their use, depending on the types of images that they routinely deal
with.
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1 Introduction

Since the invention of photography, individuals and organisations have often
sought ways to manipulate and modify images in order to deceive the viewer.
Whilst originally a fairly difficult task requiring many hours of work by a pro-
fessional technician, with the advent of digital photography it is now possible
and fairly trivial for anyone to easily modify images, and even easier to achieve
professional looking results. This has resulted in wide reaching social issues,
ranging from the reliability of the images reported by the media to the doctor-
ing of photographs of models in order to improve their looks or body image.
With the sheer amount of methods available in which to manipulate an image,
image forgery detection has become a growing area of research in both academia
and the professional world alike.

Many methods exist in order to detect forgery within digital images, however
it is difficult to find which are the most efficient and practical to implement
and run. Whilst one algorithm may have a good detection rate, it could also
have a large rate of false positives. In addition, runtime is a major factor that
contributes to the efficiency and overall usability of an algorithm, but tends to
only be mentioned academically as opposed to in real world terms.

The aim of this project is to research and investigate in to the many methods
surrounding image forgery detection. In order to reduce the complexity of this
task, as set out in the initial report, algorithms will be grouped in to five distinct
algorithm types. These are JPEG Compression Quantization, Edge Detection,
Clone Detection, Resampling Detection and Light & Colour Anomaly Detec-
tion. More specific research will then be concluded on these different groups,
determining the efficiency of the described algorithm type in general. If the
method is found to be reliable, then an algorithm from within this group is
implemented. These groups have been chosen as their detection methods are
entirely different from each other, and therefore should achieve very different
results depending on the image forgery type.

Extensive testing using a library of images will then be performed on the
implemented algorithms in order to determine their success rate. Other general
properties of the algorithm, such as its false positive rate and runtime will also
be reported. Additionally, more specific tests on variants of the same algorithm
will also be performed. For example, an algorithm may have parameters that
can dramatically alter its performance and detection rate on certain classes of
images, and so by testing these values we’re able to comprehensively determine
an algorithms performance on a variety of different image types. This ensures
that more advanced algorithms are not unfairly discarded simply because their
internal parameters needed tweaking.

The results of this research will be of great use in order to improve the
credibility of images used within the media. Image forgery is an ever increasing
issue in modern society, and there have been instances where forged images
have been used by mistake, or when images have specifically doctored in order
to be misleading. Despite the importance of the issue, there is still no widely
recognised method in order to detect image forgeries, and certainly no industry



standard. This represents an opportunity to provide an insight that will benefit
one of the largest industries in the world, and potentially improve the reliability
and credibility of the images presented by the media. This also allows individuals
the opportunity to determine the credibility of the images provided to them,
either through official, credible sources or elsewhere, such as on an internet
message board or shared by a friend on social media.

Whilst the results of the project aim to be both comprehensive and clear, its
important to note the scope of the research involved. Research will be under-
taken on algorithms and methods that have been discussed in existing academic
papers. Improvements and changes can and will be made to these methods,
however no new algorithms will be created or tested as part of this project. The
aim is to implement pre-existing algorithms, improving and comparing them,
not to conduct research on generating potentially new algorithms. This would
require much more time than is feasible, impacting the testing stage, and ulti-
mately reducing the effectiveness of the research. Determining new algorithms
are therefore beyond the scope of this project.

Whilst conclusions will be able to be made at the end of the project, the
outcome will be rather open ended as the effectiveness of an algorithm will
entirely depend on the type of image that you're attempting to detect forgery
within. However, using sample libraries we will be able to confidently assess
which algorithm type has the overall advantage; that is it is able to detect the
most amount of forgeries within a sample library, has the lowest false positive
rate and runs in a reasonable amount of time. We will also be able to determine
the ideal conditions of the algorithm, using additional parameters and settings,
in order to understand the specifics of the method in question. This can also
include running the algorithm on the same image but at different compression
levels or in saved as different file formats.

However, whilst we can come up with conclusions based upon the results of
the project, it’s important to note that there will never be a perfect algorithm for
every situation. The best algorithm for an individuals needs will vary depending
on the type of images that they are routinely dealing with. This very much
leads the results open to interpretation. In addition, some images may require
multiple tests run on them in order to detect all forgeries, and it is inevitable that
some image forgeries will evade every detection algorithm. Therefore, whilst
the results of the project will show the competency and efficiency of different
algorithms on a variety of forgeries, the best algorithm will be subjective and
will vary between each user. This project aims to provide evidence and research
results that allow the user to achieve their own conclusion.



2 Background

Image forgery has been an issue since the advent of traditional photography in
the 19th century, however it is a much more prevalent problem in the digital age.
The primary issue is that photographs are often used as concrete evidence of an
event, and are generally seen by the public as truthful and trustworthy. Images
that are forged, therefore abusing this trust, can have many wide-reaching social
impacts. For example, CCTV images are often used in a court of law in order
to provide solid evidence either by the defence or by the prosecution. If the
confidence in these images are put in to doubt and the jury is unable to put their
utmost trust in them, then the trial is put in to repute. Detecting manipulation
and forgery within these images is therefore of the utmost importance.

Similarly, forged images are extensively used within the media, either deliber-
ately or accidentally. Tabloid newspapers, magazines and marketing campaigns
routinely modify images of models or famous figures in order to make them look
more aesthetically pleasing to the viewer. This can be a simple case of adding
a filter or modifying the contrast of the image, but it is often much more ex-
treme; improved muscle definition, more toned body parts and wrinkle removal
are examples of commonly achieved results. The issue has become so prevalent
and well known that the verb "photoshopped", referring to the popular image
editing application Adobe Photoshop, has become a neologism for manipulating
and modifying digital images.

One of the most pressing issues is that there are many different ways of
modifying an image, and due to a digital images’ complex nature it’s impossible
to have an algorithm that detects every type of image forgery. Because of
this, image forgery detection isn’t widely used in the professional world. The
underlying concept would be highly useful in the majority of professional fields
that deal with images on a day to day basis, where the reliability and credibility
of these images is crucial. In addition, with the large increase in the use of social
media, individuals would also benefit greatly from being able to detect forgeries
within images. Convincingly manipulated images are widely circulated on social
media platforms [17], and are able to be spread rapidly within communities who
believe them to be true. In order to detect these image forgeries, it is required
that we understand some typical methods used in order to manipulate images.
These include:

e Copy-paste Cloning - This is where existing areas within an image are
cloned, allowing regions to be covered or objects to be duplicated. This is
a commonly used method as the forgeries have the potential to look very
convincing, due to the fact that they have come from the source image to
begin with.

e Image Splicing - Whereby objects from another image are spliced together
with the source image, adding objects that weren’t present in the original
image. Various blending techniques exist, such blurring edges, reducing
the contrast and utilising cloning to help disguise the new object in with
the surrounding area.



e Modification of existing regions - This is similar to copy-paste cloning,
but instead of being an exact duplication, existing regions are modified in
order to suit the needs of the forgery. This can include simply resizing the
object, mirroring or skewing it, or splicing two existing objects together.
In all of these cases however, the duplicated region has been resampled,
meaning that it has been modified enough not to be recognised by any
clone detection algorithm.

Whereas existing projects have worked on the comparison of image forgery de-
tection methods, these are often limited in scope and only compare variants
of the same algorithm on images that are specifically created for that type of
method. For example, JPEG Analysis and Edge Detection have been compared
[1], however no reason is given as to why these specific implementations were
chosen over others, as both tend to detect similar kind of forgeries. In addition,
no detail of the images that were used in the research is provided; for example it
is unknown if they are standard library images or images tailored for this kind
of forgery detection algorithm.

In addition, pre-existing image forgery detection applications are often of
an academic nature (proof of concept or of prototype quality), or very sim-
ple. Searching for forgery detection mainly brings up academic papers on the
subject, however the most downloaded results on the popular open-source site
SourceForge return fairly trivial applications that only detect metadata tags em-
bedded within images [2][3][4]. Whilst this is a useful measure, and something
which will also be tested in addition to the main algorithms within our imple-
mentation, metadata tags are easily removed or manipulated and it is therefore
not an accurate measure of whether an image has been forged or not. Although
the implementation within this project is mainly a proof of concept and used
purely for research purposes, it is a starting point that could be developed in to
a fully fledged application. Creating a polished, user friendly interface for the
chosen algorithm is then fairly trivial, bringing that type of forgery detection
to the mass market.

As mentioned, one of the largest issues surrounding image forgery detection
is the sheer number of options; many different types of algorithms that detect
forgeries in very different ways, and each with hundreds of variants based upon
that specific implementation. This project aims to simplify the process of detec-
tion, condensing the types of algorithms into distinctive groups [7], evaluating
the general effectiveness of each method, and if appropriate implement and test
an algorithm from that group. Due to the ever changing methods used in image
forgery, no algorithm is perfect, and detecting every type of forgery with one
algorithm is an impossible task. However this research will allow the user to
not only conclude which algorithm is best for them, but also provide an insight
in to the most efficient algorithm overall; that is the one that has the greatest
detection rate when run on the group of sample images.

The purpose of researching into distinct algorithm groups is to ensure that
different types of forgeries are able to be discovered. Whilst in depth research
will be concluded on each type of algorithm, the main purpose is to discover
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which algorithms detect different forgery types. Research into very similar types
of algorithms is largely unhelpful as it doesn’t provide this useful insight in to
different types of forgeries. The algorithm groups researched operate in very
different ways; JPEG Compression Quantization detection exploits differences
within the 8 x 8 macroblocks used within JPEG compression [6], whereas clone
detection finds similarities within sections of the image to detect forgeries. Edge
Detection searches for large differences in the frequency of regions of interest
[1], and resampling detection operates on the differences in resampling artefacts
that occur when sections of the image are modified [9]. These different algorithm
types operate in entirely contrasting ways, and each have strengths in detecting
particular image forgeries. For example, it’s fair to assume that a clone detection
algorithm is not going to detect a forgery that has been created by splicing two
images together, but will be efficient in detecting areas that have been duplicated
and moved around. Each algorithm has its advantaged and disadvantages, and
this project aims to investigate these.

The implementation will be created within MATLAB, due to its efficiency in
dealing with images and its support for more complex mathematical functions.
Version R2014a on Windows will be used for development and testing, however
as no new version specific features are being utilised it should be backwards
compatible with previous versions of MATLAB.

Aim: The aim of this project is to investigate different types of image forgery de-
tection algorithms that currently exist, allowing the efficiency and competency
of each to be evaluated on a variety of sample images. This will ultimately allow
the user to decide which algorithm is best suited for the type of images that
they routinely deal with.

Research question(s): In order to demonstrate the achievement of the stated
aim, this project will identify existing methods for image forgery detection, re-
search their overall effectiveness and if suitable implement the most appropriate
algorithm from that group. Each algorithm will then be run on a series of
sample images, resulting in both success and false positive rates, and have its
runtime performance measured. In addition, each algorithm will be extensively
tested based on adjusting its own unique parameters or variables in order to
find the ideal forgery detection type for that algorithm.
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3 Specification & Design

The design of the system is heavily based around the groups of algorithms de-
scribed. Research in to each of these distinct groups has produced the following
system specification:

e JPEG Compression Quantization

This method was found to be effective in detecting a variety of image
forgeries, as it relies on exploiting the quantization process of JPEG com-
pression and not on detecting any particular forgery method imposed by
the user. JPEG is also the most widely used image format on the internet
for photographs and true colour images [16], due to its large, lossy com-
pression ratios and generally high image quality. In order for a forgery to
be detected by the algorithm, it is required that the original image was
previously compressed. Uncompressed, forged images which are then com-
pressed for the first time will not produce any results as both the forged
area and the original area have only been compressed once.

e Edge Detection using Standard Deviation

This type of algorithm, utilising Standard Deviation or any other tech-
nique (such as a Sobel Edge Detector) can be used in order to detect
splicing forgeries within images. Legitimate images will tend to have softly
blurred edges due to camera lens imperfections (such as Chromatic Aber-
ration [15]). Cloned regions will retain these features, whereas spliced
areas won’t exhibit the same behaviour, and will tend to have harsher
edges that are much more visible when highlighted using an edge detec-
tion technique.

However, it is possible to utilise blurring or edge filters in order to convinc-
ingly blend forged areas in with the original image. Whilst edge detection
could potentially aid discovery in very particular cases, these generally
rely on having harsh, unrefined edges visible within the forgery areas. In
these instances, the forgeries are usually visible to the naked eye, as more
advanced and believable methods will tend to blend the forgeries in with
the surrounding, original image. In addition, many natural images con-
tain frequent and sharp edges, for example images of architecture, and
this method isn’t suitable for use in such images. As such, it was found
that this method wasn’t a particularly effective solution for detecting im-
age forgeries overall, as it is only applicable in cases consisting of rough,
poorly blended splices.

e Clone Detection
Many genuine images contain repeating patterns, such as trees and walls.
Whilst these areas appear to be indistinguishable to the human eye, they
often contain minute differences and are simply very similar as opposed to
being fundamentally identical. Copy-paste cloning forgeries can be very
difficult to spot, in many cases appearing to look the same as legitimate
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areas. Cloning is therefore a popular forgery method as duplicating exist-
ing areas of an image tends to produce much more believable results than
splicing an image from elsewhere. Copy-paste cloning detection algorithms
operate by scanning the image for regions of matching, identical pixels.
By its nature, this type of algorithm will only detect cloning forgeries, it
is not a general use algorithm and will therefore not detect other types of
forgeries. In addition, re-compression or resampling can slightly modify
clusters of pixels, enough to reduce the likelihood of the algorithm detect-
ing duplicates. However, clone detection algorithms are still very useful, as
it is generally difficult to otherwise differentiate between similarly looking
patterns and forged, duplicated regions.

Image Resampling Detection

Whenever a digital image is extensively modified, it is resampled. A gen-
uine image will tend to have any resampling artefacts spread consistently
throughout, that is each region will look similar when broken down to its
underlying frequencies. Whether a forgery is created by splicing two im-
ages together or modifying existing sections of an image, more advanced
forgeries will tend to have to resize, rotate or modify that forged area in
some form. This leads to the resampling of that newly forged area, which
now contains differing artefacts to the rest of the image. Breaking down
specific regions of interest and computing their underlying frequencies al-
lows us to potentially detect both image modification and image splicing
forgeries. Detecting resampled areas was found to have a good success
rate on a variety of different image types, although the process worked
the best on images with no or little compression. Reducing the quality
of an image too much caused additional compression artefacts to appear,
limiting the detection rates of the algorithm.

Colour and Light Anomalies

A more emerging forgery detection method that was looked in to was
detecting forgeries through changes in light and colour throughout the
image. Forged areas are often composed of different images, which have
inconsistent lighting qualities compared to the source image. The ability to
detect this would allow forgery detection within a seemingly large variety
of images. Unfortunately, research and initial testing found this method to
be inconsistent, many legitimate images contain large variants in colour,
and calculating the lighting of an image is rather computationally intense
[19] due to the number of calculations required. In addition, forgeries that
mismatch the surrounding area enough for an the algorithm to detect it
could be picked out fairly easily by the naked eye.

Out of the five algorithm groups, three proved reliable and consistent
enough in order to be included as part of the implementation. These
are Clone Detection algorithms, Image Resamping Detection and JPEG
Compression Quantization. In addition, Metadata Tag Detection is to be
included as part of the implementation. Image metadata contains basic
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information regarding the image, such as the resolution, bit-depth and
size. When an image is processed within image editing software and re-
saved, the software will generally modify the image’s metadata by creating
additional tags, including the software used to modify it and the modi-
fied date and time. Whilst these additional tags by no means guarantee
forgery; it is possible that the image was accidentally re-saved without
any changes for example, it’s a useful indicator when combined with other
forgery detection methods.

3.1 JPEG Compression Quantization

One technique that can be used for detecting JPEG Compression artefacts is
Error Level Analysis. This operates by re-compressing an already compressed
JPEG image at a known error level, and comparing the two, pixel by pixel.
Legitimate images generally show an equal error level throughout the entire
image, creating one shade without much variance. As forged areas have been
re-compressed at a different level, their quantization levels are unlike the rest of
the image; creating an area that has a much larger margin of error in comparison
to any legitimate sections.

Whilst quantization differences can also be shown by scanning an 8 x 8 win-
dow across the entire image, Error Level analysis only requires a pixel by pixel
comparison, dramatically reducing the runtime complexity of the algorithm. In
a real world scenario, a 500 x 500 pixel image only requires 500 direct compar-
isons; whereby sliding an 8 x 8 window along the image requires a minimum of
4002 comparisons.

As MATLAB handles images as matrices, direct dot comparisons of two ma-
trices (that is, comparing each element in matrix A with the equivalent element
in matrix B) is quick and computationally insignificant, compared to looping
through each overlapping 8 x 8 block.

The general architecture of this algorithm is shown below:
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Once an image is imported, it is re-saved using MATLAB’s built in JPEG
encoder, at a known compression level of 95%. This level was chosen as it creates
a large enough margin of error in order to generate a perceivable difference,
without reducing the overall quality of the image to such an extent that the
margin of error is far too high. The re-compressed image is then imported,
and dot comparisons are carried out between the original image matrix and
the newly imported one, creating a error level image. From this image we are
able to not only visibly detect areas that have potentially been re-compressed,
highlighting forgeries, but also generate an overall error margin for the entire
image. This error level margin is calculated as follows:

A
(=)

Ea=n ) 100
A %5

where A is our error level matrix and n is the total number of elements within
the matrix.

The higher the error margin, the larger the overall difference between the
two images. However, it’s important to note that this value cannot be used
to fundamentally determine the forgery level of an image; newly compressed
images will tend to have a much larger error level overall, compared to an image
that has been re-compressed many times. Instead, this value should be used in
conjunction with any visual indicators within the image of potentially forged
areas.
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3.2 Clone Detection

Clone detection, by its nature, is a computationally expensive algorithm. Whilst
in principle it’s possible to match each pixel with another to create a match,
not only would this become far too complex on any standard image (the same
500 x 500px image discussed above would require 500! comparisons, roughly
1.22x10134) | but it would also produce far too many matches to produce a
meaningful result. A grayscale image contains pixel values between 0 and 255,
meaning that in our example image, due to the pigeonhole principle almost half
of our pixels are guaranteed to be duplicates of already used pixel values [5].

A compromise to this pixel by pixel method is to use an overlapping window
instead, however caution must be used in order not to utilise a window too large
that potential forgeries are missed. JPEG compression, as mentioned above,
operates by utilising a quantization matrix on each 8 x 8 block within the image.
Because of this, using an 8 x 8 window would run the risk of being affected
by the quantization process, and potential duplications could be recorded as
being different purely because of the quantization used. A 16 x 16 window is
therefore optimal, as being double the size of the traditional quantization block
allows JPEG compression errors to be included within the comparison. Whilst
this could potentially allow small enough forgeries to remain undetected, any
notable modifications must be larger than that size in order to be perceived by
the untrained eye. Whilst still computationally expensive, a 16 x 16 window
helps cut down the number of comparisons required to 235,226 for our example
image. The basic architecture of the algorithm can be shown:

16



Image Importation

\ 7
Y
{ \
Overlapping
Window Scan
\ 7
Y
{ \
Discrete
Cosine Transform
7
Y
{ \
Quantization
\ 7
Y
{ . . \
Lexicographical
Sorting
\ 7
Y
{ 3
Matching Row
Detection
\ 7
Y
{ 3
Distance
Vector Calculation
7
Y

Detect Blocks
Over Threshold

l

Highlight
Cloned Areas

Once each 16 x 16 window is read, a discrete cosine transform is performed on
each block, and then quantized using an expanded JPEG quantization matrix.
This expanded matrix is calculated utilising the following formula [8]:
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where I is an 8 x 8 unit matrix, comprising of all 1s, and Q is the quality
factor determining the amount of quantization that occurs. At high values (>
1), more and more matrices will result in a match, both increasing the likelihood
of detecting false positives and also raising the runtime of the algorithm.

The resulting matrices are converted into single lined vectors, sorted lexico-
graphically, and then each matching row is recorded. However, counting the
number of block matches would still record a large number of false positives.
Many images contain repeating information that is in no way duplicated, for
example a brick wall is bound to contain a few 16 x 16 block matches. A simple
solution to this problem is to calculate the distance vector of the two matching
blocks, as computed by:

|(#2 — 21), (y2 — y1)|

whereby (x1, y1) and (x2, y2) are the coordinates of the first and second blocks,
respectively.

Computing the distance vector and counting the occurrence of each allows us
to determine matching regions, as opposed to simply matching blocks. A large
region consisting of different, but consecutively matching blocks is a strong in-
dicator of forgery. Distance vectors that have enough matches to push them
over a pre-determined threshold are flagged as potentially duplicated areas, and
the coordinates of the 16 x 16 blocks that made up those distance vectors are
highlighted within the original image. The value of the threshold will vary de-
pending on the complexity of the image, and its tenancy to already include
repeating patterns. Such an image will require a higher threshold value than
that of a simpler image.

3.3 Image Resampling Detection

Resampling detection aims to be both computationally quick and robust in
detecting forgeries in a variety of situations. A major advantage is that it is
both scale and rotation independent, which is simply not possible with tradi-
tional pixel block comparison methods. Whilst there are a few ways to detect
resampling, our chosen method operates as follows:
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We firstly generate a high-passed version of the image; this is achieved
through utilising a modified ideal low pass filter [11] and computing the dif-
ference between the source image and the filtered image. This produces an
image with all high frequency areas (regions of change, such as edges) intact,
whilst dramatically reducing other, less noticeable areas. By working on this
generated, high-passed image, we are able to concentrate on areas of change,
reducing the possibility of minute changes, within low frequency areas, of ad-
versely affecting the results.

Once the high-passed image variant is generated, three n x n blocks, where n
is a positive integer, can be selected by the user. One of these areas should be a
suspected forged area, whereas the other two should be areas that appear to be
legitimate. Performing a Fast Fourier Transform (FFT) on the three blocks gives
us the underlying frequencies of the highlighted regions, which when scaled to
meaningful values and plotted accordingly, allows us to view the spectrogram
of the frequencies of each area. Blocks that have been resampled will tend
to appear differently, generally looking distorted compared to the other two
legitimate samples.

Computing the Fast Fourier Transform of an n x n matrix within MATLAB
is both quick and computationally negligible, due to its efficient native imple-
mentation of both matrices and of the FFT method itself. As only three regions
of the image are selected, as long as n is chosen to be a reasonable number (<
500), the algorithm is extremely efficient and has a low runtime complexity.
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3.4 User Interface

Whilst the application itself is more of a proof of concept testing and evaluating
the chosen algorithms, a graphical user interface has been developed in order to
improve the application’s ease of use. Importing an image is achieved using an
OS native file-picking interface; once an image is selected it is loaded in to the
application and displayed. Each algorithm has a graphical button that can be
selected in order to run it, and any algorithm specific parameters are changeable
within the interface itself. The resulting image of each algorithm, in addition
to any figures or percentages, are displayed in its own region of the application.
It’s therefore possible to run each algorithm on the same image without having
to close the application or reset it; the user is able to easily compare the results
of each algorithm within the same window.

Whilst the user interface is still rather rudimentary at this stage, it is simple,
easy to use and allows direct comparisons of the results of different algorithms.
As we are dealing with images, graphical user interfaces assist in displaying
information and highlighting differences where a simple command line interface
would undoubtedly fail. Developing the UI into a fully featured, consumer
friendly and polished interface would be entirely possible; however in its current
form the aim of the application is to simply convey information effectively and
concisely to the user.

3.5 Data Flows & Structures

One of the largest benefits of utilising MATLAB is the way that it natively han-
dles image files, an essential aspect of this project. Whereas third party libraries
are available for other programming languages that allow the importation and
manipulation of images, these tend to be handled through the use of custom,
specific image classes. In comparison, MATLAB imports images as matrices,
which are an entirely native and primitive data structure within the applica-
tion. This not only has the advantage of being much faster than pre-defined,
object orientated classes, but also allows the use of MATLAB’s pre-built func-
tions, such as the Fast Fourier Transform and Discrete Cosine Transform. These
native methods run far more efficiently than attempting to run a third party
library or by creating our own implementations, in addition to guaranteeing
reliability when used correctly.

Unfortunately, whilst the creation of a matrix is fairly simple, initial tests
showed that the update time of matrices were far slower than anticipated. This
posed a problem with the algorithms on test; especially clone detection, as it
relies on continuously updating matrices based on the results of any methods
applied to them. Further research concluded that the memory allocation for
matrices operates by allocating a large enough chunk to contain each element.
Even a 16 x 16 block contains 256 elements; working with thousands of blocks
and re-arranging these constantly proved to take far too much time even for a
relatively small 100 x 100 px image.

MATLAB also supports cell structures, which unlike standard matrices in-
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stead stores data in available memory blocks, utilising pointers to create a
meaningful connection between the data. Whilst slightly more complex, the
advantage of utilising this data structure is that when a cell array is updated,
the list of pointers are also updated. Computationally, this provides a huge
advantage when compared to having to update the actual list of elements each
time. Testing found that converting to cell arrays before the sorting process dra-
matically cut runtime by an average of a third, which in some cases was enough
to differentiate between the algorithm completing successfully, or simply failing
and running out of memory. However, as more specific operations such as the
Fast Fourier Transform can only be performed on standard matrices, conversion
between the two data structures is necessary, depending on the nature of the
algorithm.

JPEG Error Level Analysis utilises MATLAB’s native matrix implementa-
tion in order to run efficiently. Additionally, the algorithm requires no major
sorting or constant updating of different matrices. Due to these properties, cell
structures are not used, as converting between a cell structure and a matrix
would require more computation than would be saved. An image is imported
as a matrix, re-compressed, and both matrices are then compared in order to
provide an error level image.

Similarly, Image Resampling Detection operates entirely on matrices, due
to the fact that the native implementation of the Fast Fourier Transform only
operates on that data structure. Similarly to JPEG Error Level Analysis, con-
verting to a cell array would not provide any benefit to stability or to runtime
performance. The imported image is filtered to generate a high-passed variation
of the original image. We are then able to compute the 2D Fast Fourier Trans-
form on this image, plotting the results to produce meaningful spectrograms of
the underlying frequencies of each region of interest.

The nature of the Clone Detection algorithm means that we are required
to convert between data structures in order to provide an optimal runtime and
ensure efficiency. An overall view of the data structure conversions required for
each step in the system architecture is detailed below:
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\. J
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(Matrix Operations)

\. J
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Store Quantized Cell Blocks
(Matrix -> Cell Structure Row)

Y

Lexiographical Sorting
(Overall Cell Structure -> Large Matrix)

Y

Store Sorted Rows & Detect Matches
(Large Matrix -> Individual Cell Structure Rows)

\. J

Y

Calculate & Store Distance Vectors
(Additional Cell Structure)

Y

Detect Blocks Over Threshold
(Cell Structure Elements -> Strings)

Y

Highlight Coordinates in Image
(Strings -> Integers)

Whilst the number of data structure exchanges may appear to be counter
productive, each data structure is used to provide the greatest benefit regard-
ing efficiency and runtime. Converting between two data structures requires
only two computationally expensive efforts, and allows much faster operations
overall. In comparison, utilising a non-optimal data structure means that we
run inefficiently run operations on it thousands of times. It is therefore much
more beneficial to take a couple of larger performance hits, in comparison to
continuously utilising inefficient data structures.
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4 Implementation

The final MATLAB implementation consists of one application, ImageForgery.m,
split into five distinct modules:

1. Image Importation Module
2. Metadata Tag Detection
JPEG Error Level Analysis

Copy-Paste Clone Detection

orok W

Image Resampling Detection

A single graphical user interface is used in order to run each module, and pro-
vides a hub-like interface that works to connect each algorithm together. Once
the user has imported an image, each method can be run without reloading
the image or restarting the application. The results of each algorithm are each
viewable in their own windows, side by side for ease of comparison.

The graphical user interface is generated using MATLAB’s inbuilt GUIDE Ili-
brary. This provides several advantages, including a variety of default Ul ele-
ments and native support for OS specific features (such as file-picking windows
and button styles). This allows us to write and generate GUI code only once,
whilst still providing cross platform support and reliability. GUIDE also natively
supports callback functions for all interactable UI elements. All application code
is encased within these specific callback functions. For example, JPEG Error
Analysis code is contained within the specific errorAnalysisButton callback:

function errorAnalysisButton Callback(hObject, eventdata, handles)

This ensures that each section of code is only run upon the users request, there
is no background activity unless the user specifically chose to run an algorithm.

4.1 Image Importation Module

The image importation module allows the user to specify an image file from
a local disk drive, using the standard OS file-picking interface generated from
MATLAB’s uigetfile function. The image is imported into a w x h x ¢ matrix,
whereby w and h are the image width and height, and c¢ is the number of
channels within the image. Black & white and grayscale images contain one
channel, whereas colour images contain three channels for red, green and blue
colours respectively.

In order to ensure that the image matrix is persistent throughout the appli-
cation, we assign it the global keyboard in order to ensure it’s accessible outside
of the method it was created within. Whilst global variables tend to be discour-
aged in other languages, designating the image matrix as global minimises the
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number of read-write operations performed. This can have a dramatic impact
on the overall runtime and efficiency of the application.

Once the imported image is made global, it is then able to be utilised by
each module in turn. In the majority of cases, all three channels of the image
aren’t needed and would only increase runtime. Therefore in some cases (Clone
Detection & Resampling Detection), if the imported image is colour then we also
convert it to grayscale in order to improve the performance of the algorithm:

if size(importedlmage, 3) — 3
gimportedlmage = rgb2gray (importedImage );
end

4.2 Metadata Tag Detection

Although the chosen image has been converted into a matrix, Metadata infor-
mation is lost when this image importation has taken place. This means that
detection of any potential forgery flags has to come from reading the image di-
rectly. Fortunately, MATLAB provides a native function, iminfo, for gathering
the raw data of an image. This in turn allows us to import image metadata.
The iminfo function returns a structure containing all of the raw data associated
with the image file. A typical structure as returned by this method is illustrated
below:

24



Field =

v Filename

:ue| FileModDate

H FileSize

ve| Format

oe| FormatVersion
Width

1 Height

-H BitDepth

0| ColorType

ve| FermatSignature
H MumberOfSamples
te) CodingMethod
oe| CodingProcess
Comment

H BitsPerSample
e Photometricinterp...
-1 Orientaticn

- SamplesPerPixel
- ¥Resolution

11 YResolution

oe| ResolutionUnit

- 'Sl:uftwa e

Exif Thumbnail

Value

Min

‘Ie\UsershJosh\Google Drive\Docu...
'04-Feb-2015 16:26:14'

207589

P9

2043

1363

24
‘truecolor'

3
'Huffrman'
‘Sequential’
Ot} cell
[2.8.8]
'‘RGE'

1

3

T2

72

'Inch’

207589

2043
1363

24

72
72

‘Adobe Photoshop C56 (Windows)'
2015:02:04 16:26:13

Tx7 struct
Tx7 struct

25

Ml ax

207589

2043
1363
24

72
72



We are particularly interested in the Software field, as this suggests that the
image has been opened and manipulated within an application after its original
capture. The DateTime field can then be used in conjunction with the Software
field to suggest the last modified date and time. However, as these fields are
only included within the metadata if a piece of software specifically adds them,
we’re required to use an evaluation function in order to test whether they exist:

eval (’softwareFieldExists=1;info.Software;’, ’softwareFieldExists=0;");

If the evaluation is true, then it is simply a case of displaying the contents of
the fields to the user, indicating modification and potential forgeries.

4.3 JPEG Error Level Analysis

Error Level Analysis operates by calculating the error level between both the
original image, and the same image but saved at a known error level. MATLAB’s
native handling of matrices and support for difference functions allows us to
implement this algorithm in a very compact, concise and efficient way. This
is achieved through re-compressing the image via the native imwrite JPEG
encoder, which allows us to choose a specific error level via a compression ratio
percentage:

imwrite (importedImage ,tempFileName, > Quality ’ ,95);

As previously mentioned, 95% was chosen as a good balance between generating
a clear error level image, without degrading the quality of the image to such
an extent that too much detail is lost. Once the newly re-compressed image is
imported, we delete the temporary file.

MATLAB provides a simple solution to generating the difference between
the two images. As both are now stored in memory as matrices, we are able to
easily find the difference between both by utilising the imabsdiff function, which
calculates the absolute difference between matching elements in the original
image and the error induced image:

imageDifference = imabsdiff(importedlmage ,importedLowerQualityImage)

The resulting error level image is increased by a factor of thirty in order to high-
light any mismatching areas. A standard error level image will appear purple
in colour; where substantial differences in the JPEG compression quantization
exists the region will tend to be of a much lighter colour than the surrounding
area. Conversely, equally distributed coloured areas indicate a low margin of
error. The overall error level between both images is then calculated by deter-
mining the mean error value within the image, before converting that from a
scaled value to a percentage.
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4.4 Copy-Paste Clone Detection

The nature of this algorithm requires many iterations and comparisons. MAT-
LAB excels in working with matrices, however is less optimised when faced with
multiple loops. It was therefore highly important that loops were kept to a min-
imum, instead opting to use more efficient methods such as the colon operator
on matrices. Modifying a row of a matrix using the colon operator is almost
instantaneous regardless of the matrix size, whereas a for loop takes far longer
to complete. Taking advantage of MATLAB’s matrix orientated nature and
implementing the algorithm in a more unique way allows us to ensure optimal
performance in these situations.

In addition, part of the algorithm requires a 16 x 16 extended quantiza-
tion matrix to be generated. A simple MATLAB implementation was created
based upon a standard calculation formula [8] in order to populate this extended
matrix:

% Standard JPEG quantization 8x8 matriz
quMatrix = [4 4 6 11 24 24 24 24

45 6 16 24 24 24 24

6 6 14 24 24 24 24 24

11 16 24 24 24 24 24 24

24 24 24 24 24 24 24 24

24 24 24 24 24 24 24 24

24 24 24 24 24 24 24 24

24 24 24 24 24 24 24 24];

quMatrix16 = zeros (16,16);

% Calculate 16 16 matriz
for i = 1:8
for j = 1:8
quMatrix16(i,j) = quMatrix(i,j) * 2.5;
end
end

quMatrix16 (1,1) = 2.0 * quMatrix(1,1);

for i = 9:16
for j = 1:8
quMatrix16 (i, j) = quMatrix(1,8) % 2.5;

end

for i = 9:16
for j = 9:16
quMatrix16(i,j) = quMatrix(8,8) * 2.5;
end
end

for i = 1:8
for j = 9:16
quMatrix16(i,j) = quMatrix(8,1) * 2.5;
end
end
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The standard 8 x 8 quantization matrix is firstly loaded; this is used as the
basis for the conversion to a 16 x 16 matrix. As this matrix has a fixed value
that remains unchanged, the final implementation simply assigns the generated
values to an empty matrix, instead of computing the same values each time. This
ensures that the impact on overall performance is computationally insignificant.
For the purpose of our testing, we will only operate with a 16 x 16 sliding
window, however this formula could also be adapted to both smaller or larger
window sizes.

MATLAB has no direct support for sliding an overlapping window across an
image. The blockproc() function can be used in order to process chunks of an
image, however it only supports simple methods such as calculating the mean
of the block. As we need to extensively process each block and then store it,
this method is not applicable to us and looping through the image is instead
preferable. Splitting the image in to chunks is t achieved through use of the
colon operator:

subIlmage = gimportedlmage(y:y + (height), x:x + (width));

Performing the 2D Discrete Cosine Transform is possible via the native dct2()
method. We are then able to quantize this matrix using the extended quantiza-
tion matrix that we previously calculated. The quality factor is used in increas-
ing or dampening the effect of the quantization, making quantized blocks more
or less similar to each other.

Once the current block has been quantized, it is converted into a single
vector, which allows us to store each block as a row within a new matrix.
However as previously stated, constant updating of matrix records is slow, and
therefore we instead store the block as a single row within a cell structure in
order to improve efficiency:

qSubImageArray = reshape(quSublmage’ ,1,[]);
quantisedValuesCell{counter ,1} = gSublmageArray;

At this stage, we also store the x and y coordinates of the top left pixel. This
allows us to reduce the number of comparisons needed later as we aren’t then
required to match each row to its original coordinates. Lexicographical sorting
is possible by utilising MATLAB’s sortrows() function, however this can only
be run on standard matrices. A conversion of the overall cell structure to a
standard matrix allows us to sort the matrix in its entirety, before converting it
back to a cell structure for the comparison stage of the algorithm.

Our cell structure is then looped over, comparing each row to the following
row and checking their equality. As cell structures simply contain pointers to ele-
ments within memory, it’s important that we utilise the isequal() method instead
of simply using a standard equality comparison of ==, as this could incorrectly
determine that the elements are different when they are in fact matching.

When equal pairs are found, the shift vector of each matching pair is calcu-
lated and stored within a cell structure; if that shift vector already exists then
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we increase the count by one, if not then we create a new row. Each x and y
coordinate is appended to an existing list of coordinates that contribute to the
appropriate shift vector. A counter is used to indicate how many rows already
exist within the shift vector cell structure.
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% Find if this shift vector ezists
doesExist = strcmp(localShift , shiftVectors);
doesExist = any(doesExist (:));

% Does exist, so find index and increase count by 1

if doesExist

locallndex = find (strcmp (localShift , shiftVectors));
shiftVectors{locallndex ,2} = shiftVectors{locallndex ,2} + 1;
shiftVectors{locallndex ,3} = strcat(shiftVectors{locallndex ,3}, {’ ~’
shiftVectors{locallndex ,4} = strcat (shiftVectors{locallndex ,4}, {’ ~’
% Doesn’t exist, so we need to find the current mew row and append
else
shiftVectors{currentRow,1}
shiftVectors{currentRow ,2}

localShift ;
1;

shiftVectors{currentRow,3} = strcat(shiftVectors{currentRow,3}, {’
shiftVectors{currentRow ,4} = strcat(shiftVectors{currentRow ,4}, {’

currentRow = currentRow + 1;
end

Finally, we approach the end of the algorithm with a cell structure containing
each shift vector, its number of occurrences and the coordinates that contributed
towards that particular shift vector. It is then a case of simply detecting which
shift vectors occur more times than noted in our chosen threshold value, which
gives us the regions to be highlighted as potential forgeries. Each coordinate pair
is then plotted on the source image, with the 16 x 16 pixel region around each
pair highlighted in order to match the blocks processed within the algorithm.

4.5 Image Resampling Detection

Whilst the concept of resampling detection itself is fairly complicated, MAT-
LAB’s native support for filters and the Fast Fourier Transform allows us to
implement the algorithm very efficiently. The source image is firstly converted
into the frequency domain using the fft2 function. This allows us to then filter
the image as required. An ideal low pass filter is implemented, as adapted from
[11]; here all frequencies above our cut off threshold, u0 are removed. In our
implementation, this threshold is set as 50 by default:
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[M N| = size(gimportedImage)

% Ideal low pass filter
u 0:(M—1);
v 0:(N—1);

idx = find (u > M/2);
u(idx) = u(idx)—M;

idy = find(v > N/2);
v(idy) = v(idy)-N;

[V,U] = meshgrid(v,u);
D = sqrt(U.”24V."2);
H double (D <= u0);

Passing the result through an Inverse Fourier Transform and taking the real
values gives us a resulting low-passed image. In order to generate a high-passed
image from this, we simply calculate the difference between the original image
and the low passed image:

highPassedlmage = minus(double(gimportedImage),lowPassedImage);

The algorithm then picks out three regions of interest within the high passed
image, as specified by the user. Calculating the Fast Fourier Transform of
these regions and plotting the resulting spectrogram gives us the ability to view
potential re-sampling artefacts. However as the result of the Fourier Transform
returns both real and imaginary numbers, it’s important that we scale the result
correctly:

F = fft2 (vhighPassedImage);

F = fftshift (F);

F = abs(F);

F = log(F+1); % Use log scaling
F = mat2gray (F);

Firstly, we utilise fftshift() in order to re-arrange the frequencies of the trans-
form. By default, these frequencies are shifted towards the four quadrants of the
transform; re-arranging these so that the zero component is at the centre of the
array provides a much better visualisation. We then remove all negative or imag-
inary components in order to improve the clarity of the spectrogram, scaling the
results on a logarithmic scale. We use log(F + 1) for our scale, as log(0) is un-
defined and would cause the algorithm to fail. Finally, the mat2gray() method
is used in order to convert each logarithmic value onto a scale of between 0
and 1, allowing a grayscale visualisation of the data. The resulting matrices are
plotted, producing three distinct spectrograms of the chosen regions of interest.
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5 Results & Evaluation

In order to test the efficiency of each algorithm, a sample set of 40 images has
been created. The breakdown of these images are as follows:

e 20 Unique Forged Images - These have been created by manipulating ex-
isting background images. A variety of forgery methods have been utilised,
including copy-paste forgeries, splicing of two images and modifying ex-
isting sections of an image.

e 20 Image Manipulation Dataset Images - A sub-selection of images in-
cluded as part of the Image Manipulation Dataset [13].

e 10 Unmodified Images - Original images that lack any kind of forgery have
also been included in order to provide a benchmark test for false positives.

Each unique image has a width of 500px; with the height varying slightly de-
pending on the aspect ratio of the source image. This provides an equal footing
to each image, and ensures that any differences in runtime are down to the com-
plexity of the image as opposed to differences in image resolution. The majority
of images are saved as JPEG images, with compression quality set to either
High (75%) or Maximum (100%). Where a source image existed as a PNG,
the forged variant was also saved as a lossy PNG. Any image manipulation was
carried out within Adobe Photoshop CS6; however forged images weren’t saved
in a lossy format until all modifications were complete. This ensured that the
images were only re-compressed once, as repeat compression would degrade the
quality of the images and possibly have an impact on the test results.

Images from within the Image Manipulation Dataset were chosen in order
to demonstrate the competency of the algorithms on standard library images.
As the dataset contains a large number of images in total, 20 of these were
chosen at random in order to provide a large enough sample to compliment the
pre-existing test images. Unfortunately, by default the resolution of each image
varies greatly, which would not provide a fair estimate of runtime. Regard-
less, as the runtime complexity of the Copy-Paste Clone Detection algorithm
is fairly large compared to other algorithms, image resolution was reduced for
the purpose of testing. Where possible, images were cropped to 500px x 500px
in order to reduce the possibility of downsampling affecting the forgeries within
the images. However on occasions, where this wasn’t possible, for example when
multiple forgeries spanned the entire image, the image was downsampled using
the Bicubic Sharper resampling method.

All images used within the testing phase of the application are free of copy-
right restrictions, with a licence to modify and distribute without issue [10].

Full test results of each image are included as an appendix to this report.

In order to test the runtime of each algorithm, MATLAB’s native tic() and
toc functions were used, as they present an accurate reading in elapsed seconds.
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Timing of each algorithm starts at the first line of the appropriate button’s
callback code, and finishes once the resulting image has been displayed and all
processing has completed. As this time is affected by outside factors such as
CPU usage and available RAM, each result is timed three times and the average
time is computed.

All testing was completed within MATLAB R2014a, running on a quad core
Intel i5 CPU and an NVIDIA GTX 970 GPU. The operating system environ-
ment was Windows 10 Developer Preview at the time of testing.

5.1 JPEG Error Analysis

Error Analysis operates by calculating the error factor between different com-
pressions of the same image. The more an image has been compressed, the
less the error level will be between re-compressions. This allows us to highlight
forged regions that have been re-compressed fewer times than the remainder
of the image, providing a larger margin of error. Due to the nature of the al-
gorithm, only JPEG images can be used as the effects of lossless compression
do not compound each time the image is saved. In fact, re-saving a PNG file
will keep the integrity of the image intact, it will not cause further quality loss.
Whilst PNG images could be converted to the JPEG file format, this would sim-
ply cause the whole image, forgery included, to be compressed at the same level.
There would then be no perceivable difference within the quantization process
of the legitimate and forged areas, as this would have been the first time JPEG
compression occurred. As a result of this, PNG images have been excluded
from the JPEG Error Analysis results set as the algorithm is not appropriate
for detecting forgeries within these images.

5.1.1 Detection Rates & Quality

The quality of the JPEG image greatly affects the overall success rate of the
algorithm. Here we see a comparison of the results when running on source
image number 1 at Maximum (100%), High (75%), Medium (50%) and Low
(25%) quality levels:

33



=H

Figure 1: Forged JPEG Image. Notice the addition of the robotic dog on the
hillside.

£yh L B -*;3

Figure 2: Maximum, 100% Quality Error Level Image
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Figure 3: High, 75% Quality Error Level Image

Figure 4: Medium, 50% Quality Error Level Image
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Figure 5: Low, 25% Quality Error Level Image

The above example is the ideal scenario for the algorithm, whereby the back-
ground image has been compressed (possibly at a medium or high quality level)
and re-sampled, diminishing detail within the error level image. As the robot
has only been compressed once, and at a different quality level to the back-
ground image, we are able to easily perceive the difference between the forged
region and the remaining, legitimate areas. Depending on the quality of the
image, the error level ranges between 5% and 25%, suggesting that the vast
majority of the image has already been re-compressed.

Once we reduce the overall quality of the image, although the outline of the
re-compressed object is still visible, it becomes much more difficult to distinguish
detail, as the whole image is further compressed to a much lower level than the
source. This becomes particularly troublesome when the forged images them-
selves have been re-compressed numerous times, diminishing the overall detail
of the image to such an extent that highlighting newly forged areas utilising
Error Level analysis isn’t possible.

Newly compressed images can also pose an issue for the algorithm. In this
example, the original source image was a PNG file, and therefore no lossy com-
pression had been performed. Once the forgery was completed, the image was
saved as a JPEG file at a high quality level, meaning that the JPEG Quantiza-
tion step was only performed once on the entire image:

36



Figure 6: High, 75% Quality JPEG Image. Notice the duplication of the dark
coloured penguin.

Figure 7: Error Level Image, lacking any obvious detail.
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The overall error level of this image is 45%, meaning that there was a large
margin of error between the original and re-compressed image. As the back-
ground had no previous compression artefacts, there is no noticeable difference
between the legitimate and forged areas of the image, the overall error level is
far too high.

5.1.2 Sample Set Results

As the forged images from the Image Manipulation Dataset are overwhelmingly
saved as uncompressed PNG files, Error Level Analysis is not suitable for de-
tecting forgeries within those samples. Overall, the algorithm was run able to
be run on all 13 JPEG images out of the 20 original forgery images. 6 of these
images were clearly detected as forgeries from the error level image produced,
producing a 46% average detection rate for the samples used. Whilst this seems
disproportionately low, it’s important to note that Error Level Analysis oper-
ates on a specific forgery type; that is compressed, JPEG images that have been
modified and then further compressed. When images have been forged in this
manner, the results of the algorithm are both accurate and clearly visible within
the error level images:

Figure 8: Forged Image (15). Overall error level is 14%.
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Figure 9: Forged Image (20). Overall error level is 12%.

The algorithm was also run on the 10 untouched, benchmark images in order
to test the rate of false positives. A false positive within this algorithm can be
defined as a single, highlighted region that looks to be a potentially forged area.
Images that contain false regions but also have a high error level (> 30%) aren’t
included as false positives.

Within the unique sample set, of the 13 JPEG images two were determined
to produce potentially misleading results; a respectable false positive rate of
15%. For example, here a section of the sea has been duplicated and rotated,
however the algorithm gives the indication that the boat has been modified:
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Figure 10: Forged Image (18).
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Figure 11: Forged Image (28). Overall error level is 20%.

Within the untouched benchmark set, 2 out of 10 (20%) of images were
falsely identified as potential forgeries. Here, the barn looks out of place and is
being flagged as an area of error, despite being perfectly legitimate:
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Figure 12: Forged Image (£3).

Figure 13: Forged Image (£3). Overall error level is 30%, at the very end of the
acceptable error range.
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5.1.3 Error Level Correlation

As expected, a correlation was found between the overall error level of an image
and its ability to be detected as a forgery. Images of a high error level (around
30% or higher) were found to contain too much variance in order to pinpoint
an exact forgery location. These images tended to be newly compressed, or
previously converted from a lossless image format. On the contrary, a large
enough error level (over 10%) is required in order to detect any kind of noticeable
forgery area within the image. Images with a very low error level tended to have
been saved at a very low JPEG quality level, or had been re-compressed too
many times so that a substantial amount of detail was lost. Our tests have
therefore shown that the ideal range for the image error level is between 10 -
30%.

5.1.4 Algorithm Performance

Runtime performance was extremely positive, averaging a mere 0.03 seconds per
image comparison. Due to MATLAB’s native implementations of both matrix
comparisons and JPEG encoder, each comparison is achieved extremely quickly.
Whilst, as expected, the runtime does degrade as image resolution increases, a
5,000px x 5,000px sample image completed in an average of 1.55 seconds, and a
10,000px x 10,000px averaging only 6.93 seconds. As a whole, the algorithm is
extremely efficient on all image sizes, as long as the user has the required free
memory in order to store both the original and error level images in RAM.

Overall, whilst the detection rate of the algorithm is fairly low on samples of
randomly forged images, its very efficient nature and low runtime ensure that
it has a place supplementing additional forgery detection algorithms. Despite
not being robust enough to detect multiple forgery types, when operating on
re-compressed JPEG images, the results are clear and allow the user to easily
detect potentially forged areas.
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5.2 Copy-Paste Clone Detection

The copy-paste detection algorithm operates on multiple image formats, as it
does not rely on any inaccuracies or changes due to quantization or compression
techniques. However, whilst the algorithm was run on all 45 image samples, it
is important to note that by design it will only detect a specific type of image
forgery; that is where regions have been copied and pasted from existing areas
within the original image. It would therefore be unfair to assume that forgeries
containing new objects would also be detected by the algorithm.

Despite this, a large percentage of forgeries contain elements from the exist-
ing image, as it is an easy way to ensure that the forgery blends in well with the
original image. As such, whilst the algorithm will only detect a specific type
of forgery, it’s such a commonly used technique that a dedicated algorithm is
required.

5.2.1 Detection Rates & Unique Parameters

The algorithm contains two unique parameters that can be controlled within the
UTI; the threshold value and the quantization quality factor. These parameters
can have a dramatic result on both the detection rate, and the number of false
positives determined by the algorithm.

Threshold Value - This parameter determines the minimum number of matches
required for each distance vector to be detected as a potential forgery and high-
lighted. As we lower this value, more distance vectors will be included in our
final forgery set, and as a result their corresponding 16 x 16 blocks will also
be highlighted within the original image. Conversely, increasing the threshold
value too much will reduce the overall detection rate of the algorithm, as seen
here:
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Figure 15: Clone detection result at a threshold of 10 and a quality value of 0.5.
Notice the false positives in the sky and clouds.
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Figure 16: Clone detection result at a threshold of 300. Whilst we have reduced
some false positives, we’ve also stopped detection of the cloned chimneys.

Modifying the threshold level has little performance impact, as the cell structure
containing the list of distance vectors is still populated as usual. The only
difference is the number of pixel blocks that are highlighted on the original
image; and as the image matrix is being modified regardless, the addition of
a few hundred more modifications isn’t going to have a dramatic impact on
runtime performance. In the above example, the average runtime utilising a
threshold value of 10 is 43.89 seconds. Increasing the threshold value to 300
gives us an average runtime of 45.14 seconds, a minor increase of less than two
seconds compared to the original runtime.
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Quantization Quality Value - The second user-modifiable parameter is the
quality level of the quantization. The larger this value, the more the effect of
the quantization on each 16 x 16 block, making different blocks appear more
and more similar to each other. This is useful as often an image has been re-
compressed and re-sampled, slightly modifying the surrounding pixels enough
to have an effect on the results of the algorithm. Here we can see the dra-
matic difference that minor quality level changes can have on the results of the
algorithm:

Figure 17: Forged JPEG Image (5).
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Figure 18: Clone detection as a result of a quality factor of 0.2 and a threshold
value of 10. Notice the lack of detection.
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Figure 19: Clone detection as a result increasing the quality factor to 0.5. The
cloned bikes have been detected with a few false positives.
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Figure 20: Clone detection as a result of further increasing the quality factor to
2. There are too many false positives to indicate a result.

Changing the quantization quality factor has the potential to have a dra-
matic impact on the algorithm’s performance. As the quality factor adjusts
the amount of quantization, as it increases more and more 16 x 16 blocks get
flagged as being identical to each other. This in turn causes far more compar-
isons within the algorithm, increasing the amount of time spent modifying each
matrix and cell structure. The final list of distance vectors is therefore much
larger the higher the quality factor is set. In the above examples, the average
runtime for each quality factor was 14.62 seconds, 26.10 seconds and 104.00
seconds respectively. Increasing the quality factor therefore has a dramatic im-
pact on the overall performance of the algorithm. Ideally, it is optimal to keep
the quality factor as low as possible, whilst retaining enough quantization to
overcome any potential compression artefacts.
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5.2.2 Sample Set Results

The copy-paste clone detection algorithm is file format independent, and whilst
it is most effective on uncompressed or high quality, lossy images, it will run on
any image regardless of its compression ratio. Despite the fact that some images
produced better results when the algorithms parameters were tailored to that
specific image, default values of 10 for the threshold and 0.5 for the quantization
quality factor were used throughout in order to provide a fair comparison of the
general detection rate of the algorithm.

Out of all 50 images, the majority returned some form of result, generating the
following breakdown:

e Unique Forged Images - Of the 20 unique forged images, 17 ran suc-
cessfully, with 3 failing to produce an output within a reasonable time (<
5 minutes). Overall forgery detection rate was 29%, however this includes
all forged images; clone detection only successfully operates on a specific
type of forgery. Of the 20 images, 5 were forged using copy-paste duplica-
tion methods, and the detection rate of the algorithm on these images was
an impressive 80%. This shows that the algorithm is extremely effective
in detecting copy-paste forgeries.

e Image Manipulation Dataset - Results on the dataset varied some-
what, as the original size of the images was too large in order to suc-
cessfully run through the copy-paste clone detection algorithm. Where
possible, the region containing the forgery was cropped in order to reduce
the overall resolution of the image without any resampling, however this
wasn’t always possible. In addition, some of the more elaborate image
forgeries weren’t detected as any rotation or re-sampling of the forgery
selection severely limits the ability of the algorithm to detect the sections
as similar. However, considering the nature of the forgeries themselves are
unknown, overall results were respectable, with an average detection rate
of 50% for the tested images.
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Figure 21: Forged Image (r3) Here the crow has been correctly highlighted, along
with some false positives. The contrast of the crow block has been increased for
clarity.

Figure 22: Forged Image (r11) The background has been highlighted as it is all
one shade of blue. However the cloned sections of the horse statue are correctly
identified.

Whilst adjusting the quality factor can have a large impact on how similarly
looking each 16 x 16 block appears, even minor variations within image regions
can have an impact on the detection results of the algorithm. For example, in
the dataset image below, both trees are clearly duplicates, and look very similar
at a 100% view level:
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Figure 23: Forged Image (r7). Notice the two duplicated trees on either side of
the frame.

Displaying both trees at a very high zoom level shows that whilst they are indeed
similar, re-sampling has occurred which has modified clusters of pixels slightly:

Figure 24: The right and left hand side trees, respectively. Slight variations
exist between both images, despite aligning up exactly.
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The algorithm would therefore detect each of these 16 x 16 blocks as different,
causing the forgery to remain undetected. Whilst the quality factor could be
increased, this would also have create too many false positives. Many images
contain naturally occurring patterns, and false positives are inevitable with an
algorithm of this detail. Out of the images successfully tested, each image
contained at least one false positive block. Using the penguin forgery image as
shown in the Error Level Analysis section, here we see here that even though
both penguins have been flagged as duplicated, the majority of the sea has also
been flagged as a cloned region:

Figure 25: Forged Image (8). The two darker penguins have been cloned.
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Figure 26: Resulting clone image, with the background contrast increased in
order to better show the false positives.

This also has the effect of dramatically increasing the runtime of the algorithm,
taking 242 seconds to complete. Images that failed to produce any results within
a reasonable time frame generally had large amounts of natural patterns, such
as this example image:
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Figure 27: Forged Image (9). Here the sky is largely one shade of blue, which
produces too many results.

5.2.3 Algorithm Performance

The performance of the algorithm varies significantly depending on the nature
of the image used. As mentioned above, more complex images with naturally
occurring patterns increase the runtime substantially, sometimes to the point
where the algorithm no longer completes successfully. The smallest computation
time on a successfully detected forged image was 24.95 seconds, whereas the
largest recorded time was 242.65 seconds, taking almost 10x longer to compute.

In addition, the number of operations is highly dependant on the total
amount of pixels within the image. Each image used as part of the sample
data had a width of 500px, and reducing the size of an image had a dramatic
effect on the computation time of the algorithm. Image sample 5, is a 500px x
375px image that took an average of 24.95 seconds to compute. Halving this
image resolution meant that the algorithm took a mere 3.32 seconds to com-
plete. Each pixel is read by the 16 x 16 moving window, and so increasing the
resolution increases the number of comparisons required when working through
the entire algorithm.

However, it’s important to note that MATLAB is an interpreted language,
and that performance would vary substantially depending on the language used
for the implementation. Whilst the overall performance of MATLARB’s image
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processing is impressive, it tends to falter slightly when large operations are
required within different looping sections.

Overall, whilst the general detection rate of the algorithm is acceptable, it ex-
cels when used on known copy-paste cloning forgeries, resulting in a high detec-
tion rate. Many images are manipulated in this way, and whilst re-compression
and resampling can negatively affect the ability of the algorithm, it is able to
detect these specific forgeries in the majority of cases. Performance could be
improved if required by utilising multi-threading, which in turn would allow
images of a larger resolution to also be used.
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5.3 Image Resampling Detection

Similarly to Copy-Paste Clone Detection, the Image Resampling algorithm ac-
cepts all image formats, it is however a far more generalised algorithm. It aims
to detect resampling artefacts by computing the underlying frequencies of three
regions of interest and plotting them as a visible spectrogram. Here, potential
anomalies caused by methods such as rotation, compression or scaling may be
viewed. As such, in a similar way to JPEG Error Level Analysis, it focuses
mainly on a side effect of saving an image forgery, as opposed to attempting to
detect a specific type of forgery method.

The ideal conditions for the algorithm are images that are either uncom-
pressed, or use a low compression ratio. This ensures that anomalies within the
spectrogram aren’t simply all compression artefacts; the lower the quality of the
image the harder it becomes to detect these minute differences.

5.3.1 Detection Rates & Quality

Whilst there are no direct parameters, test results varied considerably based on
whether the image was saved as a lossless PNG, or highly compressed. Here,
utilising the same three coordinates, we see the difference between the quality
of the spectrograms produced:

Figure 28: Forged Image (r2). The three points listed are ROI 1, ROI 2 & ROI
3 respectively.

98



Figure 29: The resulting PNG spectrograms. We can see that whilst ROI 1 &
3 are fairly consistent, ROI 2 is drastically distorted, suggesting resampling.

Figure 30: Using a low quality JPEG version of the image, whilst ROI 2 is still
distorted, ROI 1 has been affected by compression, causing the result to be less
clear.
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Figure 31: The high pass image used when calculating the above spectrograms.
With the exception of the sky (due to overexposure in the source image), the
image is fairly uniform.

Utilising this high pass image allows us to focus solely on edges and important
details, and reduces the effect that small, minor blemishes may have on the
overall result. As shown above, this becomes particularly important when we
consider how much of a difference the quality of compression (or better still,
lack of) has on our resulting spectrograms.
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5.3.2 Sample Set Results

As resampling occurs regardless of whether an image is compressed or not, the
Image Resampling detection algorithm operates on all image formats. We were
therefore able to successfully test all 50 sample images, resulting in the following
breakdown:

e Unique Forged Images - Out of a total of 20 unique forged images, 12
contained areas that were correctly identified by the algorithm as having
noticeably different spectrograms to the rest of the image. This provides
us with a successful detection rate of 60%.

e Image Manipulation Dataset - The results of the Image Manipulation
Dataset faired even better, with 13 out of 20 images correctly identified
by the algorithm, giving us a detection rate of 65%.

Both sets of images faired well, and our average detection rate for the Image
Resampling algorithm sits at a respectable 62.5%. However, it’s important to
note that unlike the other two algorithms discussed, specific regions of interest
must be chosen by the user. They therefore must already have a suspicion, or
at the very least a general idea of where a forged area is potentially located.
Whilst it’s correct to state that the algorithm isn’t able to search the image
for forgeries, it is a very useful tool to have in order to confirm any existing
suspicions.
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Figure 33: Here we see that the generated spectrogram for the forged ROI
(right) is substantially different to the remainder of the image.
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Figure 34: Forged Image (20) - The bench on the left is not part of the original
image.

Figure 35: Again, the spectrogram for the ROI containing the bench (right) is
substantially different to the rest of the image.

The rate of resampling within the forged image has a large impact on whether it
is detected or not. Some images, despite highlighting a forged area as a region
of interest, provided inconclusive results:
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Figure 36: Forged Image (r6) - The centre group of people have been modified.

Figure 37: None of the spectrograms show any noticeable discrepancies, with
the forged area looking identical to the legitimate circle of people.

False positives were difficult to calculate, however a result was deemed to be
a false positive if a legitimate area looked substantially different to the two
other regions of interest. The false positive rate within the set of unique forged
images was 25%, and only 10% within the Image Manipulation Dataset images.
The algorithm was also run on the set of 10 unmodified images, choosing three
random areas as our points of interest. 33% of the images had one substantially
different region of interest, giving us an overall false positive rate of 20%.
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Figure 38: Forged Image (f2) - No part of this image has been modified.

Figure 39: However, ROI 2 produces a spectrogram that is vastly different to
the other two, indicating a false positive due to the drastic lighting change in
the centre of the image.

5.3.3 Algorithm Performance

Due to MATLAB'’s extremely efficient implementation of the Fast Fourier Trans-
form, the algorithm completes in a very short amount of time. The average
runtime for the whole set of 50 images was 0.12 seconds, with the longest time
being 0.17 seconds. As we can see, this is an extremely efficient algorithm, how-
ever time factored into selecting the three regions of interest must be considered
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in practical use tests. Increasing the overall image resolution has a small impact
on performance, a 5,000px x 5,000px image is completed in an average of 3.15
seconds. Doubling the image resolution to 10,000px x 10,000px unfortunately
caused MATLAB to run out of available memory, however as this image size is
fairly unrealistic this does not cause a problem in practical terms.

Another possible factor that can negatively impact the performance of the
algorithm is the size of the regions of interest selected. By default, the Ul
selects a 100px x 100px block, however this can be adjusted by the user to be
larger or smaller. Doubling the size of the region of interest to 200px x 200px
increases the runtime to an average of 1.2 seconds, as doubling the size of the
image squares the total number of pixels that the Fourier Transform is being
computed upon.

Overall, the algorithm has high detection rates and low false positive rates.
Whilst there are specific conditions, such as when an image is overly compressed,
in which the algorithm doesn’t perform correctly, it is able to be run on any
image format as it doesn’t rely on detecting specific types of compression arte-
facts. It also has the advantage on working on a wide range of forgery types,
the more a region has been modified, the more likely that the area in question
has been resampled; therefore containing traces detectable by the algorithm.

Conversely, it is unable to detect forged areas by its self; the user must either
already have a general idea of where they’d like to choose as a potentially forged
region, otherwise trial and error must be used in order to find these regions.
However, this inconvenience is offset by the fact that the algorithm is extremely
efficient with a very low runtime and computational cost. Combined with its
high detection rates, this makes it an ideal algorithm to use when specific areas
need to be tested for forgeries, as opposed to when a whole image needs to be
scanned in order to ensure its legitimacy.

5.4 Metadata Tag Detection

Metadata tag detection was also performed on each image as a way of compli-
menting the results of the above algorithms. In order to ensure that the images
from the Image Manipulation Dataset weren’t inadvertently modified whilst
cropping or re-sizing, tag detection was performed on the original resolution
images as provided.

The result of each Metadata analysis, along with any relevant strings and
timestamps, are included with the full list of results. However, as a rule each
uniquely forged image was detected as being processed within Adobe Photoshop
CS6. As expected, the cropped images from the Image Manipulation Dataset
were also flagged with the same modified metadata tag. However, the original
dataset images also contained a Software field, but the field was void of any
information. This is unusual, as per the EXIF specification the Software field
is optional and isn’t usually created by default [12]. Whilst this field is also
used to record camera software in addition to any editing software, the fact
that the field has been created but left blank suggests that metadata has been
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cleared from the images. None of the unmodified images had the Software field
embedded within them and were free from all potential forgery tags.

Whilst this approach is indeed fairly rudimentary, it can serve as a useful in-
dicator when combined with the main forgery detection methods illustrated
above.
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6 Future Work

This project compares the overall performance of three distinct image forgery
detection algorithms. However, the scope for further research within this field
is huge, as there are numerous new and emerging forgery detection techniques
that can also be researched and tested. For example, work was put in to re-
searching methods that operate on detecting anomalies within the lighting and
colour levels of the image, which appeared to be an emerging yet promising new
technique. However, it was found rather early on that these techniques would
have taken far too much time to implement, and it was unfortunately decided
that they were beyond the scope of this project in its current form. Future work
would primarily be based around implementing this kind of cutting edge tech-
nology and evaluating its performance compared to the more grounded methods
demonstrated within this project.

Due to time constraints one algorithm was chosen to be implemented from
each group. Whilst this gives a good overview of the chosen technique, it would
also be beneficial to be able to test variants, as different variations of the same
technique could have potentially large differences in results and performance.
For example, whilst the implemented Copy-Paste Clone Detection algorithm is
widely used, many variants of the same algorithm exist, and it would be useful
to be able to compare these differing algorithms. Additionally, the aim of this
project was always to compare existing algorithms and techniques, however a
potential future goal would also be to work on developing new, unique algorithms
that could have the ability to detect image forgeries much more efficiently than
existing methods.

A problem that was identified early on was that there were very few user
friendly solutions to image forgery detection. A quick search mostly reveals
academic papers, and as mentioned at the beginning of this report, most pieces
of consumer software rely on primitive methods such as tag reading in order
to "detect" forgeries. Whilst developing a completely polished, user friendly
system was beyond the scope of this research project, there is a definite need
for such an application in the professional world. The user interface of the
implementation, whilst unpolished, is fully functional and simple enough for
the average user to use without too much of a learning curve. It would be more
than possible to work on a more refined Ul that works to present these different
image forgery methods in a polished, finished product that is both accessible
and functional to a standard end user.

Additionally, whilst MATLAB proved to perform exceptionally when deal-
ing with images, its performance suffered when faced with multiple loops and
repeating operations. This is seen rather clearly in the difference in runtime
performance between the Copy-Paste Clone Detection algorithm and the Image
Resampling Detection algorithm. Overall however, the use of MATLAB was a
huge assistance, it substantially reduced development time due to its native sup-
port for GUIs, matrices, and more complex operations such as the Fast Fourier
Transform & the Discrete Cosine Transform. However now that the algorithms
have been implemented successfully, it would be beneficial to investigate any
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possible performance improvements from switching to a more traditional, com-
plied language. There is also the possibility of utilising the MATLAB Compiler
[14], and analyse any performance benefits.

Overall, this project has provided a good, solid framework for research in-
volved in image forgery detection methods. However, not only is this an emerg-
ing research field, but it is increasing in importance and relevance day by day
as images become more and more important in our daily lives. Building on this
foundation, expanding on research of image forgery detection methods and po-
tentially releasing a polished, user friendly application shows that this project
has limitless potential, and contains very exciting prospects for the future.
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7 Conclusions

This project has successfully demonstrated the strengths and weaknesses of
three distinct image forgery detection algorithms, and their ability to perform
on a large sample set of both unique sample sets and dataset image libraries.
It was clear from the beginning of the project that no algorithm would work
flawlessly in every situation, however the variety of images used has allowed
the user to decide on the algorithm best suited for their needs. Out of the 40
total forged images, 32 were successfully detected as containing forgeries by at
least one of the three detailed methods, providing us with an average success
rate of 80% for the entire sample data. Therefore, whilst the detection rate of
each algorithm varies widely depending on the specific type of forgery contained
within the image, utilising all three methods provides a robust detection rate
on a wide variety of forged images.

Error Level Analysis was found to be efficient on detecting additions to
JPEG images, where the newly forged area has a different compression ratio
to the original background. The algorithm worked best on images that were
saved as high quality JPEG images; further compression reduced the ability of
the algorithm to detect newly compressed areas, hence its overall detection rate
of 46%. In addition, by design the algorithm will only run on JPEG images,
meaning that not all sample images were suitable to be tested. Its performance
was hugely promising however, averaging 0.03 seconds per image, and its false
positive rate was entirely respectable at 20%.

Copy-Paste Clone Detection was successful in detecting copy-paste cloning
within a variety of images. Whilst the detection rate on the unique forged image
set was 29%, as previously mentioned this includes forged images that contain
no duplicated regions, and therefore this is unrepresentative of the actual results
of the algorithm. When only images with cloned areas are included, the success
rate jumps to 80%. Results on the image manipulation dataset were slightly
lower at 50%, due to the fact that re-compression and re-sampling occurred on
many of the images, causing differences within the cloned areas. Each image
showed at least one false positive block, however this is to be expected due to the
natural occurrence of patterns in genuine images. The pixel by pixel nature of
the algorithm ensured that this was the slowest of the three algorithms, however
with an average runtime of 71 seconds for the entire sample data, overall runtime
is still perfectly reasonable. It’s also important to note that this includes a
few results that took an abnormally long amount of time to compute, slightly
skewing the results.

Image Resampling Detection provided a robust solution for detecting resam-
pling distortions within the underlying frequencies of the image. Success rates
were similar between both the unique forged image set and the image manipu-
lation dataset, averaging at a successful detection rate of 62.5%. The algorithm
had a low false positive rate of 20%, and performance was extremely promis-
ing, with an average runtime of only 0.12 seconds. Whilst this proved to be an
efficient algorithm with good detection rates, it’s important to note that three
regions of interest must be chosen by the user, with one of these being a region
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of potential forgery. Unlike the other two algorithms, the user must therefore
have an idea of a potentially forged region, or simply use trial and error to find
these potential regions.

Metadata tag detection was also utilised as a complimentary algorithm. The
method was not expected to perform admirably due to its rudimentary nature,
however it did correctly identify all of the unique forged images as having been
modified in Photoshop. The collection of untouched images were also correctly
identified as legitimate, as they contained no potential forgery flags. However,
the Image Manipulation Dataset images contained a blank Software field, sug-
gesting that EXIF tag removal had taken place at some point in an attempt to
remove any potentially revealing flags.

Whilst the overall success rate of the chosen algorithms were very promising,
we’ve also learnt that new methods are constantly being developed in order to
provide better results and improved performance. It is therefore appreciated
that further work will be required in order to fully investigate a wider range of
forgery detection methods. Research in to this new and exciting field is becoming
more and more important, as determining the trustworthiness of images becomes
a wider issue in modern society. This project provides a sound framework for
additional tests to be carried out on an even wider range of algorithms in the
future.
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8 Reflection

This project has played a huge role in developing my progress not only academi-
cally, but also having an impact on the way that I plan and structure large tasks
that I am faced with. Admittedly, the sheer scale of this project was not only
daunting at first, but the thought of independently working in order to achieve
something both unique and genuinely insightful was unlike anything that I had
encountered throughout my academic studies. Whilst our second year contained
a large group project, much more guidance was given, time constraints were far
less and tasks were delegated between a large group of people. Whilst I've had
the terrific support of my supervisor throughout this project, the onus has very
much been on me from start to finish to not only achieve my goals, but also to
come up with the goals themselves to begin with. Beyond being given the title
of the project and a short description, a blank canvas was presented; and I am
extremely proud of how I have seen the project through from a simple concept
to a fully fledged research study.

I feel one of the most important skills that I have developed throughout this
project is a sense of timekeeping. Whilst I have had to deal with deadlines and
general timekeeping throughout my academic career, being sorely responsible
for a project this size was a completely new experience to me. A general plan
was outlined within the initial report, and whilst I followed this schedule as
much as possible, it was inevitable that certain aspects took much longer to
complete than first thought. I've learnt that even the best plans will falter at
some point, and that the most important aspect is learning how to deal with
these unexpected turns. For example, my original plan was to implement one
algorithm from each of the five different groups, as detailed in the original report.
However it became fairly obvious that there simply wouldn’t be enough time to
implement and comprehensively test five different algorithms. Whilst I could
have stuck rigorously to the original plan, this would have had a detrimental
effect on the testing and results phase of the project. I therefore decided that
it would be much more beneficial to comprehensively focus on three algorithms
instead, given the time constraints given. What’s important is that I understand
that this is no failure on my part, these types of scenarios happen regularly when
dealing with large projects. Plans will never be perfect, and being able to foresee
potential problems and re-structure the project accordingly is a very important
skill to have.

In hindsight, I feel that I could have managed my time with the report bet-
ter. Whilst I was sure to give myself ample time and completed the report
well within the time frame specified, I waited until after the all implementa-
tions were complete before starting the write-up. Many of the sections could
have been completed as the implementation was being developed; in fact this
would have been to my advantage as I often found myself having to look back
through my code in order to explain some concepts, especially for the imple-
mentation sections. It would have made a lot more sense for me to write the
design & implementation sections whilst the actual system was being designed
and implemented. The most important lesson that I have learnt in regards to
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timekeeping is to never put off until tomorrow what can be done today; working
at a constant pace is far more beneficial in the long term than completing large
chunks of tasks in a short time frame.

Another completely new concept has been the process of professionally refer-
encing academic work. Within my studies, coursework has been an independent
assessment, generally no outside work is permitted, whether referenced or not.
Whilst this indeed makes sense in terms of assessing ones understanding of con-
cepts, it is not how the further academic field or the professional world operates.
It is far more efficient, both in time and manpower, to re-use code where ap-
propriate and to base ideas off of already existing concepts. This also holds
true for statements made within the report, anything suggested as a fact that
isn’t common knowledge must be referenced appropriately in order to maintain
academic integrity within the report. This makes a lot of sense, however I found
myself having to go back over sections in order to attempt to find the article
or paper that I referenced that statement or concept from. Getting used to
academic writing is all about changing how you think, once you get in to the
mindset of justifying and proving everything, it becomes a lot easier and almost
second nature to do so. In the future, I'll definitely reference as I write, as I
feel this ensures that all work is credited where due and reduces the workload
required at the end of the write-up. Professionally referencing within this aca-
demic report has certainly changed the way that I think when writing, and has
allowed me to appreciate the importance of citing relevant work.
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