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Abstract 
 Control of quantum spin networks is an inherently difficult problem, where the 

search space has many local extremes. The difficulty of this problem is due to the 

quantum mechanical behavior of the spins, which are central to the operation of the 

network.  Due to the nature of the problem, optimization of system controls is costly and 

time consuming. By improving on current techniques through the use of parallelization 

techniques, it is possible to reduce runtimes.  This dissertation aims to investigate the 
areas for potential speedup of currently used methods. 
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Introduction 
 Control of quantum spin networks is an inherently difficult problem, where the 

search space has many local extremes. The difficulty of this problem is due to the 

quantum mechanical behavior of the spins, which are central to the operation of the 

network.   Due to the nature of the problem, optimization of system controls is costly 

and time consuming. By improving on current techniques through the use of 

parallelization techniques, it is possible to reduce runtimes.  This dissertation aims to 

investigate the areas for potential speedup of currently used methods. Progress will be 

monitored by evaluation of the improvement gained in terms of accuracy, precision, 
robustness and runtime.  

 The focus is on the control of spin chains, which simulates a router, where 

optimal controls maximize the probability of information transfer from one spin to 

another. Individual spins are controlled using magnetic control fields. The magnetic 

fields affect the spin of each individual element by aligning the spin with the magnetic 

field, the stronger the field the greater this effect is. When a relatively large control is 

placed on an individual spin, it effectively isolates it from the network, as there is a 

much-reduced chance of spin state transfer when it is aligned with the magnetic field.  

 The optimization part of this project is aiming to provide the best controls, 

which maximize the probability of successful data transfer between spins. For example, 

transfer from spin 1 to spin 3 is desired; the system is prescribed a fixed time t, where 

the controls are the only variable in the system. The probability of the system is then 

improved by optimizing the controls, in this case by a gradient based optimization 
algorithm; L-BFGS.  

 Parallelization of these methods will allow for research to be conducted in a 

timelier manner, as the current methods are extremely time consuming.  In this paper, 

there is an exploration of improvement of accuracy as well as speed; parallelization 

allows for more functions and evaluations to be performed at the same time, providing a 

more detailed description of the search space. 

Aims 
 The main aim of this project is to research the possibilities of parallelization of 

currently serial methods for achieving optimal system states. Through parallelization of 

current methods, the major improvement will be in runtime, where many processes can 

take place simultaneously rather than just one.  There is also the possibility of increased 

accuracy, as current methods try to limit the number of evaluations to conserve time 

spent processing, where here is it possible to perform many evaluations in one time 

step.  

 By parallelizing current methods, it is possible to perform more calculations in 

less time that may yield more accurate results. The major idea here is to develop an 

understanding of how constant controls over time can be used to reach a high fidelity, 
which indicates the probability of information transfer.   

This research can directly be applied to information transfer in quantum spin 

networks. Where current research is looking into the behavior of spin network, where 
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eventually it will be possible to model an entire network, where rings are used as 
routers to pass information down ‘wires’ (spin chains).  

Background 
 In order to understand the problem addressed in this paper, it is first important 

to understand the background to this complex problem. As this system is based on 

quantum mechanical behavior, I have provided there is a brief introduction into the field 

of quantum mechanics. This is followed by an introduction to spintronics and finally 
optimization techniques. 

The final system is a network where transfer of data is based on quantum 

mechanical phenomena. Data is stored in the spin state of a particle. For simplicity; 

consider each ‘spin’ as a spinning top, the rotation turning around its own axis. Finally, 

control is based around the use of magnetic fields, which are used to manipulate the 

probability of transfer of data around the network.  However, due to the uncertainty of 

quantum mechanics, it is extremely difficult to find appropriate controls to maximize 

transfer probability. This is where an optimisaion algorithm comes in, where it searches 
a large space in an attempt to provide an answer to the value of these controls.  

Quantum mechanics and Spintronics 
 Quantum mechanics is a major part of ‘modern’ physics, it aims to explain the 

incredibly small, where behavior is often counterintuitive and uncertain when 

compared to ‘classical’ physics; such as Newton’s laws of motion. In quantum mechanics, 

the key principle is the notion of matter being both a wave and a particle, where the de 

Broglie wavelength 𝜆 is related to its motion through the Planck constant ℎ. 

𝜆 =  
ℎ

𝑝
 

This theory applies to all matter, and can be used to explain quantum objects. It 

has been displayed in the double-slit experiment, where electrons created an 
interference pattern that is concurrent with a wave (Eichmann, et al., 1993).  

Quantum mechanics is of particular interest to computer scientists as it utilizes 

quantum mechanical phenomena, such as superposition, the uncertainty principle or 

entanglement. These phenomena allow a qubit to represent an extremely large set of 

data; whereas in classical computing only 0s and 1s can be represented by one bit. The 

key idea here is that one qubit can represent a superposition of many states. At 

measurement, the wave function collapses into one single state out of the entire set of 
states in the superposition.  

Shor’s algorithm represents an efficient application of a quantum computer, 

whereby a classical computer fails to achieve the same outcome in reasonable time. The 

algorithm is focused on factoring integers to find their prime factors. This is a key 

component of many modern cryptography algorithms, by providing an algorithm that 

factors primes quickly Shor’s algorithm breaks down the security of public-key 
cryptography, such as RSA (Vandersypen, et al., 2001). 

The focus of this paper is on the transfer of information between spins in a 

network that could represent a Northbridge in a computer, passing qubits from memory 
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to the processor. Research into quantum control will aid the development of quantum 

devices, where in the future it may be possible to have a separate quantum processor in 
each personal computer for specialized tasks.  

Bra and Ket notation  
 Throughout this paper, I have used special notation found in quantum 

mechanics called bra-ket notation. It was first introduced by the physicist Paul Dirac 

(1939). Bra-ket notation is used to represent an abstract state of a system, where <

𝜙|𝜓 > represents the probability of 𝜓 collapsing into state 𝜙.   

 𝜓 represents the superposition of states, where the spin of a particle (or system 

of particles) is thought to be in every state possible up until the point of measurement.  

When measured the wave function collapses and the particle is in one of the possible 

states; the one being observed. For simplicity in this paper a bra < |represents a row 

vector and a ket | > represents a column vector.  

Schrödinger’s equation 
Schrödinger designed an equation that describes how the state of a quantum 

system evolves over time (1926).  The quantum system model in this project is based 

around this equation. 

𝑖ℏ
𝜕

𝜕𝑡
Ψ = Ĥ Ψ 

𝜕𝜓(𝑡)

𝜕𝑡
= 𝑖ℏ𝐻𝑡𝜓(𝑡) 

The Schrödinger equation is based around calculating the wave function 𝜓, 

which describes the quantum state of one or more particles. In the above equations, 𝑖 

represents the imaginary part of the quantum equation; which in simplistic terms allows 
mathematics to accurately model quantum mechanics (Baylis, Hushilt, & Wei, 1992).  

The constant ℏ represents the reduced Planck constant, which describes the 

quantum of action in quantum mechanics. In this application, the reduced Planck 

constant is used, as we are investigating angular frequency it reduces the complexity of 

the mathematics by absorbing the value 2𝜋. The reduced Planck’s constant is equal to: 

ℏ =
ℎ

2𝜋
 

Finally, H represents the system Hamiltonian. That is the operator that describes 

the total energy of the system, and all of the possible states.  This is often thought of as a 
spectrum of possible states, where only one exists at the point of measurement.  

   |𝜓(𝑡) > = 𝑒𝑥𝑝𝑚(−𝑖ℏ𝐻𝑡) ∙|𝜓(0) > 

 The final equation above represents the calculation of wave function of a system 

at the given time. Later on in this paper I will engage in discussion of what this implies 
about the state of the system.  

Spintronics 
 Spintronics is the study of an electrons spin state, where the spin and the 

electrons charge can be used to store information. The spin state of a particle usually 

has two positions, up or down, much like a bar magnet. A spintronic device can 

manipulate an electrons spin state by applying a magnetic field to align the spin to the 
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magnetic field. As an application, this can lead to energy efficient memory devices; such 

as magnetoresistive random-access memory (MRAM). Due to the efficiency of these 

devices they are thought to be the future of memory, eventually becoming the ‘universal’ 

memory for all computational devices (Åkerman, 2014).  However, current spintronics 

devices are in most homes in the form of hard-drive read/write heads, which 

manipulate the spin state of ferromagnetic film to store data.   

 Spintronics is also the foundation of magnetic imaging techniques, where 

devices such as MRI and NMR machines manipulate the spin state of protons. These 

protons emit a radio frequency that can be used to identify the density or type of matter 

at a given location. Once a large dataset of these frequencies has been collected, it is 
possible to create a detailed image of the object.   

 In this paper, the focus is on modeling a spin network and attempting to transfer 

qubits of information by manipulating the magnetic field on the network. The study of 

spin transfer is modeled by transformation theory in quantum mechanics, where a state 

vector models a corresponding quantum system. Transformation theory can be applied 

to model the change of a system over time, where in this project it is employed in the 

form of the Schrödinger equation. Specifically, rings of spins are explored, which are 

designed to model the behavior of a qubit router. 

 

FIGURE 1 

 In figure 1, the sold lines represent the links in a 5-spin network; in a classical 

network, the information would pass in a logical manner around the network between 

neighbors (for example, if each node represented a computer rather than a spin). In 

quantum networks, data does not necessarily transfer to nearest neighbors; it tends to 

behave in a counterintuitive way where the links appear to be symbolic. If the arrow 

were to represent a target in the system, for example transferring a qubit of data from 

spin 1 to 3, what controls would this require?  This is the core of this paper, and for 

simplicity the time of the transfer is fixed, so the main question to be answered is; given 
a time ‘t’, what controls would maximize the transfer probability of a qubit of information 

from spin 1 to 3? 

Spin Network Control 
 As discussed in the previous section, the focus of this project is to provide 

adequate controls for a closed quantum system that will maximize transfer at a pre-

determined time.  For this application, the quantum system is a ring, containing an odd 

number of spins. Each spin is a −
1

2
 spin particle, as these mimic a real world 

implementation if this was based around a proton’s spin.   The controls represent the 

bias of a magnetic field placed on each spin in the network; the values are arbitrary. The 

spins are connected by nearest neighbor coupling, allowing information to freely move 
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around the ring. This sort of transfer is currently available in a spin network inside a 
diamond controlled by magnetic fields (Hai-Jing, et al., 2013).  

Due to the difficulty of this problem, it is important to limit the number of 

variables to optimize for the given time; in this instance only the magnetic field strength 

is being optimized. Unlike other studies, where controls are switched over time 

(Schirmer & Langbein, 2014), the controls in this system are set for the entire duration 

of the simulation. The optimization algorithm then will vary the values representing the 

bias of the controls on each spin with the aim of achieving the best transfer probability.  

Optimization 
 Optimization is a branch of mathematics concerned with finding optimal values 

for a given function or equation.  In general terms, they attempt to minimize or 

maximize the return from a system by varying the inputs. In this application, focus will 

be on minimizers, which are defined by the following equation:  

min
𝑥∈ℝ

𝑓(𝑥) 

There are many different types of efficient optimization methods available, each 

with their own benefits. In the following section, there is a discussion of the different 
types, their benefits and applications.  

Evolutionary Algorithms  
 Evolutionary algorithms are based around a population of candidates randomly 

generated to begin. Overall, they perform well, as they do not make any assumption 

about the problem, and this allows for a broad search space.   

 Algorithm outline 

 Generate a population of size x with random initial values. 
 (Repeat until a termination condition is met) 

o Select best candidates based on their relative fitness 

o Pair off best candidates to be parents 

o Create children through mutation and crossover operators 
o Replace the least fit individuals with the new children 

 Evolutionary algorithms are suitable for machine learning applications, where 

the goal is to investigate a space with little pre-existing knowledge. They are particularly 

suited to engineering problems, where usually a structure could benefit from 

optimization. An example of this is with aerodynamics of a vehicle, where a genetic 

algorithm can make small changes to the shape to reduce the effect of wind resistance.  

 Swam Intelligence 
 Swarm algorithms are designed to mimic natural real world behaviors of 

animals or organisms. They are designed to create a collective behavior from a number 

of individuals, where the interaction creates intelligent decisions. The behavior of 

individuals in the system can be designed to imitate many different styles of swarm, 
such as, birds flying, ant colonies, bacterial growth, or fish schools.  

 Swam intelligence is useful when attempting to mimic or detect real world 

swarming behavior, such as crowd simulation in CGI for films. Other applications 
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include network investigation and routing problems such as air-traffic control or 
autonomous vehicles.   

 Simulated Annealing 
 Simulated annealing is an algorithm designed around annealing: the process of 

controlling the cooling of an object to reduce the number of defects in the final product. 

When this technique is applied to an optimization problem, it searches for an acceptable 

answer in a prescribed time. The process itself starts with a relatively large search 

space, in which large steps are taken in an attempt to find the optimum value. As the 

temperature beings to decrease, the step sizes begin to become restricted with the 

intention of improving already found optima. Simulated annealing guarantees a result in 

a prescribed time, however the result is not guaranteed to be optimal.  

Algorithm outline 

 Generate random initial solution 

 Evaluate value of solution based on a cost function 

 (Repeat until temperature reaches 0) 

o Generate random neighboring solution, where step size based on the 

current temperature 

o Compare and move to the better of the two solutions 
o Reduce temperature 

 

Simulated annealing is often applied to a discrete search space, and can provide 

a relatively accurate approximation of the global optima. It is a good algorithm when the 

landscape is complex, as the algorithm does not get stuck in local optima in the early 
stages.   

Gradient-based Optimization 
Gradient-based optimization methods are applicable where either an 

approximation of the gradient or the gradient itself can be calculated. These methods 
are usually a good choice when the gradient is easy to calculate or already available. 

First order 

 GRADIENT DESCENT 

 Gradient descent is focused on moving towards the minimum (or maximum) by 

taking steps towards the negative of the search space. The step in gradient descent is 

calculated by a line search method, which returns a step size of 𝛼 that sufficiently 
reduces the objective function.  
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FIGURE 2  (ALEXANDROV, GRADIENT DESCENT.PNG, 2004) 

 Gradient descent has limitation when approaching minimums, or where the 

search space has narrow valleys that are close to a minimum. This is due to the simple 
design of calculating a descent direction.  

 

FIGURE 3 (SIMIONESCU, 2006) 

 Figure 2 represents the issue that gradient descent methods have when reaching 

a minimum value. The function above is the Rosenbrock function, where towards a 

minimum the function is extremely difficult to solve, as the gradients are minute. In 

figure 3 above, the gradient descent method reaches over 1,000 iterations when aiming 
to find the minimum which is at 𝑓(1,1,… . , 𝑛), where 𝑛 is the number of dimentions. 

 CONJUGATE GRADIENT 

 The conjugate gradient method is applied to linear equations that produce 

symmetric positive definite matrixes.  It will find the exact answer in n steps, where n is 

the number of unknowns. The conjugate gradient method differs from gradient descent 

in that there is no line search is used to calculate the step towards the minimum to take. 
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FIGURE 4 (ALEXANDROV, 2007) 

 Figure 4 displays the performance difference when finding the optima of a 

function, the red line represents a path taken by a conjugate gradient method, and the 

green line represents the path of a gradient descent method.  The conjugate gradient 

method is more expensive to calculate than gradient descent but it is much more 

efficient when converging towards the minimum.  

Quasi-Newton methods 

 When trying to find global optima, Quasi-Newton methods, aim to find a 

stationary point where the gradient is equal to 0, which suggests a global optimum. 

These are similar to Newton’s method, however they are used when the full Jaccobian or 

Hessian matrix is too expensive to compute, or not available. Newton’s method 

iteratively computes values of x, based on the following formula:  

𝑥𝑛+1 = 𝑥𝑛 − [𝐽𝑔(𝑥𝑛)]
−1
𝑔(𝑥𝑛) 

Any method that subtitles the exact Jaccobian matrix in Newton’s formula is a 
quasi-Newton method.  

 Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

 BFGS is a popular quasi-Newton method that calculates an approximation of the 

Hessian matrix for gradient calculations. It is an iterative optimization algorithm for 

solving unconstrained non-linear problems.  BFGS calculates and stores a dense n ∗

n approximation of the Hessian matrix, which leads to a large memory requirement for 
large problems.  

 Algorithm outline 

1. Calculate search direction pk by solving:  Bkpk = −∇f(xk) 

2. Line search to get initial value of αk 

a. Update xk+1 = xk + αkpk 

3. sk = αkpk 

4. yk = ∇f(xk+1) − ∇f(xk) 
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5. Bk+1 = Bk +
ykyk

T

yk
Tsk
− 

Bksksk
TBk

sk
TBksk

 

 

B0 can be initialized as B0 = I, so the first step is essentially gradient descent.  

 Limited-memory-BFGS (L-BFGS) 

 L-BFGS is a popular alternative to BFGS when the problem size is large and 

available memory is a constraint on the search space.  Instead of calculating the Hessian 

matrix, L-BFGS maintains a history of the last m updates that are used in place of the 

Hessian matrix. 
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Approach 
Tools 
 For this project, it was important to select appropriate tools, given the relatively 

small amount of time needed to complete the project. The following tools have been 
chosen to allow the development of a system that will meet the aims of this project.  

Software 
 Matlab 
 Matlab was chosen for this project due to the rapid prototyping and large range 

of built in complex functions that are necessary for this project given the timeframe. 

Matlab natively handles imaginary numbers, where as C and C++ have liberates to 

handle them, however it is a much longer development process.  

Matlab also has the mex interface for Fortran, C and C++, which allow the 

compilation of functions to be used natively with Matlab. This interface allows the 

development of the optimization algorithm in C and CUDA outside of Matlab, whilst 
compromising no functionality.  

 libLBFGS 
 libLBFGS is a c port of the L-BFGS algorithm, which was originally written by 

Jorge Nocedal in Fortran (Naoaki, 2014).  This library was chosen for quick development 

of the program, as the focus here is on improvements to the current algorithm, not the 

development of a new algorithm.  This library comes with plenty of functionality as 

standard that is not necessary, and it will need to be removed to simplify the source 

code.  

 C 
 C has been chosen due to the interface with the Matlab mex compiler, it also 

allows the use of CUDA for the parallelization of the line search. C also requires explicit 

memory control, which will be necessary for this application when dealing with large 

matrix that will need to be cleared from memory quickly. C was also chosen due to past 
experience with the language. 

 CUDA 
 CUDA was chosen for the parallelization of this project, as it is built around the 

single-instruction-multiple-data (SIMD) paradigm. CUDA kernels have many lightweight 

threads that each do small operations on data, in the case of the line-search this could be 

function evaluations. CUDA is a highly scalable language, however it is relatively 

underdeveloped and can be tricky to get kernels working effectively for complex 
problems.  

 GitHub 
 GitHub was chosen as a version tracker for this project, it also doubles as a 

project logbook for milestones. This tool will aid in the final report writing, along with 
bug and progress tracking.   

Hardware 
 For this project, it was necessary to build a computer that could run the 

optimizations for long periods. There was careful consideration of the specifications of 
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the machine, to be aimed at solving this particular problem. The following is the final 
spesifications: 

 Xeon X5560 Processor 4 Core 2.8GHz 8MB Cache 

 16GB DDR3 10600R Ram 

 NVIDIA GTX 760 2GB 

 The NVidia GTX 760 was chosen as it shares the same Kepler architecture as the 

Tesla scientific computing cards (K10,20,40,80) . It was chosen over the GTX 750 due to 

the much higher memory bandwidth and size. Registered DDR memory was chosen with 

the intention of more being added if necessary to ensure the system remained stable as 

more memory was added. The Xeon processor was chosen as it is designed to run for 
long periods of time at a high load. 

Optimization selection for this project  
 L-BFGS has been chosen as the optimization algorithm for this project, firstly as 

the gradient is available in this computation, which allows the calculation of a descent 

direction; which implies a global optimum. Secondly, it has been proven to be efficient at 

solving quantum control problems when compared to other methods (S. Machnes, 
2011). 

 L-BFGS also has potential to be parallelized, despite it being naturally an 

iterative process. The line search portion of the algorithm is serial as standard, however, 

there is potential to speed up performance. This has been shown to bring an 

improvement in the past, where a parallel L-BFGS-B algorithm was implemented on 

GPUs (Fei, Rong, Wang, & Wang, 2014). 

 Finally, due to the low memory requirement of the L-BFGS method, it is favored 

over the standard BFGS algorithm. This is due to the complexity of the problem, where 

storing the approximation to the Hessian matrix maybe too large to fit into system 
memory once the problem size increases.  

Pre-existing work 
 There has been much research into information transfer in spin networks, 

however the majority of previous research has been the finding optimal controls on 

different network topologies (Jonckheere, Langbein, & Schirmer, 2014) (Christandl, 

Datta, & Andrew J. Landahl, 2004) (Schirmer & Langbein, 2014) (Cui & Mintert, 2014). 

There does not appear to have been any research into parallelization of these 

techniques when applied to a quantum control problem.    

Line-search Methods 
 To understand how a partly parallel L-BFGS algorithm could be implemented, it 

is first important to understand the role of the line search component of the algorithm. 

L-BFGS can use any line search algorithm, as it does not require an exact minimum to be 

found in a given direction.  

 In general, line search algorithms aim to find a suitable step size 𝛼 that 

minimizes the objective function shown below. In this equation, p represents the 

direction provided by the optimization algorithm for the variable x. Line search methods 

are focused on searching a one dimensional search space from 0 to 𝛼, where alpha is a 
non-negative real number.  
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𝜙(𝛼) = 𝑓(𝛼𝑝𝑘 + 𝑥𝑘) 

 Line search methods are used in optimization algorithms to provide a step size 

towards the global optimum.  These methods are provided with initial values x and a 

direction that is calculated by the optimization algorithm. The line search will return a 

step size 𝛼 that minimizes or maximizes the variables 𝑥 to optimize based on the input 

direction 𝑝. From this stage, the optimization algorithm will calculate a new direction to 

search and pass these values back to the line search. A line search will contain a set of 

termination conditions, these depend on the individual algorithm, but usually it is when 

a sufficient decrease is found.  This process repeats until the optimization algorithm hits 

a termination condition.  

 Line search algorithms are often lightweight and take up the minimum amount 

of computing time, to find a rough estimate for the step size. This is because it is thought 

to be more efficient to spend more computing time in finding the best descent direction 

in a complex problem.  However, in this application, due to the extremely complex 

landscape it may be beneficial to devote more time to an expensive line search 
algorithm.   

 

FIGURE 5 (HAUSER, 2007) 

The figure 5 displays the issue with poorly conditioned line searches where the 

minimum step size is too large or too small.  In both instances, the minimum is not 

reached as the line search is restricted by step sizes.  As displayed above, it is important 
to take into consideration line search parameters and termination conditions. 

 Direct Line-search 
 Direct line search methods aim to compute the exact minimum of the line. The 

basic idea is that the minimum is found between a set of the brackets. These algorithms 

will recursively add and remove new brackets around the minimum until the minimum 

found is within tolerance.  

 Backtracking Line-search 
 The backtracking line search method is based around the Armijo–Goldstein 

condition, where a relatively large initial step is taken, and is iteratively reduced by 

stepping forwards and backwards until a minimum is found that sufficiently small.  The 

Armijo–Goldstein condition for an adequate reduction for the given step size in relation 

to the objective function.   

𝑓(𝑥 + 𝛼𝑝) ≤ 𝑓(𝑥) + 𝛼𝑐𝑚 
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 If the above condition is met, then the line search will return the step size 𝛼. In 

the above equation 𝑝 represents the search direction, 𝑚 is the local slope of the equation 
and 𝑐 is the control parameter for the algorithm with a value of 𝑐 ∈ (0,1).  

Parallelization 
 There are two key areas that may provide a large improvement in performance, 

the line search component of the L-BFGS algorithm and the quantum target function. 
This section will discuss the benefits to parallelization of these sections.  

 Line search 
 Current line search methods are focused on providing a very rough estimate on 

the correct step-size given the direction that will optimize the variables. The key 

concept is that an optimization algorithm should spend substantially more time 

computing the correct direction, rather than the step-size. Because of these factors, line 

search algorithms are naturally serial and could be improved by providing a more 
accurate step-size in the same time through parallelization.  

 The line search in this paper is based around evaluating a line with regular 

intervals in parallel, providing a more accurate description of the landscape. With each 

evaluation loop, the line may be searched at up to 1000 regular intervals. The minimum 

of these values is then taken as the optimum step size. The aim here is to create a line 

search algorithm that will allow L-BFGS to reach a termination condition in less 
iterations, as it should improve the accuracy of the search. 

 Quantum target function 
 For calculation of probability given initial system controls is very expensive, this 

is due to the large number of matrix operations that are necessary to compute the final 

result. The issue with parallelizing the quantum target function is that calculating a 

system state requires the previous system state, so it is an inherently serial process. 

However, there are improvements that can be made in the way that each system state is 

calculated. This can come from careful selection of tools and methods, reducing the run 

time required.  

In an ideal situation, where more time is available to develop the system, it may 

be beneficial to implement these matrix calculations on a GPU, where the architecture is 

suited to matrix arithmetic. However, for these methods to be efficient on the GPU, time 

taken for memory transfer from the CPU to GPU must be taken into consideration. So, if 

implemented there must be a minimum amount of data transferred between devices; 

such as single control variables rather than large 𝑛 ∗ 𝑛 matrices describing system 
states.  

In this paper, the focus will be on creating the most efficient version of these 
methods with the tools provided by Matlab and the parallelization toolbox.  
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Algorithm Design 
 Algorithm design in this project was based around the best performance 

improvement that could be obtained in a short period of time.  There are two distinct 

separate areas of the problem that can be improved; the optimization algorithm and 
improving the quantum target function.  

Quantum target function 
 Due to time constraints and for simplicity, Matlab was chosen to model the 

quantum target function. This was due to the relatively lengthy time needed to develop 

a program that performed matrix functions with imaginary numbers in C. Due to the 

Matlab/Mex interface, it allows C to call Matlab functions and visa-versa. This interface 
allows for rapid development 

 The purpose of this algorithm is to provide a probability of transfer from A to B 

given the initial system controls. During the optimization the evaluation function is 

called thousands of times; when using the parallel line search technique. By improving 

this function slightly it can lead to a large reduction in runtime. The aim here was to 

reduce the number of evaluations performed by the Matlab code to reduce the runtime 

as much as possible.  

Algorithm outline 

EVALUATE 

function [ fx, g ] = evaluate(time, x, params){ 

fx = fx_eval(time, x, params); 

g = evaluate_gradient(time, x, params); 

} 

EVALUATE_GRADIENT 

function [ g ] = evaluate_gradient(time, x, params){ 

h = 0.000001; 

fx = fx_eval(time, x, params); 

for i = 1 : numel(x){ 

    xtemp = x; 

    xtemp(i) = x(i) + (h/2); 

    forward_diff = fx_eval(time, xtemp, params);     

    xtemp(i) = x(i) – (h/2); 

    g(i) = (forward_diff - fx_eval(time, xtemp, params))/h; 

} 

} 
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FX_EVAL 

function [ fx ] = fx_eval (time, x, params){ 

t = round(time(1)); 

delta = time(2); 

 

input(params(1)) = 1; 

target(params(2)) = 1;  

nSpins = params(3); 

 

for n = 1 : time_steps{ 

H_O{n} = H0; 

for ii = 1 : nSpins{ 

H_O{n} = H_O{n} + (x (ii) * H{ii}); 

}  

} 

 

//Calculation of U matrix  

for n = 1 : time_steps { 

U {n} =  expm(-1i*1*H{n}*delta); 

} 

 

//Calculate the final propagator 

total = U{1}; 

for n = 2 : numel(U){ 

total =  (U{n}*total); 

} 

 

probability = target * total * input; 

 

//Calculate the infidelity of the system to minimize 

fx = 1-abs(probability)^2; 

} 
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Algorithm decisions 

 GRADIENT CALCULATION 

 Due to the high cost of calculating an exact gradient, in this evaluation function 

the gradient is calculated by finite difference. In particular it is calculated by the 
symmetric difference, which attempts to draw a secant line that intersects 𝑓(𝑥) that can 

be used to represent the gradient  

 
𝑓 (𝑥 +

ℎ
2
) − 𝑓(𝑥 −

ℎ
2
)

ℎ
 

Due to the complex landscape of the quantum target function, there had to be 

careful consideration of the size of h. If h is too large then the gradient will be inaccurate, 

and if h is too small the gradient will be close to 0; suggesting an optima. For testing, an 
algorithm was setup to choose a value of h so that the secant line intersects 𝑓(𝑥). The 

algorithm recursively reduced the value of h until it was within tolerance. The optimal 
value of h for this application is: 0.000001. 

Algorithm outline 
function [ g ] = evaluate_gradient(time, x, params){ 

 …. 

if h > 0.00000001{ 

for i = 1 : numel(x){ 

if abs(fx - g(i)) > h{ 

h = h/10; 

              g = evaluate_gradient(time, x, h); 

return 

} 

} 

} 

} 

 

 VECTORISATION OF MATRIX CALCULATIONS 

 Matlab provides tools with optimal performance for matrix and vector 

operations, called vectorisation tools. They supposedly allow improved performance 

when performing the same operations on different data sets.  During design, it was 

important to take these into consideration, as the target function has many matrix 

calculations. However, when testing it was found that performance was significantly 
worse.  
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 The setup here was calculating the system propagator U for a ring of size 13, 

where the target was transfer from spin 1 to spin 7 and all control amplitudes were set 
to 1. The test was run 100 times and taken an average time from all runs.  

 

 

FIGURE 6 

Figure 6 represents the difference in timing between the two methods. The 

results showed that the vectorisaiton approach is 5.46% slower than a standard for 

loop. Similar performance was found throughout the program, and for this reason 
Matlabs vectorisation tools were mostly avoided.  

Parallel Line-search 
 One area that can be improved for parallelization in this project is the line search 

component of the L-BFGS optimization algorithm. Normally, this process is an iterative 

lightweight process that attempts to provide a rough step to optimize the values given.  

However, in this application, the line search algorithm was based around the single-

instruction-multiple-data (SIMD) style of programming that is utilized by NVidias CUDA. 

This style of implementation means that this line search can conduct many evaluations 

in a given search direction at one time. By sampling a 2D search direction many times in 

one function call it allows for a better understanding of the landscape, and can improve 
the probability that optima are not missed.  

 Inspiration for this line search came from a paper (Fei, Rong, Wang, & Wang, 

2014) that is based on parallelizing the L-BFGS-B (L-BFGS with box constraints). Where 

in the paper they used reduction on the GPU to find the minimum values for the step 

size 𝛼. 
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FIGURE 7 AN EXAMPLE OF A REGULAR INTERVAL SEARCH 

 In figure 7 the blue line represents the unknown line that is being searched, the 
black lines represent the regular interval sampling conducted by the line search.  

With the understanding that the landscape of the quantum control problem is 

very complex with many local extremes, the aim here is to create an accurate line 

search, which would lead to an improvement in finding minimums. In theory, by 

providing the optimization algorithm with a more accurate line search, it should reduce 
the number of iterations to find a minimum, which further reduces the runtime.   

 The basic outline of the program is to split the search area into regular intervals, 

and find the minimum of all points. The algorithm will then recurse, checking to the left 

and the right of the current minimum. This continues until a termination condition is 
reached. 

 There is, however an issue with using CUDA based line search, where the 

function evaluations have to be conducted on the GPU; where in this case they are 

conducted through Matlab on the CPU. Because of this, I have presented a proof of 

concept with test functions later on, and developed a CPU parallel line search. The CPU 

parallel line search utilizes Matlabs parallelization toolbox, which allows the creation of 

a local parallel pool, allowing multiple threads to run simultaneously. In this case, the 

evaulations are all run in parallel as they would if they were in a CUDA kernel.  
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Algorithm outline 

cudaLinesearch(int n, double x, double fx, double direction, double step){ 

 for i = 0 : 5{ 

  min_fx = +inf; min_thread = -1; 

  local_step = current_step +((step/number_threads) * thread_id); 

  for i = 0 : n 

   x_local[i] = x[i] + (step * direction); 

  for i = 0 : n 

   fx_local += fx_eval(x); 

  fx_values[thread_id] = fx_local; 

  __syncthreads(); 

  for i = 0 : number_threads{ 

   if(fx_values[i] < min_fx){ 

    min_fx = fx_values[i]; 

    min_thread = i; 

   } 

  } 

  __syncthreads(); 

  if(thread_id == min_thread){ 

   gradient = eval_gradient(x_local); 

         if(thread_id > 0){ 

             current_step = thread_step - stepsize; 

         }else{ 

             current_step = thread_step; 

         } 

   current_step = local_step; 

   x = x_local; 

   fx = fx_local; 

  } 

     __syncthreads(); 

     stepsize = (stepsize / num_threads) * 2; 
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 } 

 return(fx, x, gradient); 

}  

Line search termination conditions 

 Maximum number of iterations 

Step size is smaller than 1-e20  

Optimizing spin network controls 
 Due to time constraints in this project, implementing a CUDA version of this 

problem is not feasible. This is due to the large setup time required to develop the 

quantum target function in C. For the algorithm to run solely on the GPU, the quantum 

target function must be calculated on the GPU, where currently it is modeled in Matlab 
on the CPU.   

Because of these constraints, there has been a different approach to providing a 

proof of concept. The performance expected in terms of wall time should be similar, if 

not worse when utilizing the parallel line search method. However, in contrast the 

number of iterations performed should be less, suggesting that in the future, the 
algorithm could benefit from a more efficient parallel implementation.  

 To implement a parallel version of this line search technique, this 

implementation utilizes Matlabs parallel toolbox, where many local threads can be run 

simultaneously. This application loosely mimics the CUDA algorithm, where more than 

one line search evaluation can be conducted at one time. Although, it is important to 

note that this implementation used 8 CPU threads, rather than thousands of GPU 

threads.  

 When designing the test fucntions for the optimisaiton algorithm, they were 

utilized CUDA kernels for the parallel line search. The largest setback was implementing 

the CUDA compiler with the Matlab mex compiler, which allows CUDA files to be 

compiled and called from Matlab. This issue was due to an incompatibility with mex, 

CUDA, Windows 8 and Visual Studio versions. Installing Visual Studio (VS) 2010 & 2012, 

and then creating a custom install script to remove dependencies on VS 2008 rectified 

the issue. This issue was particularly frustrating, as there was no indication at the time 
of what was failing.   

 For the quantum target function, it was important to decide between a Matlab 

GPU or CPU implementation of the parallel line search. The issue is that only a small 

subset of commands are available to be run on GPUs via Matlab (MathWorks, 2015). 

Here, there is no suitable matrix exponential function that is required by the quantum 

target function. This is due to a specialized log2 function, which is not available to be run 

on GPUs through Matlab at the current time.  Despite this, an attempt was made to run a 

GPU version of the implementation. Figure 8 represents the runtime achieved with the 
two different parallelization methods.  



  

Max Chandler | Final Report 

21 

 

FIGURE 8 

 The timing results were collected for two separate matrix sizes: 10 ∗ 10 and 

100 ∗ 100. Each matrix was filled with a random numbers between 0 & 1 in each matrix 

location. From there, each matrix was evaluated 10 times inside a ‘parfor’ loop, which 

initializes Matlabs parallel execution of parallel loops, either on the CPU or GPU.  The 

aim here was to test to see if the Matlab parallel implementation on the GPU would be 
able to run more threads simultaneously, however, the results suggest that it does not.  

This GPU implementation is a hybrid, where the log2 function is performed on 

the CPU, and the value is passed back to the GPU. It is clear to see from the timings that 
this implementation is not efficient, and for this reason it was not used in the project.   

  

  



  

Max Chandler | Final Report 

22 

Controlling spin networks 
Introduction 
WHAT IS THE GOAL? 

 The control of spin networks is a current research area where practical 

applications could lead to long distance data exchange on quantum spin networks. The 

aim of quantum control is to maximize the probability of successful data exchange. 

However due to the natural unpredictability of quantum mechanics, this is a complex 
task.   

This application focuses on a closed network where only one bit of information 

is in the network at one given time. This system is designed to optimize initial controls, 

where the data will be collected from the system at a pre-determined time. The controls 

in this system are arbitrary numbers that represent the strength of an electromagnetic 

field that is individually placed on each spin.  The electromagnetic fields alter the spin of 
each network node by aligning the spin with the magnetic field.  

In this particular implementation, the controls are set for the duration of the 

system run time, and then a probability of transfer calculated at the prescribed time. For 

example: Given time t and the target to get information from spin 1 to spin 4, what 

controls would maximize the probability? This means that for every different 

configuration of the system controls, the evolution of the system needs to be re-

calculated which is the largest computational cost.  

System design 
 The system is modeled around a perfect spin chain, where it is completely 

isolated from the environment and no data is lost.  The representation of the system is 

close to a bilinear control problem, which is based on the following formula (Pardalos & 
Yatsenko, 2008).  

�̇�(𝑡) =  (𝐴0 + ∑𝑢𝑖(𝑡)𝐴𝑖

𝑚

𝑖=1

)𝑥 

Where x is a state vector, A is a constant 𝑝 ∗ 𝑝 matrix, and 𝑢(𝑡) is a restricted 

measurable control.  However, this equation state needs to be modified to fit a quantum 

control problem.  

|�̇�(𝑡) > =  −𝑖 (𝐻𝑑 + ∑𝑢𝑗

𝑚

𝑗=1

(𝑡)𝐻𝑗) |𝜓(𝑡) > 

 The equation above represents a bilinear control system in terms of the 

controlled Schrodinger equations. Here, the closed quantum system is described by the 
drift Hamiltonian 𝐻𝑑, 𝐻𝑗 represents the internal manipulations of the system (control 

Hamiltonians), where each control can be manipulated by its control amplitude 𝑢𝑗. 

Control amplitudes here are time independent and are constant.  To model the 

imaginary part of quantum mechanics, 𝑖 represents√−1. 
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MEASURING PROBABILITY 

 At each stage in time it is possible, given an input column vector (𝜓𝑘) and a 

target state (𝑝𝑒) in the form of a row vector to calculate the maximum probability. The 

probability is a degree of possible success, when transferring data from the input to the 
target spin. The probability is calculated in the following way.  

𝑝𝑙𝑘
(𝑡)
= |< 𝜓𝑘|𝑈(𝑡)|𝑝𝑒 > |

2 =  |𝜓𝑒
(𝑡)
|2 

 This probability measurement is the basis of the optimization, where the target 

is to obtain the minimum value. However, as this equation outputs the fidelity of the 

transfer, it needs to be converted to an infidelity, as to work with the minimization 

algorithm. This is done in the following fashion:  

min
𝑥
|1 − 𝑝𝑙𝑘

(𝑡)
|2 

Construction of the drift Hamiltonian 
 The system Hamiltonian 𝐻𝑑 is a 𝑛 ∗ 𝑛 matrix, where n is the number of spins in 

the chain.  This matrix represents the topology of the network, where the ring is 

constructed from XX nearest-neighbor coupling, which is derived from the Pauli 
matrices:  

𝜎1 = 𝜎𝑥 = (
0 1
1 0

) 

𝜎2 = 𝜎𝑦 = (
0 −𝑖
𝑖 0

) 

𝜎3 = 𝜎𝑧 = (
1 0
0 −1

) 

 This coupling is discussed further in ‘Information Transfer Fidelity in Networks of 

Spins’ (Jonckheere, Langbein, & Schirmer, 2014). It is not discussed any further in this 

paper as it is out of scope.   For simplicity the system is based around a single excitation 

subspace, were only one bit of information will be added in the system at one time.  The 

following matrix represents the constructed drift Hamiltonian, where any location with 

a ‘1’ represents a possible state described by the wave function.  

𝐻𝑑(𝑁) =  

(

 
 
 
 
 
 

0 1 ⋯ 0 0 0 ⋯ 0 1
1 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋮ ⋮
0 0 ⋯ 0 1 0 ⋯ 0 0
0 0 ⋯ 1 0 1 ⋯ 0 0
0 0 ⋯ 0 1 0 ⋯ 0 0
⋮ ⋮ 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 1
1 0 ⋯ 0 0 0 ⋯ 1 0)

 
 
 
 
 
 

 

System controls 
 For the system controls, there is additional control Hamiltonians required to 

represent the placement of the electromagnetic field in the system. These 

electromagnetic fields are placed to have a direct effect on one spin in the ring only. 

There are n matrices; each matrix is 𝑛 ∗ 𝑛, where n is the number of spins in the system.  

Each matrix has a 1 in the H[ j , j ] position, where j  represents the number of the matrix, 

the rest of matrix is 0s,  there are n matrices in total. The examples below are for 

matrices of any given size.  
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𝐻1(𝑁) =  

(

 
 
 
 
 
 

1 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0)

 
 
 
 
 
 

 

 

𝐻𝑛(𝑁) =  

(

 
 
 
 
 
 

0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 1)

 
 
 
 
 
 

 

   

INITIAL CONTROLS 

 From early research, it is possible to maximize transfer fidelity by providing 

initial controls to the system that place a strong control amplitude on the middle node 

between the transfers in a ring of odd numbers. This initial control bias helps steer the 

optimization process towards finding a high fidelity faster. 
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 These controls work as it essentially turns the topology of the ring into a chain, 

where nodes are linked in the following fashion (figure 9 & 10).  The solid lines 

represent the connections between the network nodes, however data naturally flows 

along the dotted lines. Figure 10 displays the transfer properties in standard spin 
chains, as described by (E. Jonckheere, 2014). 

 

FIGURE 9 CONTROLS CAN CREATE CHAIN LIKE BEHAVIOUR 

 

 

FIGURE 10 NORMAL CHAIN TRANSFER BEHAVIOUR 

 

 Due to these properties of spin chains, it is desirable to attempt to steer the 

optimization so the ring mimics this behavior. The initial system controls will be set to 
the following: 

 Middle transfer spin is assigned a random value from 5 to 15; e.g. spin 3 on a 

transfer from spin 1 to 5. 
 All other spins are given a control value from 0 to 1  

Manipulations of the system 
 Calculating the natural evolution of the system is an iterative process that relies 

on the previous state.  Each state is separated by a time difference Δ that is fixed for all 

iterations. In this instance Δ has the value of 10, which is an arbitrary time unit.  The 

equation below represents the previously mentioned Schrödinger equation modeled as 

a control problem; from this equation it is possible to calculate the value of the wave 
function 𝜓 for every time t. 
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|�̇�(𝑡) > =  −𝑖 (𝐻𝑑 + ∑𝑢𝑗

𝑚

𝑗=1

(𝑡)𝐻𝑗) |𝜓(𝑡) > 

State Transfer 
 State transfer is calculated as a function of time, given the initial values. This is 

concurrent with the Schrödinger equation, where the evolution of a quantum system 

can be calculated from the initial values. Here it is necessary to calculate the system 

propergator ‘U’. This is calculated from the system Hamiltonian. In the following 
equations, all of these conditions apply:  

 𝑖 represents the imaginary unit √−1,  

 ℏ represents the reduced Planck constant which is equal to ℏ =  
ℎ

2𝜋
. Where in 

instance, to simplify the problem, ℏ is equal to 1.  

 Every matrix is 𝑛 ∗ 𝑛 in size, where 𝑛 is the number of nodes in the network 

𝐻(𝑡) =  𝐻𝑑 + ∑𝐻𝑖𝑓𝑖

𝑛

𝑖=1

 

The equation above represents the calculation of the system Hamiltonian for 

every time t, the Hamiltonian represents the total energy of the system. It contains a full 

possible set of outcomes when a measurement is made of the system. In the above 

equation, 𝐻𝑑 is the system drift Hamiltonian, 𝐻𝑖 refers to each control matrix and 𝑓𝑖 

refers to the control amplitude for the given control matrix. The system Hamiltonian 

represents the state of the system in the form of a matrix.  

Once the calculation of the Hamiltonian has been done, it is possible to calculate 

the value of U, the system propagator that describes the transfer of the system between 

states. Calculating the value of U applies the system Hamiltonian to this specific 

quantum target function, this is the point when the quantum mechanical behavior is 

introduced.  

𝑈𝑛 = 𝑒𝑥𝑝𝑚(−𝑖ℏ𝐻𝑛∆𝑡) 

In the above equation, the value for U is calculated for every system time step 

(n), the values have been swapped, as t is used for explaining ∆𝑡; which represents the 
time difference between each time step.  

𝑈 = ∑𝑈𝑛 + 𝑈𝑛−1 +⋯+ 𝑈0
𝑛

𝑖=1

 

 Once the final value of U has been calculated, it is possible to calculate the final 

value of the wave function 𝜓 by multiplying the initial system state with the system 
propagator.  

|𝜓(𝑡) > = 𝑈|𝜓(0) > 

Optimal Targets 
 For this application, the aim is to maximize transfer probability given an input 

and an output node in a network. However, due to the inherent instability and 

unpredictability of quantum mechanics this makes the task much more complex than it 

is in traditional computing. 
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 In this project there are two aims for a transfer; calculate the best transfer 

probability possible and calculate the shortest time where a transfer has a probability of 
99.98% or more.  

Method  
TESTING 

In order to test the effectiveness of the implementation, there is a set of 

optimization functions with known minimums. The sphere and Rosenbrock function 

have been http://www.cardiff.ac.uk/insrv/libraries/trevithick/index.html#opening for 
testing as these represent both a simple and complex function to minimize.  

System setup 

 Number of dimensions from 10 to 1000 in increments of 10 to provide a large 

range of results 

 Initial values are random values between -5 and 5 

These test functions will display if the algorithm reaches the known minimums, 
and will provide a good benchmark of the effectiveness of each algorithm.  

BACKTRACKING LINE SEARCH 

 The sequential line search will only be conducted on one ring size for one 

transfer simply to compare the performance of both line searches. This is due to time 

constrains, as the sequential line search takes considerably longer to perform 2500 

searches (100 random times, 25 optimizations per time).  The results from this transfer 

will be used to compare performance between the two line search algorithms to display 

their behavior when applied to the quantum control problem.  

System setup  

 Ring of size 5 

 Only one qubit of data in the system at one time 

 Transfer from spin 1 to spin 2  

 Middle control amplitude is set to 5 – 15 

 All other control amplitudes are set from 0 – 1 

 Target time a random value from 1 – 100 

 Delta set to 10 

Backtracking line search termination conditions 

 Armijo-Goldstein condition is reached; return step size 𝛼 

 Step size is less than 1e-20; return error, exit L-BFGS 

 Step size is greater than 1e20; return error, exit L-BFGS 

 Maximum number of line search iterations conducted; return error, exit L-BFGS 
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PARALLEL LINE SEARCH 

 Due to the complexity of the problem, it is important to collect many results of a 

variety of initial conditions.  The following are the conditions for result collection when 
using the parallel line search.  

System setup  

 Rings of size 5, 9, 13 

 Only one qubit of data in the system at one time 

 Transfer from 1 to ring size in increments of 1, except 13 where transfers were 

incremented in 3 

 Middle control amplitude is set to 5 – 15 

 All other control amplitudes are set from 0 – 1 

 Target time a random value from 1 – 100 
 Delta set to 10 

The initial bias controls are derived from earlier research as to how the ring 

performs when equal bias is set on the spins. These biases are taken as an optimal set of 
controls that have been used to steer the optimization algorithm.  

Termination conditions for the optimization scheme also had to be carefully 

chosen to reduce system runtime, to allow a large range of collection of results in the 

time given. The following represent the L-BFGS settings. 

L-BFGS termination conditions 

 Line search returns a step size of 0 

 Maximum number of iterations reached - 50 

 Gradient is sufficiently small: 
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑛𝑜𝑟𝑚

1
< 1𝑒 − 5 

Parallel line search termination conditions 

 Step size is smaller than 1e-20; returns step size 𝛼 
 

This method will provide result sufficient for  
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Results and Evaluation 
Test functions 
 When testing optimization algorithms, there are sets of test functions available 

that are designed to test many aspects of optimization algorithms, including: velocity of 

convergence, precision, robustness and general performance.  Two functions have been 
selected, the sphere function and the Rosenbrock function.  

  

Sphere function 

 

FIGURE 11 

𝑓(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 

 

 The sphere function is a simplistic test function; it was chosen to test the 

combined accuracy of the line search and direction calculation. The global minimum is 

found when all values of x are equal to 0. Due to the landscape of the problem, the 

minimum should be easy to reach with a correctly conditioned optimization algorithm. 

An accurate line search algorithm will allow the minimum to be found in very few steps.  



  

Max Chandler | Final Report 

30 

Rosenbrock Function 

 

FIGURE 12 

𝑓(𝑥) =  ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝑛−1

𝑖=1

 

 The Rosenbrock function (figure 12) was chosen due to the relative difficulty of 

finding the minimum of a problem.  The function was first described in The Computer 

Journal (Rosenbrock, 1960). The function allows the optimization algorithm to find a 

value close to the minimum relatively quickly; however once close to the global minimal 

the gradient differences are minute, testing the accuracy of the optimization algorithm.  

The lowest parts of the valley are virtually flat; this is designed to test the true 

robustness and accuracy of an optimization algorithm. 
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Line search performance on test functions  
Sphere function 

 

FIGURE 13 

 

FIGURE 14 
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Rosenbrock Function 

 
FIGURE 15 

 
FIGURE 16 
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Evaluation 
 From the two test functions it is possible to derive some understanding of how 

each line search method works given two different environments. There are a few clear 

performance differences between the parallel and backtracking line search.  

Sphere function performance 
 As previously discussed, the sphere function is a simplistic function, where a 

correct calculation of direction should lead to the minimum in very few steps, 

independent of the number of variables. This can be seen clearly when comparing the 

number of iterations performed by the L-BFGS algorithm, where at each iteration of the 

algorithm a line search is conducted. If a line search is more accurate, in theory it should 
mean that less L-BFGS iterations are conducted. 

 RUNTIME 

 When comparing run-times, it is clear that the lightweight backtracking line 

search performs more efficiently when given a smaller number of initial values, however 

it does not scale well when extra dimension are added. In comparison, the backtracking 

line search begins to preform better when more dimensions are added. There also 

appears to be a clear difference in the stability of the algorithms, where backtracking 
line search has a few spikes in wall time, where the parallel line search does not.  

 NUMBER OF ITERATIONS 

 The parallel line search significantly outperforms the backtracking line search 

here, where it is consistently solving the sphere function in two steps. When applying 

this line search to the quantum control problem this should significantly reduce 

runtimes, where function evaluations are extremely expensive. This contrast in behavior 

would explain the large increase in L-BFGS runtime when using a backtracking line 

search.  

Rosenbrock function performance 
 The Rosenbrock function is a challenge for many optimization algorithms, as 

towards the minimum the gradient is minute. This function tests the ability to aid the 

optimization algorithm to find the minimum quickly, where a poor line search will lead 

to significantly more optimization iterations.  

 RUNTIME 

 For this problem, the parallel line search does not outperform the backtracking 

line search, and on the surface seems to be unsuitable. The lightweight backtracking line 

search helps L-BFGS to find the minimum in significantly less time. This graph displays 

the effect that the evaluation function has on the line search, where it increases the time 

taken for the line search dramatically.  

 NUMBER OF ITERATIONS 

 When comparing the number of L-BFGS iterations, the performance is fairly 

close, however the parallel line search is marginally better. This difference in the 

number of iterations performed on a hard problem has potential to be improved to form 
a faster, parallel implementation.  

Conclusion 
 The aim when developing this line search algorithm is to reduce the number of 

function evaluations by improving the accuracy. This line search appears to be doing 

this for complex algorithms where the gradient calculations are difficult and performing 
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very well when the function is simple. Overall, this line search algorithm has been 

proved to be more successful than the basic backtracking line search in achieving these 
goals. 
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Quantum control 
Algorithm Performance 

 The following results represent a comparison between the final parallel line 

search and the standard backtracking line search.  The results display a transfer from 

spin 1 to spin 2 in a ring of 5 spins with a random time t from 0 to 100. 100 random 
times were tested, where each time was also tested 25 times. 

 All results, unless stated otherwise do not include failed runs (where 1 or less 
steps were taken). 

BEST TRANSFER PROBABILITY 

 
FIGURE 17 

Figure 17 represents the best infidelity found given the time t; it is the best 

result of the 25 runs.  These results essentially describe how successful the system is, 

where a lower infidelity is better.  The majority of results from both line search 

techniques fall within similar ranges, however these results are not directly comparable, 

as the times are not exactly the same.  This plot suggests that algorithm performance is 

similar, as the minimums found are similar. The majority of results shown in this plot 

would ensure a 99.985% success rate of information transfer between spins, which is a 

good result for all times.  

The range in the results displays the difficulty of the problem, where no 

optimization ever reaches 0, but where many reach very close. It is also important to 

note that time does not appear to play a significant role in influencing results, where the 

optimization algorithm was able to reach an acceptable minimum at the majority of 

times.  
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DISTRIBUTION OF BEST TRANSFER PROBABILITY 

 

FIGURE 18 

 To describe the behavior of the system more clearly, figure 18 represents the 

distribution of the best results. The plot is a histogram of results with a line of best fit for 

each line search; both plots are laid over each other to allow a direct comparison of 

results.  This plot is intended to show the accuracy and precision of the L-BFGS 
algorithm given the different line search algorithms.   

From the plot, it is to see that the standard backtracking line search provides 

results where on average the infidelity reached is lower with a narrower range. In 

contrast, the parallel line search has a larger range of results, suggesting a less precise 

outcome and a higher infidelity achieved denoting a less accurate algorithm.  

 This suggests that the backtracking line search is more suited to solving the 

problem, as it is outperforming the parallel line search when finding the minimum.  This 

may be due to the exit conditions of the parallel line search, where instead of looking for 

a sufficient decrease of the objective function relative to its slope, it is looking for an 
exact reduction.  
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AVERAGE FIDELITY REDUCTION 

 

 

FIGURE 19 

  Figure 19 displays the average infidelity reduction of every L-BFGS run, not just 

the best runs.  The aim of this graph is to display the efficiency and consistency of the L-

BFGS algorithm, with the two line search functions. This graph clearly displays how 

helpful each line search algorithm is at aiding the optimization for finding minimums.  

It is clear to see, that the backtracking line search has a much better average 

performance, where it constantly reduces the infidelity more than the parallel line 

search.  Where as in comparison, on average the parallel line search performs much 

worse at aiding L-BFGS to find a minimum.   

 When considering the standard deviation, it is interesting to note that the 

parallel line search never outperforms the best performance from backtracking line 

search. Whereas the backtracking line search appears to outperform the parallel line 
search for the majority of the time. 

 These results suggest how much more suited the backtracking line search is to 

solving the problem, by consistently aiding the L-BFGS algorithm enough to reduce the 

infidelity more than if the parallel line search method is used. However, this maybe due 

to algorithm design, where the backtracking line search is looking for a sufficient 

decrease rather than an exact minimum. It may be, that by finding an exact minimum on 

the line it leads the optimization algorithm into local minima, where it is difficult to find 
an accurate search direction to the global minima.  
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 There is also something to be said about the robustness of each algorithm, the 

results suggest that the backtracking line search will be able to find an infidelity close to 

a minimum in more cases than the parallel line search.   For example, if the starting 

infidelity is around 0.25 and performance is based on the average infidelity reduction; 

the backtracking line search should be able to aid L-BFGS to reduce the infidelity to 

around 0.02. However, if the parallel line search is used, it may only reduce it to around 

0.09. Although both results imply a high transfer probability (99.98% and 99.91% 
respectively), it would explain the results found in figure 19. 

 

RUNTIME COMPARISON 

 

FIGURE 20 

Figure 20 is a plot of the wall time for each optimization to run given the value of 

the system input time t. From this plot, it is possible to deduce a few distinct patterns in 

how the two algorithms are impacting the performance of the optimization. It is 

important to note that for early system time values, the search problem is extremely 
hard, explaining the scattered results.  

Firstly, the parallel line search performance improves with the number of 

timeslots to calculate for. This is counterintuitive, as the evaluation function takes more 

time with more time steps, this may also suggest that the algorithm is finding a 

minimum in less iterations.  Once the number of time steps (system time) reaches 

around 35, the parallel line search appears to have a linear performance with a narrow 

spread, suggesting a consistent behavior that will scale well with the number of 

variables.  
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In contrast, the performance of the backtracking line search is varied, and is 

spread across two distinct areas; one where the average time appears to be 1 ∗ 104 

microseconds, and the other where the performance appears to be around 2 ∗

104microseconds. This may be due to the number of line search iterations increasing, 

suggesting that the backtracking line search is low when the step size is not easy to find. 

It is also worth noting that once the number of system time slots reaches around 35 the 
performance is consistently worse than the parallel line search.  

 Finally, it is also worth noting the spread of the timing results for both of the line 

search algorithms, when the number of system time slots is below 35. The range of 

results could indicate the difficulty to find a minimum in the early stages, suggesting the 

search space has more local minima and maxima.   

 Overall this graph suggests that the parallel line search yields an improved 

performance in terms of overall optimization time, however this may be due to machine 

specific architecture. This is encouraging, as it also suggests that a more efficient parallel 

implementation could lead to a better increase in performance, as the current 
implementation can be improved.  

COMPARISONS OF NUMBER OF ITERATIONS 

 

FIGURE 21 

 Figure 21 above represents the average number of L-BFGS iterations required to 

find a minimum or an exit condition, for all runs that did not fail. This graph is an 

analogue to the timing runs, where it is possible to distinctly measure algorithm 
performance independently from a computer’s physical performance.  

 This plot clearly shows the two different behaviors of the line search algorithms, 

where the backtracking line search takes a many iteration lightweight approach, and the 
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parallel line takes few well-calculated steps. From these results, it is possible to 

conclude that the performance of the parallel line search is much more consistent than 

the backtracking line search, where it is consistently aiding the optimization algorithm 

to reach a termination condition in under 10 iterations. In contrast, the performance of 

the backtracking line search has a wider spread, and the average number of iterations 

increases over time.  

With the results from figure 20 and 21, they both suggest that with 

improvements to the parallel algorithm runtime, the speedup could be substantial. As 

the number of total iterations is low, however the algorithm is not entirely efficient in 

the current implementation leading to a sub-standard runtime. There would be an 

obtainable speedup from a pure C/CUDA implementation of the quantum target and line 

search functions.  

COMPARISON OF THE NUMBER OF FAILED RUNS  

 

FIGURE 22 

 Figure 22 above represents the number of failed L-BFGS runs for all results, at a 

given system time. A failed run is where the system took one step or less. This definition 

of a failed run has come from the L-BFGS algorithm, where the first step is essentially a 

gradient descent.  Once past the first step, the L-BFGS calculates a much more accurate 

direction from the inverse Hessian matrix.  Typically, the first step for the system is 

often very small (> 1e-5), and this is an issue for a line search algorithm that is not 
efficient at searching through small spaces.  

 This plot shows the inefficiency of the parallel line search algorithm, where 

aiming to find a minimum in the search direction can be detrimental to program 

performance. In this instance the backtracking line search outperforms the parallel line 
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search by at least providing a step size. Due to the characteristics of the L-BFGS 

algorithm, it does not need an exact line search method, and it appears that the 
searching for an exact minimum can be detrimental to program performance.  

 These results suggest that employing the Armijo-Goldstein condition, rather 

than attempting to directly minimize, could improve the parallel line search algorithm. 

In this modification of the algorithm, the line search would sample in a similar way, but 

would find the condition with the greatest decrease in relation to the objective function. 

The sampling could be configured to segment the line into equal portions, and conduct a 

backtracking line search in each segment, then perform a reduction action that would 

return the step size 𝛼 that best reduces the objective function in relation to the Armijo-
Goldstein condition.  

Controls produced 
 The following figure (23) is one example of a control produced for a ring of size 

9, where the target was to transfer data from spin 1 to spin 9.  The parallel line search 

reached an infidelity of 0.00034, suggesting a transfer probability of 99.99966%.  In this 

occasion, the results for controls produced do not follow the symmetry implied by the 
initial controls.  

 

FIGURE 23 

 The infidelity reached in this example is an exceptional result, where around 1 

bit would be lost per 300,000 bits transferred. This result is comparable to the packet 

loss of UDP packets across a network, where for a 8ms transfer the probability of loss is 

0.23% (Bolot, 1993). A 8ms network transfer is comparable for the time taken to ping 

google.com from the Cardiff University network (appendix, figure 31). Considering the 
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uncertainty of quantum control, when compared to definite behavior of classical 
computing techniques this is an excellent result.  

 

FIGURE 24 OPTIMIZED VS NATURAL SYSTEM EVOLUTION 

 

FIGURE 25 OPTIMIZED VS UNOPTIMISED SYSTEM EVOLUTION 

 

To understand the effect that controls have on the system, figure 24 displays the 

transfer probability for the same system as before for an uncontrolled system compared 

to the natural evolution of the system given no controls. From this it is clear to see what 

effect the controls have on the system, where the natural evolution of the system is 

extremely sporadic, and how the best transfer probability achieved is around 35% 

where t is around 40. A well-optimized system provides a large improvement on the 

final transfer probability. 
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Figure 25 compares the probability of the un-optimized controls with their 

controlled counterparts. Although the random initial controls are designed to steer the 

optimization to find a global minimum, their effect is only marginally better than the 

natural evolution of the system. From here, it is clear to see how much an improvement 
the optimization can bring to the system. 

Types of controls produced 
 From the results, there appear to be three classes of controls produced; one 

where the ring follows the initial system controls and behaves like a ring. Another, 

where the optimization appears to segment the ring into separate parts, and finally a set 
of controls where there is no clear indication of a pattern.  

 SYMMETRIC CONTROLLS 

 As previously discussed in initial research, it can be favorable to attempt to steer 

the optimization to a chain topology as transfer in chains is relatively known. This type 
of control appears in the smaller ring sizes more frequently as the optimal result.  

 

FIGURE 26 

  
Figure 26 displays the type of controls achieved, where the optimization has 

made relatively little changes to the initial random controls.  For a ring size of 5, this 
type of control holds the optimal transfer for every transfer (1 to 2, 1 to 3…). 

RING SEGMENTATION 

 The second distinct type of control produced is less frequent than the symmetric 

chain type controls, and appears more frequently on larger ring sizes.  This type of 
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control appears to segment the ring into distinct parts, where it seems to be isolating the 
qubit to only transfer through a much smaller sub-set of the network.  

 

FIGURE 27 

 Figure 27 represents these types of controls, where in this instance the target is 

to transfer from spin 1 to spin 3. It appears that the optimization is isolating a subset of 

the network; by placing strong controls to create boundaries. In this instance, it seems 

to segment a network from, where spins 1,2 and 3 are isolated and spins 5,6,7, and 8 are 

isolated. However, as the initial system state is where the information is contained in 

spin 1, the probability of successful transfer to spin 3 is increased, as it should remain 

relatively contained in the segmented network. Figure 28 displays the theoretical links 

that are made with this control, denoted by dashed lines, solid lines represent the links 

and the gradient on spin 4 and 9 represent the strong controls.  
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FIGURE 28 

This diagram depicts a clearer picture of the possible behavior of the network 

given the controls. These assumptions are based on the behavior of spin chains. From 

here, it is clear to see how this would be advantageous to use this style of control for a 
transfer from spin 1 to spin 3. 

UNKNOWN CONTROLLS 

 As the network size is increased, there are different types of controls that are 

produced, where there is no clear pattern. Figure 29 displays two types of optimal 

controls for a ring of size 13. Both of the solutions have a relatively high control bias on 

the initial and target spin, which would naturally suggest that the transfer is less likely 

(if compared to controls on smaller ring).   

 

FIGURE 29 

Evaluation  
The range of controls possible represent the difficulty of the landscape that is 

being optimized, and how little is known about how these networks behave.  Quantum 

spin chains are an incredibly difficult problem to optimize, due to the unpredictability of 

behavior inside the network.  There is possibly a large range of quantum network 

controls that need to be categorized, which are optimal for each size of ring or transfer. 

In this instance, only odd size rings have been used for transfers in the attempt to steer 

optimization to symmetric ring like behavior.  However even this know property of 

quantum networks provides sub-standard results compared to these unknown controls 

that are being produced.  
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Evaluation 
From the results produced in terms of algorithm performance and results 

produced it is clear to see that this problem is extremely difficult, with very 

unpredictable behavior. Parallelization of current techniques has lead to a speed up 

when producing controls, however, due to the parallel algorithm being under-

developed, it lead to a worse performance in terms of average transfer probability 
achieved. 

 The method employed in this study was designed around gathering a large range 

of results with an acceptable level of accuracy. The narrow band of conditions used to 

collect results provided ample results for a basic level of analysis, however these results 

will be hard to apply to a larger group. This is because there are many other network 

topologies that need to be researched, rather than just rings of odd size. For example, 

the controls produced for a ring of size five will not necessarily work on a ring with even 

number. Overall, the method for this project was successful at producing descriptive test 
and main system results.  

 The two line search techniques take two different approaches to computing a 

suitable step size, where currently the backtracking line search yields a better 

performance in terms of accuracy and precision. However the parallel line search 

performs significantly better in terms of system wall time and number of iterations. A 

future approach could be designed to combine components of each line search; search 
for a suitable decrease in parallel, rather than an exact minimization.  

 In this paper, there has been minimal discussion of parallelizing the quantum 

target function; due to the implementation given the time constraints. This process 

could potentially benefit from being implemented on GPUs, where matrix calculations 

suit the architecture of the cards. There were efforts made to develop a C 
implementation of the target function, however it was dropped due to time constraints.  

 When comparing the controls procured, it is simple to see that due to the 

unpredictability of quantum spin networks it is hard determine what controls are most 

efficient. Considering that this application was designed to steer the optimization 

algorithm to one type of possible control, there are results that contradict this logic, 

suggesting that there are many different classes of controls.  

 The method in this project was restrictive to a certain subset of results; this is 

due to the long wall time of calculating an entire set of results for a ring. On the 

computer designed for this project, with it running 24/7 it took just under 20 days to 

collect the results. If more time was available, more ring sizes would be tested, a larger 

range of times would be tested and the number of evaluations per time would be 

increased. This would allow for a more in-depth study of algorithm performance and the 
behavior of spin networks.  

 When comparing sequential and parallel results, only a ring of size 5 was used. 

This is extremely restrictive, as looking at the results there appears to be one type of 

control that is dominant. If there were more time available it would be beneficial to 

compare performance across several ring sizes, and to see if the line search influenced 
the types of controls produced on different network sizes.  
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Conclusion  
 The aim of this project was to develop a GPU parallel implementation of the L-

BFGS algorithm, which would be applied to a quantum control problem. During the 

course of this project, it quickly became apparent that it would not be possible to 

achieve this target in the time given. However, a different approach was taken to display 

a proof of concept; test functions that displayed CUDA functionality, and a CPU parallel 

L-BFGS algorithm applied to a quantum target function.  

 Overall, the system produced displays promising results when applied to the 

quantum control problem by reducing wall time and number of system iterations. This 

suggests that the methods explored in this paper could be applied to a more efficient 
parallel implementation, which would lead to larger increases in performance.  

 The method explored in this paper was designed around saving time, where only 

a small range of network topologies, transfers and sizes were collected. Despite a timely 

development of the parallel algorithm, it took over three weeks to collect all results, 

which is a large portion of the total time for the project. For this reason, it will be 
incredibly hard to abstract this study to other network topologies, sizes or transfers.  

 The results produced displayed some interesting characteristics of spin chains, 

where the output controls did not indicate clear behavioral patterns.  The results 

produced are varied, despite the initial controls attempting to steer the optimization 

algorithm to a symmetric-chain type control.  The results indicate the complex behavior 

of spin networks, where it may be beneficial to research a classification of the different 

types of controls that suit different network topologies.  

 The development of the system went smoothly overall; the largest issue in the 

project that consumed time was the setup of Matlab and integration with CUDA and 

Windows 8.  However, this was expected and was integrated into the initial plan, 
meaning each section of the report was delivered on time.  

 In conclusion, this project has provided a good proof of concept, where a parallel 

implementation of the L-BFGS algorithm brought benefits in terms of runtime and 

number of iterations. In future work, this paper can be the basis of a faster and more 
accurate algorithm.  
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Future improvements 
 A CUDA PARALLEL IMPLEMENTATION 

 There are several areas where this work can be improved, where the largest 

improvement could be made through a different parallel implantation in GPGPU 

programming techniques.  This form of parallelization is particularly suited to matrix 

arithmetic and may yield faster results. This is due to having many (often thousands) 

lightweight threads that will perform individual operations, and then perform a 
reduction to collate results.   

In this implementation, the quantum target function may see large performance 

increases in terms of wall time due to the large number of matrix operations. Although 

this implantation would no longer be based on code written for Matlab, it would still be 

possible to compile and run the program from Matlab. This would allow for continuation 

of the use of Matlab’s graphing and analysis functions.  

 MACHINE LEARNING OF INITIAL PARAMEMTERS  

 In this paper, estimation of initial controls was based on random number 

generation. It would be interesting to collect data on networks where the initial controls 

where the same, the output for each network size, time and transfer would become the 

basis for a learning data set. From there, using a machine learning technique it would be 

possible to estimate initial system bias parameters based on previous controls. The aim 

here would be to create a system that could limit the search space for the optimization 

algorithm by providing an accurate initial guess at system parameters. For example: 

Transfer qubit of information from spin 1 to spin 9 in a network of 10 spins, what time and 

controls would maximize transfer probability? 

 A MORE DETAILED INVESTIGATION OF TIME 

 In this application, the time search is very coarse, where the distance between 

points in time is relatively large. It would be beneficial in the future to decrease the 

distance between step sizes in time, and increase the number of time slots. For example, 

500 time steps with a delta size of 1, rather than 50 time slots with a delta size of 10.  

This would provide a much more detailed, step-by-step evolution of the system, it would 

allow for a more detailed understanding of how the system evolves, and what times are 

optimal for different transfers. However, due to the direct relation between the number 

of time steps and the time taken for the quantum target function this would greatly 

increase the wall time of the system. In the final version of the system evaluation in this 

project, there are the following number of operations in relation to the number of spins 

(s) and timeslots (t).  

(3 ∗ 𝑡) + 𝑡𝑠 +  𝑠 

 Considering that the line search function runs this target function at least 2,500 

times for each iteration until an exit condition is met, the number of timeslots evaluated 
should be kept to an absolute minimum; unless wall time is not an issue.  

 AN IMPROVED LINE SEARCH METHOD 

 Currently, by exactly minimizing to achieve the step size 𝛼 may not be the best 

solution, as L-BFGS does not need an exact step. It would be beneficial to firstly restrict 

the search space, by not allowing the line search algorithm to recuse to find the exact 

minimum. In this version it would sample the line at regular intervals once. From there, 

instead of fining the minimum of the values, it would be better to use a condition for 
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finding the best value in relation to either the Armijo-Goldstein condition or the Wolfe 
conditions.  

 This change in the line search behavior would greatly decrease the line-search 

wall time, but decrease the accuracy currently offered. However, this approach 

combines the benefits of a normal backtracking line search with these conditions, which 

has been proven to be more accurate in this paper, with the speed of the parallel line 

search. If anything, these conditions combined with a parallel approach would provide a 

more accurate result than a normal backtracking line search.  

 A DIFFERENT LINE SEARCH APPROACH 

 Simulated annealing is a useful method when attempting to find optima, where it 

takes large step sizes around the search space that eventually become smaller and 

greedier around optimal values.  The aim of simulated annealing is to provide a result in 

the time given, in this application; it would produce a step size 𝛼 along the line. The step 

size 𝛼 could also be inline with the Armjio-Goldstein or Wolfe conditions as previously 

mentioned. This line search technique may have benefits over the parallel line search, as 

it would provide a definite answer in a given time, however it may not nessasarly be the 
optimum.  

Extensions to this work 
 DIFFERENT NETWORK TOPOLOGIES 

 In this paper there is only an exploration of rings that have an odd number of 

spins, this research has a very narrow scope that is hard to generalize. It would be more 

appropriate to explore a larger range of network topologies; chains, rings, stars, 

hypercube, fully connected, bus, mesh networks or any combination of any of these. By 

exploring the different network topologies, it would provide a better understanding of 
how network topology affects the transfer of qubits.  

 NO RESET BETWEEN TRANSFERS 

 Currently, the network is simulated from a neutral starting position for every 

transfer. It may be possible to introduce a second transfer after the first in a system 

without resetting back to a neutral position. The major issue here is that when a qubits 

state is measured it affects the state of the system. It may be possible to shut down the 

qubits used for previous transfers with strong controls and continue to use the rest of 
the system for the future transfers.   

 ADD TIME AS AN OPTIMISAION PARAMETER 

 Currently the system is prescribed a time when the data is going to be measured 

from the system. It would be interesting to explore time as another optimization 

parameter, as there may be times where a greater transfer probability can be achieved. 

However, when comparing the minimum infidelity in figure 17 over time, there appears 

to be a uniform distribution, suggesting that there are no optimal times for transfer if 
optimal controls are found.  

Another option would be, given a set of controls that are not optimized, find the 

best time for the transfer. However, there appears to be no real benefit to this scheme, 

as there are few real world applications where this would be the optimal choice.  
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 CLASSIFICATION OF CONTROLS 

 In this paper, there are two different types of controls described that produced 

some of the optimal results (symmetric chain and partitioning of rings).  However, as 

the ring size increased, there were some complex controls that were observed of which I 

could not explain the behavior inside the network. I believe that there is a large set of 

quantum spin network controls that should be classified, not just for rings, but also for 

all network topologies. The classification should come from a scheme where a large set 

of network sizes is checked, transfer from and too all nodes is checked and where initial 

controls have a uniform distribution; such as all random numbers in the range 0 to 1. 

These controls would be the benchmark for describing controls in spin networks and 
allow a broader understanding of how these controls manipulate the state of the system.  

 EXPAND AND COMBINE NETWORK TOPLOGIES 

 As the study of this paper is around the application of a ‘quantum-router’, the 

natural evolution of the system would be to extend the topology to contain other 

network components. Figure 30 below displays a network where chains have been 

added to certain ring spins, in a hardware application the end nodes may represent 

different computer components; hard drives, processors or memory units. Or on a much 

larger scale, a small network that contains identities where the target is to get data from 
Alice to Bob.  

 

 

FIGURE 30 
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Reflection on learning 
 In reflection, this project has taught me a great deal of applying a scientific 

method to a project to achieve a successful outcome. In the past, I have had experience 

on working on projects with a specific aim; such as developing a piece of software with 

the functionality ‘x’. However, this dissertation was based on a much more exploratory 

approach, where planning program development relies heavily on current process and 

discovery. This structure is completely different to any that I have done in the past, 

where the outcome was unknown. It was essential to constantly review and reflect on 

current progress to steer the project towards a modified outcome; CPU parallel rather 
than GPU implementation.  

 When compiling results from a scientific study, displaying them in the correct 

manner is essential.  This project has produced an extremely large data set of results, 

where the individual values produced have little value. Whereas combining results into 

descriptive graphs can display a large amount about algorithm behavior that is not 
readily apparent when viewing the raw data.   

 The project development process has taught me how important it is to keep up-

to-date with current research, where recent papers can aid in the development of your 

own research. Throughout the project development I managed to follow the plan 

highlighted in the initial project report (see appendix, figure 32). This allowed me to 

complete the project with time to allow for results collection, which took a substantially 

long time.  

 Personal time management in this project was extremely important, as the 

development and competition on time relied on my commitment. This was not too much 

of an issue throughout the project, as the subject area is interesting to me. By having a 

supervisor meeting every week helped develop ideas and provide solutions for current 

problems. Through the use of GitHub in this project, it allowed me to keep an accurate 

track of what I had achieved in the previous weeks, it has also aided in the writing of this 

final report by allowing me to reflect on key milestones in the project.  

 In terms of amount learnt, this project has taught me a great deal about scientific 

research methods, quantum mechanics, control theory and optimization. This project 

was chosen due to an interest in quantum computing. However the largest limiting 

factor was how little past experience I had with mathematics of this level; I had to spend 

a month learning A-Level math before trying to understand how these systems were 

formed. Despite this, I have finished this dissertation with a much deeper understanding 
of mathematics and physics. 

 Overall, I have learnt a great deal on how to apply a scientific method to achieve 

accurate and descriptive results; in an application like this, it is vital to provide data to 

back up a statement. Presenting scientific data in a meaningful way is crucial to allow 
readers to effectively understand exactly what is being presented.  
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Table of abbreviations 
 Qubit: A quantum bit of information, the analogue of a digital bit of information.  

 BFGS : The Broyden–Fletcher–Goldfarb–Shanno algorithm, a second order 

quasi-Newtonian optimization method. 

 L-BFGS: The Limited-memory-BFGS algorithm, a variant of BFGS where large 

matrices are not stored.  

 Spin: (in reference to quantum spin), the angular momentum of a molecule’s 

spin around its own axis. There is also an orbital form of spin, such as when a 
molecule orbits a nucleus.  
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