

Final Report: Parallelizing

the L-BFGS algorithm on

GPUs for Quantum Control

problems

Author: Max Chandler

Supervisor: DR Frank Langbein

Student Number: C1125169

Module: CM3203

Module Title: One Semester Individual Project

Credits: 40

 ii

Abstract
 Control of quantum spin networks is an inherently difficult problem, where the

search space has many local extremes. The difficulty of this problem is due to the

quantum mechanical behavior of the spins, which are central to the operation of the

network. Due to the nature of the problem, optimization of system controls is costly and

time consuming. By improving on current techniques through the use of parallelization

techniques, it is possible to reduce runtimes. This dissertation aims to investigate the
areas for potential speedup of currently used methods.

Acknowledgements
 I wish to express my sincere gratitude to Dr. Frank Langbein for his guidance on
this project. His help and time during his sabbatical year was highly valued.

 iii

Table of Contents
ABSTRACT ... II

ACKNOWLEDGEMENTS ... II

INTRODUCTION ... 1

AIMS... 1

BACKGROUND .. 2

Quantum mechanics and Spintronics .. 2

Bra and Ket notation ... 3

Schrödinger’s equation ... 3

Spintronics .. 3

Spin Network Control .. 4

OPTIMIZATION .. 5
Evolutionary Algorithms .. 5

Swam Intelligence ... 5

Simulated Annealing .. 6

Gradient-based Optimization .. 6

APPROACH ..10

TOOLS .. 10
Software ... 10

Hardware .. 10

OPTIMIZATION SELECTION FOR THIS PROJECT ... 11

Pre-existing work .. 11

Line-search Methods .. 11

PARALLELIZATION ... 13
Line search.. 13

Quantum target function ... 13

ALGORITHM DESIGN..14

QUANTUM TARGET FUNCTION ... 14

PARALLEL LINE-SEARCH .. 17

OPTIMIZING SPIN NETWORK CONTROLS .. 20

CONTROLLING SPIN NETWORKS...22

INTRODUCTION .. 22

SYSTEM DESIGN .. 22
Construction of the drift Hamiltonian ... 23

System controls .. 23

MANIPULATIONS OF THE SYSTEM ... 25

METHOD...27

RESULTS AND EVALUATION ...29

TEST FUNCTIONS ... 29

LINE SEARCH PERFORMANCE ON TEST FUNCTIONS ... 31

 iv

 .. 32

 .. 32

Evaluation ... 33

QUANTUM CONTROL ... 35

Algorithm Performance .. 35

 v

Controls produced ... 41

Evaluation ... 46

CONCLUSION ...47

FUTURE IMPROVEMENTS ..48

EXTENSIONS TO THIS WORK ..49

REFLECTION ON LEARNING ..51

TABLE OF ABBREVIATIONS ..52

REFERENCES ...53

Max Chandler | Final Report

1

Introduction
 Control of quantum spin networks is an inherently difficult problem, where the

search space has many local extremes. The difficulty of this problem is due to the

quantum mechanical behavior of the spins, which are central to the operation of the

network. Due to the nature of the problem, optimization of system controls is costly

and time consuming. By improving on current techniques through the use of

parallelization techniques, it is possible to reduce runtimes. This dissertation aims to

investigate the areas for potential speedup of currently used methods. Progress will be

monitored by evaluation of the improvement gained in terms of accuracy, precision,
robustness and runtime.

 The focus is on the control of spin chains, which simulates a router, where

optimal controls maximize the probability of information transfer from one spin to

another. Individual spins are controlled using magnetic control fields. The magnetic

fields affect the spin of each individual element by aligning the spin with the magnetic

field, the stronger the field the greater this effect is. When a relatively large control is

placed on an individual spin, it effectively isolates it from the network, as there is a

much-reduced chance of spin state transfer when it is aligned with the magnetic field.

 The optimization part of this project is aiming to provide the best controls,

which maximize the probability of successful data transfer between spins. For example,

transfer from spin 1 to spin 3 is desired; the system is prescribed a fixed time t, where

the controls are the only variable in the system. The probability of the system is then

improved by optimizing the controls, in this case by a gradient based optimization
algorithm; L-BFGS.

 Parallelization of these methods will allow for research to be conducted in a

timelier manner, as the current methods are extremely time consuming. In this paper,

there is an exploration of improvement of accuracy as well as speed; parallelization

allows for more functions and evaluations to be performed at the same time, providing a

more detailed description of the search space.

Aims
 The main aim of this project is to research the possibilities of parallelization of

currently serial methods for achieving optimal system states. Through parallelization of

current methods, the major improvement will be in runtime, where many processes can

take place simultaneously rather than just one. There is also the possibility of increased

accuracy, as current methods try to limit the number of evaluations to conserve time

spent processing, where here is it possible to perform many evaluations in one time

step.

 By parallelizing current methods, it is possible to perform more calculations in

less time that may yield more accurate results. The major idea here is to develop an

understanding of how constant controls over time can be used to reach a high fidelity,
which indicates the probability of information transfer.

This research can directly be applied to information transfer in quantum spin

networks. Where current research is looking into the behavior of spin network, where

Max Chandler | Final Report

2

eventually it will be possible to model an entire network, where rings are used as
routers to pass information down ‘wires’ (spin chains).

Background
 In order to understand the problem addressed in this paper, it is first important

to understand the background to this complex problem. As this system is based on

quantum mechanical behavior, I have provided there is a brief introduction into the field

of quantum mechanics. This is followed by an introduction to spintronics and finally
optimization techniques.

The final system is a network where transfer of data is based on quantum

mechanical phenomena. Data is stored in the spin state of a particle. For simplicity;

consider each ‘spin’ as a spinning top, the rotation turning around its own axis. Finally,

control is based around the use of magnetic fields, which are used to manipulate the

probability of transfer of data around the network. However, due to the uncertainty of

quantum mechanics, it is extremely difficult to find appropriate controls to maximize

transfer probability. This is where an optimisaion algorithm comes in, where it searches
a large space in an attempt to provide an answer to the value of these controls.

Quantum mechanics and Spintronics
 Quantum mechanics is a major part of ‘modern’ physics, it aims to explain the

incredibly small, where behavior is often counterintuitive and uncertain when

compared to ‘classical’ physics; such as Newton’s laws of motion. In quantum mechanics,

the key principle is the notion of matter being both a wave and a particle, where the de

Broglie wavelength 𝜆 is related to its motion through the Planck constant ℎ.

𝜆 =
ℎ

𝑝

This theory applies to all matter, and can be used to explain quantum objects. It

has been displayed in the double-slit experiment, where electrons created an
interference pattern that is concurrent with a wave (Eichmann, et al., 1993).

Quantum mechanics is of particular interest to computer scientists as it utilizes

quantum mechanical phenomena, such as superposition, the uncertainty principle or

entanglement. These phenomena allow a qubit to represent an extremely large set of

data; whereas in classical computing only 0s and 1s can be represented by one bit. The

key idea here is that one qubit can represent a superposition of many states. At

measurement, the wave function collapses into one single state out of the entire set of
states in the superposition.

Shor’s algorithm represents an efficient application of a quantum computer,

whereby a classical computer fails to achieve the same outcome in reasonable time. The

algorithm is focused on factoring integers to find their prime factors. This is a key

component of many modern cryptography algorithms, by providing an algorithm that

factors primes quickly Shor’s algorithm breaks down the security of public-key
cryptography, such as RSA (Vandersypen, et al., 2001).

The focus of this paper is on the transfer of information between spins in a

network that could represent a Northbridge in a computer, passing qubits from memory

Max Chandler | Final Report

3

to the processor. Research into quantum control will aid the development of quantum

devices, where in the future it may be possible to have a separate quantum processor in
each personal computer for specialized tasks.

Bra and Ket notation
 Throughout this paper, I have used special notation found in quantum

mechanics called bra-ket notation. It was first introduced by the physicist Paul Dirac

(1939). Bra-ket notation is used to represent an abstract state of a system, where <

𝜙|𝜓 > represents the probability of 𝜓 collapsing into state 𝜙.

 𝜓 represents the superposition of states, where the spin of a particle (or system

of particles) is thought to be in every state possible up until the point of measurement.

When measured the wave function collapses and the particle is in one of the possible

states; the one being observed. For simplicity in this paper a bra < |represents a row

vector and a ket | > represents a column vector.

Schrödinger’s equation
Schrödinger designed an equation that describes how the state of a quantum

system evolves over time (1926). The quantum system model in this project is based

around this equation.

𝑖ℏ
𝜕

𝜕𝑡
Ψ = Ĥ Ψ

𝜕𝜓(𝑡)

𝜕𝑡
= 𝑖ℏ𝐻𝑡𝜓(𝑡)

The Schrödinger equation is based around calculating the wave function 𝜓,

which describes the quantum state of one or more particles. In the above equations, 𝑖

represents the imaginary part of the quantum equation; which in simplistic terms allows
mathematics to accurately model quantum mechanics (Baylis, Hushilt, & Wei, 1992).

The constant ℏ represents the reduced Planck constant, which describes the

quantum of action in quantum mechanics. In this application, the reduced Planck

constant is used, as we are investigating angular frequency it reduces the complexity of

the mathematics by absorbing the value 2𝜋. The reduced Planck’s constant is equal to:

ℏ =
ℎ

2𝜋

Finally, H represents the system Hamiltonian. That is the operator that describes

the total energy of the system, and all of the possible states. This is often thought of as a
spectrum of possible states, where only one exists at the point of measurement.

 |𝜓(𝑡) > = 𝑒𝑥𝑝𝑚(−𝑖ℏ𝐻𝑡) ∙|𝜓(0) >

 The final equation above represents the calculation of wave function of a system

at the given time. Later on in this paper I will engage in discussion of what this implies
about the state of the system.

Spintronics
 Spintronics is the study of an electrons spin state, where the spin and the

electrons charge can be used to store information. The spin state of a particle usually

has two positions, up or down, much like a bar magnet. A spintronic device can

manipulate an electrons spin state by applying a magnetic field to align the spin to the

Max Chandler | Final Report

4

magnetic field. As an application, this can lead to energy efficient memory devices; such

as magnetoresistive random-access memory (MRAM). Due to the efficiency of these

devices they are thought to be the future of memory, eventually becoming the ‘universal’

memory for all computational devices (Åkerman, 2014). However, current spintronics

devices are in most homes in the form of hard-drive read/write heads, which

manipulate the spin state of ferromagnetic film to store data.

 Spintronics is also the foundation of magnetic imaging techniques, where

devices such as MRI and NMR machines manipulate the spin state of protons. These

protons emit a radio frequency that can be used to identify the density or type of matter

at a given location. Once a large dataset of these frequencies has been collected, it is
possible to create a detailed image of the object.

 In this paper, the focus is on modeling a spin network and attempting to transfer

qubits of information by manipulating the magnetic field on the network. The study of

spin transfer is modeled by transformation theory in quantum mechanics, where a state

vector models a corresponding quantum system. Transformation theory can be applied

to model the change of a system over time, where in this project it is employed in the

form of the Schrödinger equation. Specifically, rings of spins are explored, which are

designed to model the behavior of a qubit router.

FIGURE 1

 In figure 1, the sold lines represent the links in a 5-spin network; in a classical

network, the information would pass in a logical manner around the network between

neighbors (for example, if each node represented a computer rather than a spin). In

quantum networks, data does not necessarily transfer to nearest neighbors; it tends to

behave in a counterintuitive way where the links appear to be symbolic. If the arrow

were to represent a target in the system, for example transferring a qubit of data from

spin 1 to 3, what controls would this require? This is the core of this paper, and for

simplicity the time of the transfer is fixed, so the main question to be answered is; given
a time ‘t’, what controls would maximize the transfer probability of a qubit of information

from spin 1 to 3?

Spin Network Control
 As discussed in the previous section, the focus of this project is to provide

adequate controls for a closed quantum system that will maximize transfer at a pre-

determined time. For this application, the quantum system is a ring, containing an odd

number of spins. Each spin is a −
1

2
 spin particle, as these mimic a real world

implementation if this was based around a proton’s spin. The controls represent the

bias of a magnetic field placed on each spin in the network; the values are arbitrary. The

spins are connected by nearest neighbor coupling, allowing information to freely move

Max Chandler | Final Report

5

around the ring. This sort of transfer is currently available in a spin network inside a
diamond controlled by magnetic fields (Hai-Jing, et al., 2013).

Due to the difficulty of this problem, it is important to limit the number of

variables to optimize for the given time; in this instance only the magnetic field strength

is being optimized. Unlike other studies, where controls are switched over time

(Schirmer & Langbein, 2014), the controls in this system are set for the entire duration

of the simulation. The optimization algorithm then will vary the values representing the

bias of the controls on each spin with the aim of achieving the best transfer probability.

Optimization
 Optimization is a branch of mathematics concerned with finding optimal values

for a given function or equation. In general terms, they attempt to minimize or

maximize the return from a system by varying the inputs. In this application, focus will

be on minimizers, which are defined by the following equation:

min
𝑥∈ℝ

𝑓(𝑥)

There are many different types of efficient optimization methods available, each

with their own benefits. In the following section, there is a discussion of the different
types, their benefits and applications.

Evolutionary Algorithms
 Evolutionary algorithms are based around a population of candidates randomly

generated to begin. Overall, they perform well, as they do not make any assumption

about the problem, and this allows for a broad search space.

 Algorithm outline

 Generate a population of size x with random initial values.
 (Repeat until a termination condition is met)

o Select best candidates based on their relative fitness

o Pair off best candidates to be parents

o Create children through mutation and crossover operators
o Replace the least fit individuals with the new children

 Evolutionary algorithms are suitable for machine learning applications, where

the goal is to investigate a space with little pre-existing knowledge. They are particularly

suited to engineering problems, where usually a structure could benefit from

optimization. An example of this is with aerodynamics of a vehicle, where a genetic

algorithm can make small changes to the shape to reduce the effect of wind resistance.

 Swam Intelligence
 Swarm algorithms are designed to mimic natural real world behaviors of

animals or organisms. They are designed to create a collective behavior from a number

of individuals, where the interaction creates intelligent decisions. The behavior of

individuals in the system can be designed to imitate many different styles of swarm,
such as, birds flying, ant colonies, bacterial growth, or fish schools.

 Swam intelligence is useful when attempting to mimic or detect real world

swarming behavior, such as crowd simulation in CGI for films. Other applications

Max Chandler | Final Report

6

include network investigation and routing problems such as air-traffic control or
autonomous vehicles.

 Simulated Annealing
 Simulated annealing is an algorithm designed around annealing: the process of

controlling the cooling of an object to reduce the number of defects in the final product.

When this technique is applied to an optimization problem, it searches for an acceptable

answer in a prescribed time. The process itself starts with a relatively large search

space, in which large steps are taken in an attempt to find the optimum value. As the

temperature beings to decrease, the step sizes begin to become restricted with the

intention of improving already found optima. Simulated annealing guarantees a result in

a prescribed time, however the result is not guaranteed to be optimal.

Algorithm outline

 Generate random initial solution

 Evaluate value of solution based on a cost function

 (Repeat until temperature reaches 0)

o Generate random neighboring solution, where step size based on the

current temperature

o Compare and move to the better of the two solutions
o Reduce temperature

Simulated annealing is often applied to a discrete search space, and can provide

a relatively accurate approximation of the global optima. It is a good algorithm when the

landscape is complex, as the algorithm does not get stuck in local optima in the early
stages.

Gradient-based Optimization
Gradient-based optimization methods are applicable where either an

approximation of the gradient or the gradient itself can be calculated. These methods
are usually a good choice when the gradient is easy to calculate or already available.

First order

 GRADIENT DESCENT

 Gradient descent is focused on moving towards the minimum (or maximum) by

taking steps towards the negative of the search space. The step in gradient descent is

calculated by a line search method, which returns a step size of 𝛼 that sufficiently
reduces the objective function.

Max Chandler | Final Report

7

FIGURE 2 (ALEXANDROV, GRADIENT DESCENT.PNG, 2004)

 Gradient descent has limitation when approaching minimums, or where the

search space has narrow valleys that are close to a minimum. This is due to the simple
design of calculating a descent direction.

FIGURE 3 (SIMIONESCU, 2006)

 Figure 2 represents the issue that gradient descent methods have when reaching

a minimum value. The function above is the Rosenbrock function, where towards a

minimum the function is extremely difficult to solve, as the gradients are minute. In

figure 3 above, the gradient descent method reaches over 1,000 iterations when aiming
to find the minimum which is at 𝑓(1,1,… . , 𝑛), where 𝑛 is the number of dimentions.

 CONJUGATE GRADIENT

 The conjugate gradient method is applied to linear equations that produce

symmetric positive definite matrixes. It will find the exact answer in n steps, where n is

the number of unknowns. The conjugate gradient method differs from gradient descent

in that there is no line search is used to calculate the step towards the minimum to take.

Max Chandler | Final Report

8

FIGURE 4 (ALEXANDROV, 2007)

 Figure 4 displays the performance difference when finding the optima of a

function, the red line represents a path taken by a conjugate gradient method, and the

green line represents the path of a gradient descent method. The conjugate gradient

method is more expensive to calculate than gradient descent but it is much more

efficient when converging towards the minimum.

Quasi-Newton methods

 When trying to find global optima, Quasi-Newton methods, aim to find a

stationary point where the gradient is equal to 0, which suggests a global optimum.

These are similar to Newton’s method, however they are used when the full Jaccobian or

Hessian matrix is too expensive to compute, or not available. Newton’s method

iteratively computes values of x, based on the following formula:

𝑥𝑛+1 = 𝑥𝑛 − [𝐽𝑔(𝑥𝑛)]
−1
𝑔(𝑥𝑛)

Any method that subtitles the exact Jaccobian matrix in Newton’s formula is a
quasi-Newton method.

 Broyden-Fletcher-Goldfarb-Shanno (BFGS)

 BFGS is a popular quasi-Newton method that calculates an approximation of the

Hessian matrix for gradient calculations. It is an iterative optimization algorithm for

solving unconstrained non-linear problems. BFGS calculates and stores a dense n ∗

n approximation of the Hessian matrix, which leads to a large memory requirement for
large problems.

 Algorithm outline

1. Calculate search direction pk by solving: Bkpk = −∇f(xk)

2. Line search to get initial value of αk

a. Update xk+1 = xk + αkpk

3. sk = αkpk

4. yk = ∇f(xk+1) − ∇f(xk)

Max Chandler | Final Report

9

5. Bk+1 = Bk +
ykyk

T

yk
Tsk
−

Bksksk
TBk

sk
TBksk

B0 can be initialized as B0 = I, so the first step is essentially gradient descent.

 Limited-memory-BFGS (L-BFGS)

 L-BFGS is a popular alternative to BFGS when the problem size is large and

available memory is a constraint on the search space. Instead of calculating the Hessian

matrix, L-BFGS maintains a history of the last m updates that are used in place of the

Hessian matrix.

Max Chandler | Final Report

10

Approach
Tools
 For this project, it was important to select appropriate tools, given the relatively

small amount of time needed to complete the project. The following tools have been
chosen to allow the development of a system that will meet the aims of this project.

Software
 Matlab
 Matlab was chosen for this project due to the rapid prototyping and large range

of built in complex functions that are necessary for this project given the timeframe.

Matlab natively handles imaginary numbers, where as C and C++ have liberates to

handle them, however it is a much longer development process.

Matlab also has the mex interface for Fortran, C and C++, which allow the

compilation of functions to be used natively with Matlab. This interface allows the

development of the optimization algorithm in C and CUDA outside of Matlab, whilst
compromising no functionality.

 libLBFGS
 libLBFGS is a c port of the L-BFGS algorithm, which was originally written by

Jorge Nocedal in Fortran (Naoaki, 2014). This library was chosen for quick development

of the program, as the focus here is on improvements to the current algorithm, not the

development of a new algorithm. This library comes with plenty of functionality as

standard that is not necessary, and it will need to be removed to simplify the source

code.

 C
 C has been chosen due to the interface with the Matlab mex compiler, it also

allows the use of CUDA for the parallelization of the line search. C also requires explicit

memory control, which will be necessary for this application when dealing with large

matrix that will need to be cleared from memory quickly. C was also chosen due to past
experience with the language.

 CUDA
 CUDA was chosen for the parallelization of this project, as it is built around the

single-instruction-multiple-data (SIMD) paradigm. CUDA kernels have many lightweight

threads that each do small operations on data, in the case of the line-search this could be

function evaluations. CUDA is a highly scalable language, however it is relatively

underdeveloped and can be tricky to get kernels working effectively for complex
problems.

 GitHub
 GitHub was chosen as a version tracker for this project, it also doubles as a

project logbook for milestones. This tool will aid in the final report writing, along with
bug and progress tracking.

Hardware
 For this project, it was necessary to build a computer that could run the

optimizations for long periods. There was careful consideration of the specifications of

Max Chandler | Final Report

11

the machine, to be aimed at solving this particular problem. The following is the final
spesifications:

 Xeon X5560 Processor 4 Core 2.8GHz 8MB Cache

 16GB DDR3 10600R Ram

 NVIDIA GTX 760 2GB

 The NVidia GTX 760 was chosen as it shares the same Kepler architecture as the

Tesla scientific computing cards (K10,20,40,80) . It was chosen over the GTX 750 due to

the much higher memory bandwidth and size. Registered DDR memory was chosen with

the intention of more being added if necessary to ensure the system remained stable as

more memory was added. The Xeon processor was chosen as it is designed to run for
long periods of time at a high load.

Optimization selection for this project
 L-BFGS has been chosen as the optimization algorithm for this project, firstly as

the gradient is available in this computation, which allows the calculation of a descent

direction; which implies a global optimum. Secondly, it has been proven to be efficient at

solving quantum control problems when compared to other methods (S. Machnes,
2011).

 L-BFGS also has potential to be parallelized, despite it being naturally an

iterative process. The line search portion of the algorithm is serial as standard, however,

there is potential to speed up performance. This has been shown to bring an

improvement in the past, where a parallel L-BFGS-B algorithm was implemented on

GPUs (Fei, Rong, Wang, & Wang, 2014).

 Finally, due to the low memory requirement of the L-BFGS method, it is favored

over the standard BFGS algorithm. This is due to the complexity of the problem, where

storing the approximation to the Hessian matrix maybe too large to fit into system
memory once the problem size increases.

Pre-existing work
 There has been much research into information transfer in spin networks,

however the majority of previous research has been the finding optimal controls on

different network topologies (Jonckheere, Langbein, & Schirmer, 2014) (Christandl,

Datta, & Andrew J. Landahl, 2004) (Schirmer & Langbein, 2014) (Cui & Mintert, 2014).

There does not appear to have been any research into parallelization of these

techniques when applied to a quantum control problem.

Line-search Methods
 To understand how a partly parallel L-BFGS algorithm could be implemented, it

is first important to understand the role of the line search component of the algorithm.

L-BFGS can use any line search algorithm, as it does not require an exact minimum to be

found in a given direction.

 In general, line search algorithms aim to find a suitable step size 𝛼 that

minimizes the objective function shown below. In this equation, p represents the

direction provided by the optimization algorithm for the variable x. Line search methods

are focused on searching a one dimensional search space from 0 to 𝛼, where alpha is a
non-negative real number.

Max Chandler | Final Report

12

𝜙(𝛼) = 𝑓(𝛼𝑝𝑘 + 𝑥𝑘)

 Line search methods are used in optimization algorithms to provide a step size

towards the global optimum. These methods are provided with initial values x and a

direction that is calculated by the optimization algorithm. The line search will return a

step size 𝛼 that minimizes or maximizes the variables 𝑥 to optimize based on the input

direction 𝑝. From this stage, the optimization algorithm will calculate a new direction to

search and pass these values back to the line search. A line search will contain a set of

termination conditions, these depend on the individual algorithm, but usually it is when

a sufficient decrease is found. This process repeats until the optimization algorithm hits

a termination condition.

 Line search algorithms are often lightweight and take up the minimum amount

of computing time, to find a rough estimate for the step size. This is because it is thought

to be more efficient to spend more computing time in finding the best descent direction

in a complex problem. However, in this application, due to the extremely complex

landscape it may be beneficial to devote more time to an expensive line search
algorithm.

FIGURE 5 (HAUSER, 2007)

The figure 5 displays the issue with poorly conditioned line searches where the

minimum step size is too large or too small. In both instances, the minimum is not

reached as the line search is restricted by step sizes. As displayed above, it is important
to take into consideration line search parameters and termination conditions.

 Direct Line-search
 Direct line search methods aim to compute the exact minimum of the line. The

basic idea is that the minimum is found between a set of the brackets. These algorithms

will recursively add and remove new brackets around the minimum until the minimum

found is within tolerance.

 Backtracking Line-search
 The backtracking line search method is based around the Armijo–Goldstein

condition, where a relatively large initial step is taken, and is iteratively reduced by

stepping forwards and backwards until a minimum is found that sufficiently small. The

Armijo–Goldstein condition for an adequate reduction for the given step size in relation

to the objective function.

𝑓(𝑥 + 𝛼𝑝) ≤ 𝑓(𝑥) + 𝛼𝑐𝑚

Max Chandler | Final Report

13

 If the above condition is met, then the line search will return the step size 𝛼. In

the above equation 𝑝 represents the search direction, 𝑚 is the local slope of the equation
and 𝑐 is the control parameter for the algorithm with a value of 𝑐 ∈ (0,1).

Parallelization
 There are two key areas that may provide a large improvement in performance,

the line search component of the L-BFGS algorithm and the quantum target function.
This section will discuss the benefits to parallelization of these sections.

 Line search
 Current line search methods are focused on providing a very rough estimate on

the correct step-size given the direction that will optimize the variables. The key

concept is that an optimization algorithm should spend substantially more time

computing the correct direction, rather than the step-size. Because of these factors, line

search algorithms are naturally serial and could be improved by providing a more
accurate step-size in the same time through parallelization.

 The line search in this paper is based around evaluating a line with regular

intervals in parallel, providing a more accurate description of the landscape. With each

evaluation loop, the line may be searched at up to 1000 regular intervals. The minimum

of these values is then taken as the optimum step size. The aim here is to create a line

search algorithm that will allow L-BFGS to reach a termination condition in less
iterations, as it should improve the accuracy of the search.

 Quantum target function
 For calculation of probability given initial system controls is very expensive, this

is due to the large number of matrix operations that are necessary to compute the final

result. The issue with parallelizing the quantum target function is that calculating a

system state requires the previous system state, so it is an inherently serial process.

However, there are improvements that can be made in the way that each system state is

calculated. This can come from careful selection of tools and methods, reducing the run

time required.

In an ideal situation, where more time is available to develop the system, it may

be beneficial to implement these matrix calculations on a GPU, where the architecture is

suited to matrix arithmetic. However, for these methods to be efficient on the GPU, time

taken for memory transfer from the CPU to GPU must be taken into consideration. So, if

implemented there must be a minimum amount of data transferred between devices;

such as single control variables rather than large 𝑛 ∗ 𝑛 matrices describing system
states.

In this paper, the focus will be on creating the most efficient version of these
methods with the tools provided by Matlab and the parallelization toolbox.

Max Chandler | Final Report

14

Algorithm Design
 Algorithm design in this project was based around the best performance

improvement that could be obtained in a short period of time. There are two distinct

separate areas of the problem that can be improved; the optimization algorithm and
improving the quantum target function.

Quantum target function
 Due to time constraints and for simplicity, Matlab was chosen to model the

quantum target function. This was due to the relatively lengthy time needed to develop

a program that performed matrix functions with imaginary numbers in C. Due to the

Matlab/Mex interface, it allows C to call Matlab functions and visa-versa. This interface
allows for rapid development

 The purpose of this algorithm is to provide a probability of transfer from A to B

given the initial system controls. During the optimization the evaluation function is

called thousands of times; when using the parallel line search technique. By improving

this function slightly it can lead to a large reduction in runtime. The aim here was to

reduce the number of evaluations performed by the Matlab code to reduce the runtime

as much as possible.

Algorithm outline

EVALUATE

function [fx, g] = evaluate(time, x, params){

fx = fx_eval(time, x, params);

g = evaluate_gradient(time, x, params);

}

EVALUATE_GRADIENT

function [g] = evaluate_gradient(time, x, params){

h = 0.000001;

fx = fx_eval(time, x, params);

for i = 1 : numel(x){

 xtemp = x;

 xtemp(i) = x(i) + (h/2);

 forward_diff = fx_eval(time, xtemp, params);

 xtemp(i) = x(i) – (h/2);

 g(i) = (forward_diff - fx_eval(time, xtemp, params))/h;

}

}

Max Chandler | Final Report

15

FX_EVAL

function [fx] = fx_eval (time, x, params){

t = round(time(1));

delta = time(2);

input(params(1)) = 1;

target(params(2)) = 1;

nSpins = params(3);

for n = 1 : time_steps{

H_O{n} = H0;

for ii = 1 : nSpins{

H_O{n} = H_O{n} + (x (ii) * H{ii});

}

}

//Calculation of U matrix

for n = 1 : time_steps {

U {n} = expm(-1i*1*H{n}*delta);

}

//Calculate the final propagator

total = U{1};

for n = 2 : numel(U){

total = (U{n}*total);

}

probability = target * total * input;

//Calculate the infidelity of the system to minimize

fx = 1-abs(probability)^2;

}

Max Chandler | Final Report

16

Algorithm decisions

 GRADIENT CALCULATION

 Due to the high cost of calculating an exact gradient, in this evaluation function

the gradient is calculated by finite difference. In particular it is calculated by the
symmetric difference, which attempts to draw a secant line that intersects 𝑓(𝑥) that can

be used to represent the gradient

𝑓 (𝑥 +

ℎ
2
) − 𝑓(𝑥 −

ℎ
2
)

ℎ

Due to the complex landscape of the quantum target function, there had to be

careful consideration of the size of h. If h is too large then the gradient will be inaccurate,

and if h is too small the gradient will be close to 0; suggesting an optima. For testing, an
algorithm was setup to choose a value of h so that the secant line intersects 𝑓(𝑥). The

algorithm recursively reduced the value of h until it was within tolerance. The optimal
value of h for this application is: 0.000001.

Algorithm outline
function [g] = evaluate_gradient(time, x, params){

 ….

if h > 0.00000001{

for i = 1 : numel(x){

if abs(fx - g(i)) > h{

h = h/10;

 g = evaluate_gradient(time, x, h);

return

}

}

}

}

 VECTORISATION OF MATRIX CALCULATIONS

 Matlab provides tools with optimal performance for matrix and vector

operations, called vectorisation tools. They supposedly allow improved performance

when performing the same operations on different data sets. During design, it was

important to take these into consideration, as the target function has many matrix

calculations. However, when testing it was found that performance was significantly
worse.

Max Chandler | Final Report

17

 The setup here was calculating the system propagator U for a ring of size 13,

where the target was transfer from spin 1 to spin 7 and all control amplitudes were set
to 1. The test was run 100 times and taken an average time from all runs.

FIGURE 6

Figure 6 represents the difference in timing between the two methods. The

results showed that the vectorisaiton approach is 5.46% slower than a standard for

loop. Similar performance was found throughout the program, and for this reason
Matlabs vectorisation tools were mostly avoided.

Parallel Line-search
 One area that can be improved for parallelization in this project is the line search

component of the L-BFGS optimization algorithm. Normally, this process is an iterative

lightweight process that attempts to provide a rough step to optimize the values given.

However, in this application, the line search algorithm was based around the single-

instruction-multiple-data (SIMD) style of programming that is utilized by NVidias CUDA.

This style of implementation means that this line search can conduct many evaluations

in a given search direction at one time. By sampling a 2D search direction many times in

one function call it allows for a better understanding of the landscape, and can improve
the probability that optima are not missed.

 Inspiration for this line search came from a paper (Fei, Rong, Wang, & Wang,

2014) that is based on parallelizing the L-BFGS-B (L-BFGS with box constraints). Where

in the paper they used reduction on the GPU to find the minimum values for the step

size 𝛼.

Max Chandler | Final Report

18

FIGURE 7 AN EXAMPLE OF A REGULAR INTERVAL SEARCH

 In figure 7 the blue line represents the unknown line that is being searched, the
black lines represent the regular interval sampling conducted by the line search.

With the understanding that the landscape of the quantum control problem is

very complex with many local extremes, the aim here is to create an accurate line

search, which would lead to an improvement in finding minimums. In theory, by

providing the optimization algorithm with a more accurate line search, it should reduce
the number of iterations to find a minimum, which further reduces the runtime.

 The basic outline of the program is to split the search area into regular intervals,

and find the minimum of all points. The algorithm will then recurse, checking to the left

and the right of the current minimum. This continues until a termination condition is
reached.

 There is, however an issue with using CUDA based line search, where the

function evaluations have to be conducted on the GPU; where in this case they are

conducted through Matlab on the CPU. Because of this, I have presented a proof of

concept with test functions later on, and developed a CPU parallel line search. The CPU

parallel line search utilizes Matlabs parallelization toolbox, which allows the creation of

a local parallel pool, allowing multiple threads to run simultaneously. In this case, the

evaulations are all run in parallel as they would if they were in a CUDA kernel.

Max Chandler | Final Report

19

Algorithm outline

cudaLinesearch(int n, double x, double fx, double direction, double step){

 for i = 0 : 5{

 min_fx = +inf; min_thread = -1;

 local_step = current_step +((step/number_threads) * thread_id);

 for i = 0 : n

 x_local[i] = x[i] + (step * direction);

 for i = 0 : n

 fx_local += fx_eval(x);

 fx_values[thread_id] = fx_local;

 __syncthreads();

 for i = 0 : number_threads{

 if(fx_values[i] < min_fx){

 min_fx = fx_values[i];

 min_thread = i;

 }

 }

 __syncthreads();

 if(thread_id == min_thread){

 gradient = eval_gradient(x_local);

 if(thread_id > 0){

 current_step = thread_step - stepsize;

 }else{

 current_step = thread_step;

 }

 current_step = local_step;

 x = x_local;

 fx = fx_local;

 }

 __syncthreads();

 stepsize = (stepsize / num_threads) * 2;

Max Chandler | Final Report

20

 }

 return(fx, x, gradient);

}

Line search termination conditions

 Maximum number of iterations

Step size is smaller than 1-e20

Optimizing spin network controls
 Due to time constraints in this project, implementing a CUDA version of this

problem is not feasible. This is due to the large setup time required to develop the

quantum target function in C. For the algorithm to run solely on the GPU, the quantum

target function must be calculated on the GPU, where currently it is modeled in Matlab
on the CPU.

Because of these constraints, there has been a different approach to providing a

proof of concept. The performance expected in terms of wall time should be similar, if

not worse when utilizing the parallel line search method. However, in contrast the

number of iterations performed should be less, suggesting that in the future, the
algorithm could benefit from a more efficient parallel implementation.

 To implement a parallel version of this line search technique, this

implementation utilizes Matlabs parallel toolbox, where many local threads can be run

simultaneously. This application loosely mimics the CUDA algorithm, where more than

one line search evaluation can be conducted at one time. Although, it is important to

note that this implementation used 8 CPU threads, rather than thousands of GPU

threads.

 When designing the test fucntions for the optimisaiton algorithm, they were

utilized CUDA kernels for the parallel line search. The largest setback was implementing

the CUDA compiler with the Matlab mex compiler, which allows CUDA files to be

compiled and called from Matlab. This issue was due to an incompatibility with mex,

CUDA, Windows 8 and Visual Studio versions. Installing Visual Studio (VS) 2010 & 2012,

and then creating a custom install script to remove dependencies on VS 2008 rectified

the issue. This issue was particularly frustrating, as there was no indication at the time
of what was failing.

 For the quantum target function, it was important to decide between a Matlab

GPU or CPU implementation of the parallel line search. The issue is that only a small

subset of commands are available to be run on GPUs via Matlab (MathWorks, 2015).

Here, there is no suitable matrix exponential function that is required by the quantum

target function. This is due to a specialized log2 function, which is not available to be run

on GPUs through Matlab at the current time. Despite this, an attempt was made to run a

GPU version of the implementation. Figure 8 represents the runtime achieved with the
two different parallelization methods.

Max Chandler | Final Report

21

FIGURE 8

 The timing results were collected for two separate matrix sizes: 10 ∗ 10 and

100 ∗ 100. Each matrix was filled with a random numbers between 0 & 1 in each matrix

location. From there, each matrix was evaluated 10 times inside a ‘parfor’ loop, which

initializes Matlabs parallel execution of parallel loops, either on the CPU or GPU. The

aim here was to test to see if the Matlab parallel implementation on the GPU would be
able to run more threads simultaneously, however, the results suggest that it does not.

This GPU implementation is a hybrid, where the log2 function is performed on

the CPU, and the value is passed back to the GPU. It is clear to see from the timings that
this implementation is not efficient, and for this reason it was not used in the project.

Max Chandler | Final Report

22

Controlling spin networks
Introduction
WHAT IS THE GOAL?

 The control of spin networks is a current research area where practical

applications could lead to long distance data exchange on quantum spin networks. The

aim of quantum control is to maximize the probability of successful data exchange.

However due to the natural unpredictability of quantum mechanics, this is a complex
task.

This application focuses on a closed network where only one bit of information

is in the network at one given time. This system is designed to optimize initial controls,

where the data will be collected from the system at a pre-determined time. The controls

in this system are arbitrary numbers that represent the strength of an electromagnetic

field that is individually placed on each spin. The electromagnetic fields alter the spin of
each network node by aligning the spin with the magnetic field.

In this particular implementation, the controls are set for the duration of the

system run time, and then a probability of transfer calculated at the prescribed time. For

example: Given time t and the target to get information from spin 1 to spin 4, what

controls would maximize the probability? This means that for every different

configuration of the system controls, the evolution of the system needs to be re-

calculated which is the largest computational cost.

System design
 The system is modeled around a perfect spin chain, where it is completely

isolated from the environment and no data is lost. The representation of the system is

close to a bilinear control problem, which is based on the following formula (Pardalos &
Yatsenko, 2008).

�̇�(𝑡) = (𝐴0 + ∑𝑢𝑖(𝑡)𝐴𝑖

𝑚

𝑖=1

)𝑥

Where x is a state vector, A is a constant 𝑝 ∗ 𝑝 matrix, and 𝑢(𝑡) is a restricted

measurable control. However, this equation state needs to be modified to fit a quantum

control problem.

|�̇�(𝑡) > = −𝑖 (𝐻𝑑 + ∑𝑢𝑗

𝑚

𝑗=1

(𝑡)𝐻𝑗) |𝜓(𝑡) >

 The equation above represents a bilinear control system in terms of the

controlled Schrodinger equations. Here, the closed quantum system is described by the
drift Hamiltonian 𝐻𝑑, 𝐻𝑗 represents the internal manipulations of the system (control

Hamiltonians), where each control can be manipulated by its control amplitude 𝑢𝑗.

Control amplitudes here are time independent and are constant. To model the

imaginary part of quantum mechanics, 𝑖 represents√−1.

Max Chandler | Final Report

23

MEASURING PROBABILITY

 At each stage in time it is possible, given an input column vector (𝜓𝑘) and a

target state (𝑝𝑒) in the form of a row vector to calculate the maximum probability. The

probability is a degree of possible success, when transferring data from the input to the
target spin. The probability is calculated in the following way.

𝑝𝑙𝑘
(𝑡)
= |< 𝜓𝑘|𝑈(𝑡)|𝑝𝑒 > |

2 = |𝜓𝑒
(𝑡)
|2

 This probability measurement is the basis of the optimization, where the target

is to obtain the minimum value. However, as this equation outputs the fidelity of the

transfer, it needs to be converted to an infidelity, as to work with the minimization

algorithm. This is done in the following fashion:

min
𝑥
|1 − 𝑝𝑙𝑘

(𝑡)
|2

Construction of the drift Hamiltonian
 The system Hamiltonian 𝐻𝑑 is a 𝑛 ∗ 𝑛 matrix, where n is the number of spins in

the chain. This matrix represents the topology of the network, where the ring is

constructed from XX nearest-neighbor coupling, which is derived from the Pauli
matrices:

𝜎1 = 𝜎𝑥 = (
0 1
1 0

)

𝜎2 = 𝜎𝑦 = (
0 −𝑖
𝑖 0

)

𝜎3 = 𝜎𝑧 = (
1 0
0 −1

)

 This coupling is discussed further in ‘Information Transfer Fidelity in Networks of

Spins’ (Jonckheere, Langbein, & Schirmer, 2014). It is not discussed any further in this

paper as it is out of scope. For simplicity the system is based around a single excitation

subspace, were only one bit of information will be added in the system at one time. The

following matrix represents the constructed drift Hamiltonian, where any location with

a ‘1’ represents a possible state described by the wave function.

𝐻𝑑(𝑁) =

(

0 1 ⋯ 0 0 0 ⋯ 0 1
1 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋮ ⋮
0 0 ⋯ 0 1 0 ⋯ 0 0
0 0 ⋯ 1 0 1 ⋯ 0 0
0 0 ⋯ 0 1 0 ⋯ 0 0
⋮ ⋮ 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 1
1 0 ⋯ 0 0 0 ⋯ 1 0)

System controls
 For the system controls, there is additional control Hamiltonians required to

represent the placement of the electromagnetic field in the system. These

electromagnetic fields are placed to have a direct effect on one spin in the ring only.

There are n matrices; each matrix is 𝑛 ∗ 𝑛, where n is the number of spins in the system.

Each matrix has a 1 in the H[j , j] position, where j represents the number of the matrix,

the rest of matrix is 0s, there are n matrices in total. The examples below are for

matrices of any given size.

Max Chandler | Final Report

24

𝐻1(𝑁) =

(

1 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0)

𝐻𝑛(𝑁) =

(

0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 ⋯ 0 1)

INITIAL CONTROLS

 From early research, it is possible to maximize transfer fidelity by providing

initial controls to the system that place a strong control amplitude on the middle node

between the transfers in a ring of odd numbers. This initial control bias helps steer the

optimization process towards finding a high fidelity faster.

Max Chandler | Final Report

25

 These controls work as it essentially turns the topology of the ring into a chain,

where nodes are linked in the following fashion (figure 9 & 10). The solid lines

represent the connections between the network nodes, however data naturally flows

along the dotted lines. Figure 10 displays the transfer properties in standard spin
chains, as described by (E. Jonckheere, 2014).

FIGURE 9 CONTROLS CAN CREATE CHAIN LIKE BEHAVIOUR

FIGURE 10 NORMAL CHAIN TRANSFER BEHAVIOUR

 Due to these properties of spin chains, it is desirable to attempt to steer the

optimization so the ring mimics this behavior. The initial system controls will be set to
the following:

 Middle transfer spin is assigned a random value from 5 to 15; e.g. spin 3 on a

transfer from spin 1 to 5.
 All other spins are given a control value from 0 to 1

Manipulations of the system
 Calculating the natural evolution of the system is an iterative process that relies

on the previous state. Each state is separated by a time difference Δ that is fixed for all

iterations. In this instance Δ has the value of 10, which is an arbitrary time unit. The

equation below represents the previously mentioned Schrödinger equation modeled as

a control problem; from this equation it is possible to calculate the value of the wave
function 𝜓 for every time t.

Max Chandler | Final Report

26

|�̇�(𝑡) > = −𝑖 (𝐻𝑑 + ∑𝑢𝑗

𝑚

𝑗=1

(𝑡)𝐻𝑗) |𝜓(𝑡) >

State Transfer
 State transfer is calculated as a function of time, given the initial values. This is

concurrent with the Schrödinger equation, where the evolution of a quantum system

can be calculated from the initial values. Here it is necessary to calculate the system

propergator ‘U’. This is calculated from the system Hamiltonian. In the following
equations, all of these conditions apply:

 𝑖 represents the imaginary unit √−1,

 ℏ represents the reduced Planck constant which is equal to ℏ =
ℎ

2𝜋
. Where in

instance, to simplify the problem, ℏ is equal to 1.

 Every matrix is 𝑛 ∗ 𝑛 in size, where 𝑛 is the number of nodes in the network

𝐻(𝑡) = 𝐻𝑑 + ∑𝐻𝑖𝑓𝑖

𝑛

𝑖=1

The equation above represents the calculation of the system Hamiltonian for

every time t, the Hamiltonian represents the total energy of the system. It contains a full

possible set of outcomes when a measurement is made of the system. In the above

equation, 𝐻𝑑 is the system drift Hamiltonian, 𝐻𝑖 refers to each control matrix and 𝑓𝑖

refers to the control amplitude for the given control matrix. The system Hamiltonian

represents the state of the system in the form of a matrix.

Once the calculation of the Hamiltonian has been done, it is possible to calculate

the value of U, the system propagator that describes the transfer of the system between

states. Calculating the value of U applies the system Hamiltonian to this specific

quantum target function, this is the point when the quantum mechanical behavior is

introduced.

𝑈𝑛 = 𝑒𝑥𝑝𝑚(−𝑖ℏ𝐻𝑛∆𝑡)

In the above equation, the value for U is calculated for every system time step

(n), the values have been swapped, as t is used for explaining ∆𝑡; which represents the
time difference between each time step.

𝑈 = ∑𝑈𝑛 + 𝑈𝑛−1 +⋯+ 𝑈0
𝑛

𝑖=1

 Once the final value of U has been calculated, it is possible to calculate the final

value of the wave function 𝜓 by multiplying the initial system state with the system
propagator.

|𝜓(𝑡) > = 𝑈|𝜓(0) >

Optimal Targets
 For this application, the aim is to maximize transfer probability given an input

and an output node in a network. However, due to the inherent instability and

unpredictability of quantum mechanics this makes the task much more complex than it

is in traditional computing.

Max Chandler | Final Report

27

 In this project there are two aims for a transfer; calculate the best transfer

probability possible and calculate the shortest time where a transfer has a probability of
99.98% or more.

Method
TESTING

In order to test the effectiveness of the implementation, there is a set of

optimization functions with known minimums. The sphere and Rosenbrock function

have been http://www.cardiff.ac.uk/insrv/libraries/trevithick/index.html#opening for
testing as these represent both a simple and complex function to minimize.

System setup

 Number of dimensions from 10 to 1000 in increments of 10 to provide a large

range of results

 Initial values are random values between -5 and 5

These test functions will display if the algorithm reaches the known minimums,
and will provide a good benchmark of the effectiveness of each algorithm.

BACKTRACKING LINE SEARCH

 The sequential line search will only be conducted on one ring size for one

transfer simply to compare the performance of both line searches. This is due to time

constrains, as the sequential line search takes considerably longer to perform 2500

searches (100 random times, 25 optimizations per time). The results from this transfer

will be used to compare performance between the two line search algorithms to display

their behavior when applied to the quantum control problem.

System setup

 Ring of size 5

 Only one qubit of data in the system at one time

 Transfer from spin 1 to spin 2

 Middle control amplitude is set to 5 – 15

 All other control amplitudes are set from 0 – 1

 Target time a random value from 1 – 100

 Delta set to 10

Backtracking line search termination conditions

 Armijo-Goldstein condition is reached; return step size 𝛼

 Step size is less than 1e-20; return error, exit L-BFGS

 Step size is greater than 1e20; return error, exit L-BFGS

 Maximum number of line search iterations conducted; return error, exit L-BFGS

Max Chandler | Final Report

28

PARALLEL LINE SEARCH

 Due to the complexity of the problem, it is important to collect many results of a

variety of initial conditions. The following are the conditions for result collection when
using the parallel line search.

System setup

 Rings of size 5, 9, 13

 Only one qubit of data in the system at one time

 Transfer from 1 to ring size in increments of 1, except 13 where transfers were

incremented in 3

 Middle control amplitude is set to 5 – 15

 All other control amplitudes are set from 0 – 1

 Target time a random value from 1 – 100
 Delta set to 10

The initial bias controls are derived from earlier research as to how the ring

performs when equal bias is set on the spins. These biases are taken as an optimal set of
controls that have been used to steer the optimization algorithm.

Termination conditions for the optimization scheme also had to be carefully

chosen to reduce system runtime, to allow a large range of collection of results in the

time given. The following represent the L-BFGS settings.

L-BFGS termination conditions

 Line search returns a step size of 0

 Maximum number of iterations reached - 50

 Gradient is sufficiently small:
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑛𝑜𝑟𝑚

1
< 1𝑒 − 5

Parallel line search termination conditions

 Step size is smaller than 1e-20; returns step size 𝛼

This method will provide result sufficient for

Max Chandler | Final Report

29

Results and Evaluation
Test functions
 When testing optimization algorithms, there are sets of test functions available

that are designed to test many aspects of optimization algorithms, including: velocity of

convergence, precision, robustness and general performance. Two functions have been
selected, the sphere function and the Rosenbrock function.

Sphere function

FIGURE 11

𝑓(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 The sphere function is a simplistic test function; it was chosen to test the

combined accuracy of the line search and direction calculation. The global minimum is

found when all values of x are equal to 0. Due to the landscape of the problem, the

minimum should be easy to reach with a correctly conditioned optimization algorithm.

An accurate line search algorithm will allow the minimum to be found in very few steps.

Max Chandler | Final Report

30

Rosenbrock Function

FIGURE 12

𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝑛−1

𝑖=1

 The Rosenbrock function (figure 12) was chosen due to the relative difficulty of

finding the minimum of a problem. The function was first described in The Computer

Journal (Rosenbrock, 1960). The function allows the optimization algorithm to find a

value close to the minimum relatively quickly; however once close to the global minimal

the gradient differences are minute, testing the accuracy of the optimization algorithm.

The lowest parts of the valley are virtually flat; this is designed to test the true

robustness and accuracy of an optimization algorithm.

Max Chandler | Final Report

31

Line search performance on test functions
Sphere function

FIGURE 13

FIGURE 14

Max Chandler | Final Report

32

Rosenbrock Function

FIGURE 15

FIGURE 16

Max Chandler | Final Report

33

Evaluation
 From the two test functions it is possible to derive some understanding of how

each line search method works given two different environments. There are a few clear

performance differences between the parallel and backtracking line search.

Sphere function performance
 As previously discussed, the sphere function is a simplistic function, where a

correct calculation of direction should lead to the minimum in very few steps,

independent of the number of variables. This can be seen clearly when comparing the

number of iterations performed by the L-BFGS algorithm, where at each iteration of the

algorithm a line search is conducted. If a line search is more accurate, in theory it should
mean that less L-BFGS iterations are conducted.

 RUNTIME

 When comparing run-times, it is clear that the lightweight backtracking line

search performs more efficiently when given a smaller number of initial values, however

it does not scale well when extra dimension are added. In comparison, the backtracking

line search begins to preform better when more dimensions are added. There also

appears to be a clear difference in the stability of the algorithms, where backtracking
line search has a few spikes in wall time, where the parallel line search does not.

 NUMBER OF ITERATIONS

 The parallel line search significantly outperforms the backtracking line search

here, where it is consistently solving the sphere function in two steps. When applying

this line search to the quantum control problem this should significantly reduce

runtimes, where function evaluations are extremely expensive. This contrast in behavior

would explain the large increase in L-BFGS runtime when using a backtracking line

search.

Rosenbrock function performance
 The Rosenbrock function is a challenge for many optimization algorithms, as

towards the minimum the gradient is minute. This function tests the ability to aid the

optimization algorithm to find the minimum quickly, where a poor line search will lead

to significantly more optimization iterations.

 RUNTIME

 For this problem, the parallel line search does not outperform the backtracking

line search, and on the surface seems to be unsuitable. The lightweight backtracking line

search helps L-BFGS to find the minimum in significantly less time. This graph displays

the effect that the evaluation function has on the line search, where it increases the time

taken for the line search dramatically.

 NUMBER OF ITERATIONS

 When comparing the number of L-BFGS iterations, the performance is fairly

close, however the parallel line search is marginally better. This difference in the

number of iterations performed on a hard problem has potential to be improved to form
a faster, parallel implementation.

Conclusion
 The aim when developing this line search algorithm is to reduce the number of

function evaluations by improving the accuracy. This line search appears to be doing

this for complex algorithms where the gradient calculations are difficult and performing

Max Chandler | Final Report

34

very well when the function is simple. Overall, this line search algorithm has been

proved to be more successful than the basic backtracking line search in achieving these
goals.

Max Chandler | Final Report

35

Quantum control
Algorithm Performance

 The following results represent a comparison between the final parallel line

search and the standard backtracking line search. The results display a transfer from

spin 1 to spin 2 in a ring of 5 spins with a random time t from 0 to 100. 100 random
times were tested, where each time was also tested 25 times.

 All results, unless stated otherwise do not include failed runs (where 1 or less
steps were taken).

BEST TRANSFER PROBABILITY

FIGURE 17

Figure 17 represents the best infidelity found given the time t; it is the best

result of the 25 runs. These results essentially describe how successful the system is,

where a lower infidelity is better. The majority of results from both line search

techniques fall within similar ranges, however these results are not directly comparable,

as the times are not exactly the same. This plot suggests that algorithm performance is

similar, as the minimums found are similar. The majority of results shown in this plot

would ensure a 99.985% success rate of information transfer between spins, which is a

good result for all times.

The range in the results displays the difficulty of the problem, where no

optimization ever reaches 0, but where many reach very close. It is also important to

note that time does not appear to play a significant role in influencing results, where the

optimization algorithm was able to reach an acceptable minimum at the majority of

times.

Max Chandler | Final Report

36

DISTRIBUTION OF BEST TRANSFER PROBABILITY

FIGURE 18

 To describe the behavior of the system more clearly, figure 18 represents the

distribution of the best results. The plot is a histogram of results with a line of best fit for

each line search; both plots are laid over each other to allow a direct comparison of

results. This plot is intended to show the accuracy and precision of the L-BFGS
algorithm given the different line search algorithms.

From the plot, it is to see that the standard backtracking line search provides

results where on average the infidelity reached is lower with a narrower range. In

contrast, the parallel line search has a larger range of results, suggesting a less precise

outcome and a higher infidelity achieved denoting a less accurate algorithm.

 This suggests that the backtracking line search is more suited to solving the

problem, as it is outperforming the parallel line search when finding the minimum. This

may be due to the exit conditions of the parallel line search, where instead of looking for

a sufficient decrease of the objective function relative to its slope, it is looking for an
exact reduction.

Max Chandler | Final Report

37

AVERAGE FIDELITY REDUCTION

FIGURE 19

 Figure 19 displays the average infidelity reduction of every L-BFGS run, not just

the best runs. The aim of this graph is to display the efficiency and consistency of the L-

BFGS algorithm, with the two line search functions. This graph clearly displays how

helpful each line search algorithm is at aiding the optimization for finding minimums.

It is clear to see, that the backtracking line search has a much better average

performance, where it constantly reduces the infidelity more than the parallel line

search. Where as in comparison, on average the parallel line search performs much

worse at aiding L-BFGS to find a minimum.

 When considering the standard deviation, it is interesting to note that the

parallel line search never outperforms the best performance from backtracking line

search. Whereas the backtracking line search appears to outperform the parallel line
search for the majority of the time.

 These results suggest how much more suited the backtracking line search is to

solving the problem, by consistently aiding the L-BFGS algorithm enough to reduce the

infidelity more than if the parallel line search method is used. However, this maybe due

to algorithm design, where the backtracking line search is looking for a sufficient

decrease rather than an exact minimum. It may be, that by finding an exact minimum on

the line it leads the optimization algorithm into local minima, where it is difficult to find
an accurate search direction to the global minima.

Max Chandler | Final Report

38

 There is also something to be said about the robustness of each algorithm, the

results suggest that the backtracking line search will be able to find an infidelity close to

a minimum in more cases than the parallel line search. For example, if the starting

infidelity is around 0.25 and performance is based on the average infidelity reduction;

the backtracking line search should be able to aid L-BFGS to reduce the infidelity to

around 0.02. However, if the parallel line search is used, it may only reduce it to around

0.09. Although both results imply a high transfer probability (99.98% and 99.91%
respectively), it would explain the results found in figure 19.

RUNTIME COMPARISON

FIGURE 20

Figure 20 is a plot of the wall time for each optimization to run given the value of

the system input time t. From this plot, it is possible to deduce a few distinct patterns in

how the two algorithms are impacting the performance of the optimization. It is

important to note that for early system time values, the search problem is extremely
hard, explaining the scattered results.

Firstly, the parallel line search performance improves with the number of

timeslots to calculate for. This is counterintuitive, as the evaluation function takes more

time with more time steps, this may also suggest that the algorithm is finding a

minimum in less iterations. Once the number of time steps (system time) reaches

around 35, the parallel line search appears to have a linear performance with a narrow

spread, suggesting a consistent behavior that will scale well with the number of

variables.

Max Chandler | Final Report

39

In contrast, the performance of the backtracking line search is varied, and is

spread across two distinct areas; one where the average time appears to be 1 ∗ 104

microseconds, and the other where the performance appears to be around 2 ∗

104microseconds. This may be due to the number of line search iterations increasing,

suggesting that the backtracking line search is low when the step size is not easy to find.

It is also worth noting that once the number of system time slots reaches around 35 the
performance is consistently worse than the parallel line search.

 Finally, it is also worth noting the spread of the timing results for both of the line

search algorithms, when the number of system time slots is below 35. The range of

results could indicate the difficulty to find a minimum in the early stages, suggesting the

search space has more local minima and maxima.

 Overall this graph suggests that the parallel line search yields an improved

performance in terms of overall optimization time, however this may be due to machine

specific architecture. This is encouraging, as it also suggests that a more efficient parallel

implementation could lead to a better increase in performance, as the current
implementation can be improved.

COMPARISONS OF NUMBER OF ITERATIONS

FIGURE 21

 Figure 21 above represents the average number of L-BFGS iterations required to

find a minimum or an exit condition, for all runs that did not fail. This graph is an

analogue to the timing runs, where it is possible to distinctly measure algorithm
performance independently from a computer’s physical performance.

 This plot clearly shows the two different behaviors of the line search algorithms,

where the backtracking line search takes a many iteration lightweight approach, and the

Max Chandler | Final Report

40

parallel line takes few well-calculated steps. From these results, it is possible to

conclude that the performance of the parallel line search is much more consistent than

the backtracking line search, where it is consistently aiding the optimization algorithm

to reach a termination condition in under 10 iterations. In contrast, the performance of

the backtracking line search has a wider spread, and the average number of iterations

increases over time.

With the results from figure 20 and 21, they both suggest that with

improvements to the parallel algorithm runtime, the speedup could be substantial. As

the number of total iterations is low, however the algorithm is not entirely efficient in

the current implementation leading to a sub-standard runtime. There would be an

obtainable speedup from a pure C/CUDA implementation of the quantum target and line

search functions.

COMPARISON OF THE NUMBER OF FAILED RUNS

FIGURE 22

 Figure 22 above represents the number of failed L-BFGS runs for all results, at a

given system time. A failed run is where the system took one step or less. This definition

of a failed run has come from the L-BFGS algorithm, where the first step is essentially a

gradient descent. Once past the first step, the L-BFGS calculates a much more accurate

direction from the inverse Hessian matrix. Typically, the first step for the system is

often very small (> 1e-5), and this is an issue for a line search algorithm that is not
efficient at searching through small spaces.

 This plot shows the inefficiency of the parallel line search algorithm, where

aiming to find a minimum in the search direction can be detrimental to program

performance. In this instance the backtracking line search outperforms the parallel line

Max Chandler | Final Report

41

search by at least providing a step size. Due to the characteristics of the L-BFGS

algorithm, it does not need an exact line search method, and it appears that the
searching for an exact minimum can be detrimental to program performance.

 These results suggest that employing the Armijo-Goldstein condition, rather

than attempting to directly minimize, could improve the parallel line search algorithm.

In this modification of the algorithm, the line search would sample in a similar way, but

would find the condition with the greatest decrease in relation to the objective function.

The sampling could be configured to segment the line into equal portions, and conduct a

backtracking line search in each segment, then perform a reduction action that would

return the step size 𝛼 that best reduces the objective function in relation to the Armijo-
Goldstein condition.

Controls produced
 The following figure (23) is one example of a control produced for a ring of size

9, where the target was to transfer data from spin 1 to spin 9. The parallel line search

reached an infidelity of 0.00034, suggesting a transfer probability of 99.99966%. In this

occasion, the results for controls produced do not follow the symmetry implied by the
initial controls.

FIGURE 23

 The infidelity reached in this example is an exceptional result, where around 1

bit would be lost per 300,000 bits transferred. This result is comparable to the packet

loss of UDP packets across a network, where for a 8ms transfer the probability of loss is

0.23% (Bolot, 1993). A 8ms network transfer is comparable for the time taken to ping

google.com from the Cardiff University network (appendix, figure 31). Considering the

Max Chandler | Final Report

42

uncertainty of quantum control, when compared to definite behavior of classical
computing techniques this is an excellent result.

FIGURE 24 OPTIMIZED VS NATURAL SYSTEM EVOLUTION

FIGURE 25 OPTIMIZED VS UNOPTIMISED SYSTEM EVOLUTION

To understand the effect that controls have on the system, figure 24 displays the

transfer probability for the same system as before for an uncontrolled system compared

to the natural evolution of the system given no controls. From this it is clear to see what

effect the controls have on the system, where the natural evolution of the system is

extremely sporadic, and how the best transfer probability achieved is around 35%

where t is around 40. A well-optimized system provides a large improvement on the

final transfer probability.

Max Chandler | Final Report

43

Figure 25 compares the probability of the un-optimized controls with their

controlled counterparts. Although the random initial controls are designed to steer the

optimization to find a global minimum, their effect is only marginally better than the

natural evolution of the system. From here, it is clear to see how much an improvement
the optimization can bring to the system.

Types of controls produced
 From the results, there appear to be three classes of controls produced; one

where the ring follows the initial system controls and behaves like a ring. Another,

where the optimization appears to segment the ring into separate parts, and finally a set
of controls where there is no clear indication of a pattern.

 SYMMETRIC CONTROLLS

 As previously discussed in initial research, it can be favorable to attempt to steer

the optimization to a chain topology as transfer in chains is relatively known. This type
of control appears in the smaller ring sizes more frequently as the optimal result.

FIGURE 26

Figure 26 displays the type of controls achieved, where the optimization has

made relatively little changes to the initial random controls. For a ring size of 5, this
type of control holds the optimal transfer for every transfer (1 to 2, 1 to 3…).

RING SEGMENTATION

 The second distinct type of control produced is less frequent than the symmetric

chain type controls, and appears more frequently on larger ring sizes. This type of

Max Chandler | Final Report

44

control appears to segment the ring into distinct parts, where it seems to be isolating the
qubit to only transfer through a much smaller sub-set of the network.

FIGURE 27

 Figure 27 represents these types of controls, where in this instance the target is

to transfer from spin 1 to spin 3. It appears that the optimization is isolating a subset of

the network; by placing strong controls to create boundaries. In this instance, it seems

to segment a network from, where spins 1,2 and 3 are isolated and spins 5,6,7, and 8 are

isolated. However, as the initial system state is where the information is contained in

spin 1, the probability of successful transfer to spin 3 is increased, as it should remain

relatively contained in the segmented network. Figure 28 displays the theoretical links

that are made with this control, denoted by dashed lines, solid lines represent the links

and the gradient on spin 4 and 9 represent the strong controls.

Max Chandler | Final Report

45

FIGURE 28

This diagram depicts a clearer picture of the possible behavior of the network

given the controls. These assumptions are based on the behavior of spin chains. From

here, it is clear to see how this would be advantageous to use this style of control for a
transfer from spin 1 to spin 3.

UNKNOWN CONTROLLS

 As the network size is increased, there are different types of controls that are

produced, where there is no clear pattern. Figure 29 displays two types of optimal

controls for a ring of size 13. Both of the solutions have a relatively high control bias on

the initial and target spin, which would naturally suggest that the transfer is less likely

(if compared to controls on smaller ring).

FIGURE 29

Evaluation
The range of controls possible represent the difficulty of the landscape that is

being optimized, and how little is known about how these networks behave. Quantum

spin chains are an incredibly difficult problem to optimize, due to the unpredictability of

behavior inside the network. There is possibly a large range of quantum network

controls that need to be categorized, which are optimal for each size of ring or transfer.

In this instance, only odd size rings have been used for transfers in the attempt to steer

optimization to symmetric ring like behavior. However even this know property of

quantum networks provides sub-standard results compared to these unknown controls

that are being produced.

Max Chandler | Final Report

46

Evaluation
From the results produced in terms of algorithm performance and results

produced it is clear to see that this problem is extremely difficult, with very

unpredictable behavior. Parallelization of current techniques has lead to a speed up

when producing controls, however, due to the parallel algorithm being under-

developed, it lead to a worse performance in terms of average transfer probability
achieved.

 The method employed in this study was designed around gathering a large range

of results with an acceptable level of accuracy. The narrow band of conditions used to

collect results provided ample results for a basic level of analysis, however these results

will be hard to apply to a larger group. This is because there are many other network

topologies that need to be researched, rather than just rings of odd size. For example,

the controls produced for a ring of size five will not necessarily work on a ring with even

number. Overall, the method for this project was successful at producing descriptive test
and main system results.

 The two line search techniques take two different approaches to computing a

suitable step size, where currently the backtracking line search yields a better

performance in terms of accuracy and precision. However the parallel line search

performs significantly better in terms of system wall time and number of iterations. A

future approach could be designed to combine components of each line search; search
for a suitable decrease in parallel, rather than an exact minimization.

 In this paper, there has been minimal discussion of parallelizing the quantum

target function; due to the implementation given the time constraints. This process

could potentially benefit from being implemented on GPUs, where matrix calculations

suit the architecture of the cards. There were efforts made to develop a C
implementation of the target function, however it was dropped due to time constraints.

 When comparing the controls procured, it is simple to see that due to the

unpredictability of quantum spin networks it is hard determine what controls are most

efficient. Considering that this application was designed to steer the optimization

algorithm to one type of possible control, there are results that contradict this logic,

suggesting that there are many different classes of controls.

 The method in this project was restrictive to a certain subset of results; this is

due to the long wall time of calculating an entire set of results for a ring. On the

computer designed for this project, with it running 24/7 it took just under 20 days to

collect the results. If more time was available, more ring sizes would be tested, a larger

range of times would be tested and the number of evaluations per time would be

increased. This would allow for a more in-depth study of algorithm performance and the
behavior of spin networks.

 When comparing sequential and parallel results, only a ring of size 5 was used.

This is extremely restrictive, as looking at the results there appears to be one type of

control that is dominant. If there were more time available it would be beneficial to

compare performance across several ring sizes, and to see if the line search influenced
the types of controls produced on different network sizes.

Max Chandler | Final Report

47

Conclusion
 The aim of this project was to develop a GPU parallel implementation of the L-

BFGS algorithm, which would be applied to a quantum control problem. During the

course of this project, it quickly became apparent that it would not be possible to

achieve this target in the time given. However, a different approach was taken to display

a proof of concept; test functions that displayed CUDA functionality, and a CPU parallel

L-BFGS algorithm applied to a quantum target function.

 Overall, the system produced displays promising results when applied to the

quantum control problem by reducing wall time and number of system iterations. This

suggests that the methods explored in this paper could be applied to a more efficient
parallel implementation, which would lead to larger increases in performance.

 The method explored in this paper was designed around saving time, where only

a small range of network topologies, transfers and sizes were collected. Despite a timely

development of the parallel algorithm, it took over three weeks to collect all results,

which is a large portion of the total time for the project. For this reason, it will be
incredibly hard to abstract this study to other network topologies, sizes or transfers.

 The results produced displayed some interesting characteristics of spin chains,

where the output controls did not indicate clear behavioral patterns. The results

produced are varied, despite the initial controls attempting to steer the optimization

algorithm to a symmetric-chain type control. The results indicate the complex behavior

of spin networks, where it may be beneficial to research a classification of the different

types of controls that suit different network topologies.

 The development of the system went smoothly overall; the largest issue in the

project that consumed time was the setup of Matlab and integration with CUDA and

Windows 8. However, this was expected and was integrated into the initial plan,
meaning each section of the report was delivered on time.

 In conclusion, this project has provided a good proof of concept, where a parallel

implementation of the L-BFGS algorithm brought benefits in terms of runtime and

number of iterations. In future work, this paper can be the basis of a faster and more
accurate algorithm.

Max Chandler | Final Report

48

Future improvements
 A CUDA PARALLEL IMPLEMENTATION

 There are several areas where this work can be improved, where the largest

improvement could be made through a different parallel implantation in GPGPU

programming techniques. This form of parallelization is particularly suited to matrix

arithmetic and may yield faster results. This is due to having many (often thousands)

lightweight threads that will perform individual operations, and then perform a
reduction to collate results.

In this implementation, the quantum target function may see large performance

increases in terms of wall time due to the large number of matrix operations. Although

this implantation would no longer be based on code written for Matlab, it would still be

possible to compile and run the program from Matlab. This would allow for continuation

of the use of Matlab’s graphing and analysis functions.

 MACHINE LEARNING OF INITIAL PARAMEMTERS

 In this paper, estimation of initial controls was based on random number

generation. It would be interesting to collect data on networks where the initial controls

where the same, the output for each network size, time and transfer would become the

basis for a learning data set. From there, using a machine learning technique it would be

possible to estimate initial system bias parameters based on previous controls. The aim

here would be to create a system that could limit the search space for the optimization

algorithm by providing an accurate initial guess at system parameters. For example:

Transfer qubit of information from spin 1 to spin 9 in a network of 10 spins, what time and

controls would maximize transfer probability?

 A MORE DETAILED INVESTIGATION OF TIME

 In this application, the time search is very coarse, where the distance between

points in time is relatively large. It would be beneficial in the future to decrease the

distance between step sizes in time, and increase the number of time slots. For example,

500 time steps with a delta size of 1, rather than 50 time slots with a delta size of 10.

This would provide a much more detailed, step-by-step evolution of the system, it would

allow for a more detailed understanding of how the system evolves, and what times are

optimal for different transfers. However, due to the direct relation between the number

of time steps and the time taken for the quantum target function this would greatly

increase the wall time of the system. In the final version of the system evaluation in this

project, there are the following number of operations in relation to the number of spins

(s) and timeslots (t).

(3 ∗ 𝑡) + 𝑡𝑠 + 𝑠

 Considering that the line search function runs this target function at least 2,500

times for each iteration until an exit condition is met, the number of timeslots evaluated
should be kept to an absolute minimum; unless wall time is not an issue.

 AN IMPROVED LINE SEARCH METHOD

 Currently, by exactly minimizing to achieve the step size 𝛼 may not be the best

solution, as L-BFGS does not need an exact step. It would be beneficial to firstly restrict

the search space, by not allowing the line search algorithm to recuse to find the exact

minimum. In this version it would sample the line at regular intervals once. From there,

instead of fining the minimum of the values, it would be better to use a condition for

Max Chandler | Final Report

49

finding the best value in relation to either the Armijo-Goldstein condition or the Wolfe
conditions.

 This change in the line search behavior would greatly decrease the line-search

wall time, but decrease the accuracy currently offered. However, this approach

combines the benefits of a normal backtracking line search with these conditions, which

has been proven to be more accurate in this paper, with the speed of the parallel line

search. If anything, these conditions combined with a parallel approach would provide a

more accurate result than a normal backtracking line search.

 A DIFFERENT LINE SEARCH APPROACH

 Simulated annealing is a useful method when attempting to find optima, where it

takes large step sizes around the search space that eventually become smaller and

greedier around optimal values. The aim of simulated annealing is to provide a result in

the time given, in this application; it would produce a step size 𝛼 along the line. The step

size 𝛼 could also be inline with the Armjio-Goldstein or Wolfe conditions as previously

mentioned. This line search technique may have benefits over the parallel line search, as

it would provide a definite answer in a given time, however it may not nessasarly be the
optimum.

Extensions to this work
 DIFFERENT NETWORK TOPOLOGIES

 In this paper there is only an exploration of rings that have an odd number of

spins, this research has a very narrow scope that is hard to generalize. It would be more

appropriate to explore a larger range of network topologies; chains, rings, stars,

hypercube, fully connected, bus, mesh networks or any combination of any of these. By

exploring the different network topologies, it would provide a better understanding of
how network topology affects the transfer of qubits.

 NO RESET BETWEEN TRANSFERS

 Currently, the network is simulated from a neutral starting position for every

transfer. It may be possible to introduce a second transfer after the first in a system

without resetting back to a neutral position. The major issue here is that when a qubits

state is measured it affects the state of the system. It may be possible to shut down the

qubits used for previous transfers with strong controls and continue to use the rest of
the system for the future transfers.

 ADD TIME AS AN OPTIMISAION PARAMETER

 Currently the system is prescribed a time when the data is going to be measured

from the system. It would be interesting to explore time as another optimization

parameter, as there may be times where a greater transfer probability can be achieved.

However, when comparing the minimum infidelity in figure 17 over time, there appears

to be a uniform distribution, suggesting that there are no optimal times for transfer if
optimal controls are found.

Another option would be, given a set of controls that are not optimized, find the

best time for the transfer. However, there appears to be no real benefit to this scheme,

as there are few real world applications where this would be the optimal choice.

Max Chandler | Final Report

50

 CLASSIFICATION OF CONTROLS

 In this paper, there are two different types of controls described that produced

some of the optimal results (symmetric chain and partitioning of rings). However, as

the ring size increased, there were some complex controls that were observed of which I

could not explain the behavior inside the network. I believe that there is a large set of

quantum spin network controls that should be classified, not just for rings, but also for

all network topologies. The classification should come from a scheme where a large set

of network sizes is checked, transfer from and too all nodes is checked and where initial

controls have a uniform distribution; such as all random numbers in the range 0 to 1.

These controls would be the benchmark for describing controls in spin networks and
allow a broader understanding of how these controls manipulate the state of the system.

 EXPAND AND COMBINE NETWORK TOPLOGIES

 As the study of this paper is around the application of a ‘quantum-router’, the

natural evolution of the system would be to extend the topology to contain other

network components. Figure 30 below displays a network where chains have been

added to certain ring spins, in a hardware application the end nodes may represent

different computer components; hard drives, processors or memory units. Or on a much

larger scale, a small network that contains identities where the target is to get data from
Alice to Bob.

FIGURE 30

Max Chandler | Final Report

51

Reflection on learning
 In reflection, this project has taught me a great deal of applying a scientific

method to a project to achieve a successful outcome. In the past, I have had experience

on working on projects with a specific aim; such as developing a piece of software with

the functionality ‘x’. However, this dissertation was based on a much more exploratory

approach, where planning program development relies heavily on current process and

discovery. This structure is completely different to any that I have done in the past,

where the outcome was unknown. It was essential to constantly review and reflect on

current progress to steer the project towards a modified outcome; CPU parallel rather
than GPU implementation.

 When compiling results from a scientific study, displaying them in the correct

manner is essential. This project has produced an extremely large data set of results,

where the individual values produced have little value. Whereas combining results into

descriptive graphs can display a large amount about algorithm behavior that is not
readily apparent when viewing the raw data.

 The project development process has taught me how important it is to keep up-

to-date with current research, where recent papers can aid in the development of your

own research. Throughout the project development I managed to follow the plan

highlighted in the initial project report (see appendix, figure 32). This allowed me to

complete the project with time to allow for results collection, which took a substantially

long time.

 Personal time management in this project was extremely important, as the

development and competition on time relied on my commitment. This was not too much

of an issue throughout the project, as the subject area is interesting to me. By having a

supervisor meeting every week helped develop ideas and provide solutions for current

problems. Through the use of GitHub in this project, it allowed me to keep an accurate

track of what I had achieved in the previous weeks, it has also aided in the writing of this

final report by allowing me to reflect on key milestones in the project.

 In terms of amount learnt, this project has taught me a great deal about scientific

research methods, quantum mechanics, control theory and optimization. This project

was chosen due to an interest in quantum computing. However the largest limiting

factor was how little past experience I had with mathematics of this level; I had to spend

a month learning A-Level math before trying to understand how these systems were

formed. Despite this, I have finished this dissertation with a much deeper understanding
of mathematics and physics.

 Overall, I have learnt a great deal on how to apply a scientific method to achieve

accurate and descriptive results; in an application like this, it is vital to provide data to

back up a statement. Presenting scientific data in a meaningful way is crucial to allow
readers to effectively understand exactly what is being presented.

Max Chandler | Final Report

52

Table of abbreviations
 Qubit: A quantum bit of information, the analogue of a digital bit of information.

 BFGS : The Broyden–Fletcher–Goldfarb–Shanno algorithm, a second order

quasi-Newtonian optimization method.

 L-BFGS: The Limited-memory-BFGS algorithm, a variant of BFGS where large

matrices are not stored.

 Spin: (in reference to quantum spin), the angular momentum of a molecule’s

spin around its own axis. There is also an orbital form of spin, such as when a
molecule orbits a nucleus.

Max Chandler | Final Report

53

References
Åkerman, J. (2014, April 22). Toward a Universal Memory . Science, 308, 508-510 .

Alexandrov, O. (2004, November 19). Gradient descent.png. Retrieved March 12, 2015,

from Wikimedia:
http://commons.wikimedia.org/wiki/File:Gradient_descent.png

Alexandrov, O. (2007, June 20). Conjugate gradient illustration.svg. Retrieved March 14,

2015, from Wikimedia:

http://commons.wikimedia.org/wiki/File:Conjugate_gradient_illustration.svg

Baylis, W. E., Hushilt, J., & Wei, J. (1992). Why i? American Journal of Physics, 60(9), 788–
797.

Bolot, J.-C. (1993). End-to-end packet delay and loss behavior in the internet. SIGCOMM
'93 Conference proceedings on Communications architectures, protocols and

applications, 23(4), 289-298.

Christandl, M., Datta, N., & Andrew J. Landahl, A. E. (2004, May 4). Perfect state transfer
in quantum spin networks. Physical Review B, 92, 187902.

Cui, J., & Mintert, F. (2014, July 4). Long distance entanglement in disordered spin chains
. Cardiff.

Dirac, P. A. (1939, July). A new notation for quantum mechanics. Mathematical

Proceedings of the Cambridge Philosophical Society, 35(03), 416-418.

E. Jonckheere, F. C. (2014, July). Quantum networks: Anti-core of spin chains. Quantum

Information Processing, 13, 1607-1637. Retrieved from Cornell University
Library.

Eichmann, U., Bergquist, J. C., Bollinger, J. J., J. Gilligan, M., Itano, W. M., & Wineland, D. J.

(1993). Young's Interference Experiment with Light Scattered from Two Atoms.

Physical Review, 70(16).

Fei, Y., Rong, G., Wang, B., & Wang, W. (2014, May). Parallel L-BFGS-B algorithm on GPU.
Computers & Graphics, 40, 1-9.

Hai-Jing, W., Chang S., S., Claudia E., A., Scott J., S., Dmitry, B., Alexander, P., & Vikram, S. B.

(2013, June 05). Sensitive magnetic control of ensemble nuclear spin

hyperpolarization in diamond. Nature Communications, 4.

Hauser, D. R. (2007, January 01). Line Search Methods for Unconstrained Optimisation.

Retrieved March 26, 2015, from University of Oxford Mathematical Institute:
ttps://people.maths.ox.ac.uk/hauser/hauser_lecture2.pdf

Jonckheere, E., Langbein, F., & Schirmer, S. (2014, Aug 16). Information Transfer Fidelity

in Networks of Spins. Retrieved January 12, 2015, from Cornell University
Library: http://arxiv.org/abs/1408.3765

MathWorks. (2015, January 05). Run Built-In Functions on a GPU. Retrieved March 12,

2015, from MathWorks: http://uk.mathworks.com/help/distcomp/run-built-in-
functions-on-a-gpu.html

Max Chandler | Final Report

54

Naoaki, O. (2014, 12 5). libLBFGS: a library of Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS). Sendai, Sendai, Japan.

Pardalos, P. M., & Yatsenko, V. (2008). Optimization and Control of Bilinear Systems. New
York: Springer.

Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest or Least Value
of a Function. The Computer Journal, 3(3), 175-184.

S. Machnes, U. S.-H. (2011, August). Comparing, Optimising and Benchmarking Quantum

Control Algorithms in a Unifying Programming Framework. Phys. Rev. A, 84(2),

0-23.

Schirmer, S., & Langbein, F. (2014, Mar 2). Characterization and Control of Quantum

Spin Chains and Rings. Cardiff.

Schrödinger, E. (1926, December 1). An Undulatory Theory of the Mechanics of Atoms
and Molecules. Physical Review, 28(6), 1049–1070.

Simionescu, P. (2006, November 17). Banana-SteepDesc.gif. Retrieved March 12, 2015,

from Wikimedia: http://commons.wikimedia.org/wiki/File:Banana-
SteepDesc.gif

Vandersypen, L. M., Steffen, M., Breyta, G., Yannoni, C. S., Sherwood, M. H., & Chuang, I. L.

(2001, December 20). Experimental realization of Shor's quantum factoring
algorithm using nuclear magnetic resonance. Nature, 414, 883-887.

