Project Report
Project DIY Cloud

Ka-Him, HO

School of Computer Science & Informatics, Cardiff University
Supervisor: Ralph Martin
Moderator: Irena Spasic
Module: CM3203 One Semester Project (40 Credits)

Student Number: 1265987

May 5, 2015

Abstract

The aim of this project is to build a DIY cloud solution, based on an FTPS server
controlled by the user. This report looks into the background, design, implementation
and testing of creating a file synchronisation application using ftps protocol for Android
devices and Mac OS X devices. The report also discusses problems | encountered, how
the application can be improved in the future, and my reflection on the project as a
whole.

Acknowledgements

Many thanks to Professor Ralph Martin for his valuable and constructive suggestions for
this project.

Table of Contents

1. Introduction
1.1. Goals of project
1.2. Target Audience and Beneficiaries
1.3. Scope of project
1.4. Assumptions
2. Background
2.1. Existing Solutions
2.2. Theory
3. Specification
3.1. Functional Features
4. Design
4.1. Flowcharts
4.2. Class Diagram
4.4. User Interface
4.4 1. Draft Design
4.4.2. Final Design - Android
4.4.3. Final Design - Mac OS X
5. Implementation
5.1. Tools and Framework
5.1.1. Android Development
5.1.2. Mac OS X and Python Development
5.1.3. General Tools

5.2. Methodology

12

12

15

19

19

22

28

32

32

32

33

34

35

5.2.1. Development Model
5.2.2. Android Development
5.2.3. Python (Mac OS X) Development
5.2.4. Different Approaches
5.3. Encounter Problems and Solutions
5.4. Limitations
6. Testing and Evaluation
6.1. Test Cases
6.2. User Evaluation
7. Conclusion
8. Future Enhancement
9. Reflection
References

Appendices

35

35

36

37

40

42

43

43

44

51

52

55

57

58

1. Introduction

1.1. Goals of project

The aim of this project is to build a DIY cloud solution, based on an FTPS server
controlled by the user. Many individuals or companies have their own FTPS servers. By
using our own FTPS server, we ensure data is not giving out without notice, but these
are not applications, they are file transfer protocols, they do not synchronise data in
background automatically, like Dropbox and Google Drive. Therefore, we need a tool
that automatically synchronise data between the server and local computing device, like
various cloud solutions do, in form of FTPS protocol controlled by users.

The client application will be provided in Android (Mobile device) and Mac (Desktop)
platform. Users will be able to select folders to be synchronised to FTPS server. Any
changes on the master copy on the server will download automatically in background in
a time frame. Thus, any updates to local files will upload to the server automatically.
There are several major concerns of this project, including, issues which clients going
offline for a long time, conflicts if two clients change the file at the same time, battery
usage on mobile devices, data loss during updating the file, ease of add and remove
files, and ease of selection of folders to be synchronised.

This application will benefit users that want to use their own controllable FTPS server as
the back-end of cloud solutions, who need to synchronise data among different clients.

1.2. Target Audience and Beneficiaries

The application targeted towards people with their own FTPS server who willing to
synchronise files among different devices or synchronise local files to server as a
backup. As there are many other cloud drive solution provided by big companies, |
assume the targeted audiences are interested in privacy and security. People do not
need to trade-off between the convenience of storage services that synchronise
automatically in background and the concern about service providers giving out data to
government [1]. Hence, users will not encounter data ownership problem with their own
cloud solution, it is debatable that data uploaded to providers’ servers own by which
parties.

In addition, they should have some basic IT knowledge to understand how to find or set
up their own FTPS server.

| would consider myself as a beneficiary as | improved many of my existing
programming skills and gained a lot of additional knowledge of various topics such as
programming with Java on Android platform and Object Orientated Programming.

1.3. Scope of project

In order to ensure | have a successful project, it is important to maintain focus on
accomplish the aim and objectives. There are two completely different client
applications using different programming languages. There are different approaches to
each implementation steps and design decisions. The most important algorithm and
theory in this project is the remote synchronise problem. It will be discussed in more
detail in theory section. When | started my project, | chose to use different languages on
different platform; as | thought it would be a wiser option to use technologies which | am
comfortable in.

1.4. Assumptions
There are few assumptions throughout the project.

First, | assume the end product is a working prototype which means | am more
concentrate on implementing features that fits the specification than visually appealing
of the applications.

Secondly, | have to assume user have their own ftps server or able to find their way to
get one. Thus, | assume users have both read and write rights to directories they
assigned to synchronise.

Thirdly, the ftps server is assumed to be the central server sync across different client
devices. The remote server should have the latest file stored. Users are assumed not to
modify files on server directly.

2. Background

2.1. Existing Solutions

There are several cloud solutions exist these days, most of them use their own protocol
and own encryption method to provide synchronization service, for example, Dropbox
and Google Drive. Dropbox uses Python to write cross-platform desktop applications,
with their own Ul abstraction layer. Besides, there are some open source community
driven solutions, such as SparkleShare [2], ownCloud [3] and Syncany [4].
SparkleShare and ownCloud both provide self-hosted file synchronisation solution using
their own protocol. They are fully featured aim to replace Dropbox-like services as a
whole. Unfortunately, they require own server set-up with their server application.
Syncany tried a different approach, they attempt to do a client side application that able
to use different type of own storage (FTP, S3, WebDAV, NFS, Samba/Windows file
share, ...). Syncany is a better approach on balancing ease of use and security.

Command Line

Mobile Client Offsite Storage

Syncany FTP

Web Client Daemon WebDA!

Desktop Client

Trustworthy Not trustworthy

d. All

Figure 1. Syncany approach. [5]

On the other hand, there are some ftp client software capable to do file synchronization
as an addition to their application. FileZilla and WinSCP [6] are both FTP clients, they
include a folder sync feature hidden somewhere in their menu. Their solution is to do
sync manually and check which file has a recent timestamps. The problem is their
solution is not user-friendly, it is well-hidden and it requires manual trigger sync
operation. In addition, an application called Fling does exactly FTPS synchronization;
however, it can only run on Windows, and it can only upload and update existing file,
files are not removable.

2.2. Theory

General applications that tend to do synchronisation between two directories, operate
with the use of timestamps attached to files. First, | will talk about timestamps-based
sync, then, | will discuss why the solution of numbering file versions is more suitable for
this project.

The advantage of timestamps-based syncing is easy to implement and no extra cost of
memory use, as only single property is used. However, time is a relative concept to
different machines. Clock on client devices and server can be out of sync. Few seconds
of differences may not cause a major problem, as systems can modify to allow seconds
of time span. However, in some situation like different time zones or time zone with
daylight time, if clock is out of sync it may cause significant problems. In these
conditions, any algorithms that use timestamps as the key component, they may not
work as intended. This problem can solve by generate timestamps on a single machine
and compare to the one on another machine. While this solution may lower the impact
on clock out of sync, but this causes single point of failure, as it depends on whatever
generates the timestamps severely. In addition, timestamps-based solution does not
scale well with multiple clients and it does not handle situations where client update file
at the same time.

Alternatively, | choose to adopt a solution using version number for each file as a logical
clock. This approach uses version numbers as logical clock is similar to vector clock
sending messages in distributed system [7]. It does not rely on accuracy of the file
system or device clock, this avoid clock out of sync situations or client and server in
different timezone. In addition, it prevent single point failure to depends on one file
attributes; the most recent file version is determined based on a combinations of
attributes, file size and timestamp, instead of just file last modification date; if there is no
last sync list, the system will ask user’s decision. Hence, to ensure safety of users data,
when there is uncertainty about which file is the most recent one, and when version of
file is in conflict, the system will prompt user confirmation. Each client is independent,
plus, in each file they have their own version count. Saved directory lists store
information about deleted files; therefore, removed files from one location can be
identified, instead of assuming not allocate files mean removed.

However, this solution requires memorise list of last directories with all file versions,
which means extra memory usage as either database or a file is needed to store the list.
One major concern about the directory list, is the list will keep growing, even all files are
deleted; As removed files will mark as deleted, but not remove this entry from the list. A
reset list function can slim down the list, though no one can ensure that all clients
remove that entry at the same time. On top of the directory list, each file version object
contains all clients with that file, which means client list also keep growing; if there are
lots of clients attempt to sync the same directory, it may slow down the performance. On
the other hand, this solution unable to identify file rename, these files will treat as delete

old file and add a new one. Moreover, neither timestamp-based sync nor sync using a
version object is really related to the content of what is being synced.

Comparing Version Objects

e Each file has a version object, each object contains all clients with their file
version.
e When comparing two version objects:
o If there are equal,
m with equal file size and date, then Skip this file.
m with different file size or date, then file conflict.
o If client side has a larger value than server side, file on client side is the
one more updated.
m If mark as deleted (file size and date = -1),
Remove file on remote server.
m Otherwise,
Upload this file from local to remote server.
o If server side has a larger value than client side, file on server side is the
one more updated.
m If mark as deleted (file size and date = -1),
Delete file on local client.
m Otherwise,
Download this file from server to local.
o Otherwise, this file is in conflict
m If mark as deleted (file size and date = -1),
Remove file on remote server and Delete file on local client.
m Otherwise,
Let user to choose which file is the latest one.

3. Specification

3.1. Functional Features

The aim for this project is to create an application that automatically synchronise files
between client and FTPS server where directories to be synchronised are controllable
by the user. There are few requirements set in the initial plan, and below is the list of
requirements set after the final consideration.

1.
2.
3.

10.

The application should store a master copy of selected files on FTPS server.
The application should do file exchange and connection using FTPS protocol.

The application should download updates when master copy on the server
changes.

The application should upload files when local copy changes

The application should run in the background without command synchronous
action manually or any user interaction after the initial setup.

The application should handle conflicts like updating the same file at the same
time.

6.1. The application should let user to select which files is the latest one when
conflict occurs.

6.2. The application should let user to choose whether they want to select
each files when conflict occurs or set a default action.

The application should handle users that offline for a long time of period.
The application should consider battery usage on mobile devices.

8.1. The application should give users control on synchronous in certain
condition. l.e. in mobile network or/and in Wi-Fi network.

8.2. The application should give users control the interval of check time. |.e.
able to custom check every X seconds or minutes.

The application should avoid data loss while updating local and server’s data.

9.1. The application should not delete any files before it ensure files updated
successfully.

The application should be easy to select or remove directories to be
synchronised.

10.1. The application should implement a folder picker, instead of forcing user to
enter the complete path manually.

11. The application should be easy to add or remove files in selected synchronize
directory.

12. The application should be implemented on both Mac (Desktop) and Android
(Mobile) platform.

Additional Features

e The application should store a list of log to save a record of transfer actions.

e The application should let user to choose to enable auto schedule sync or not

3.2. User Interface
Apart from the functional requirements, there are some conditions on user controls.
1. Users should be able to add or edit selected sync directory.
2. Users should be able to trigger sync operation manually, by pressing the button.

3. Users should be able to start sync operation automatically with a given time
frame.

a. User should be able to set the sync interval.
b. User should be able to switch auto sync on and off.
4. Users should be able to clear logs and selected sync directory.

5. Users of Android application should be able to restrict the application to perform
in certain network environment and in certain battery status.

a. Users should be able to set these in preferences.
Users should be able to cancel or stop current progress.
There should be a log screen with all transfer details in it.

There should be a sync path list with a button to add new entry.

© © N O

There should be a dialog box show up when pressing add button.

10

10. There should be a folder picker in dialog box for adding or editing selection of
sync directory, instead of requiring users to enter path manually.

11. Notification should show up on every steps taken, for examples, uploading files,
getting the latest list of directories.

12. Notification should show up when there is any error message regards to the sync
process.

13.Users should be able to tell auto sync is enable on screen,

14.Users should have the control which file is the latest one when sync process
encounter problems.

11

4. Design

4.1. Flowcharts

Flowcharts are an effective way of explaining how specific algorithms run. They can
often be more useful than words. Most of my code in two different platforms are based
on the following flowcharts.

Add/Edit Sync Directory

Adding and editing selection of sync directories are using the same flow, as they are
basically the same thing and sharing the same code. At the beginning of the flow, if it
receive defined local and remote path as input data, it will consider as editing;
otherwise, it will consider as adding.

| Check for input data (Edit) |

Emter Local Path
and Remate Path

Folder Pickar

Show emar
messaga

| Store in Database

Diagram 2. Flowchart for adding or editing sync directory.

Sync - main flow

As mention in the theory section, the synchronization method used in this project
requires directory lists to do comparison; this solution avoid to single attribute, file
modification date, as the key factor.

12

Start

[

Check and Get
FTPS Settings

/

!

Local List

Get saved kocal
directary list

| | Getcurrent local | |

directory list

Compare saved and

current local lists

l

Remote List

Get saved
remote directory
list

o

Get current
remote directory
list

Compare saved and
current remate lists

|

Compare |ocal
and remole list

|

| Save noaw lists |

Diagram 3. Flowchart for main flow of synchronisation

Sync - Compare previous and current list

Compare prévicus and
current directary Nst

each
files?

yes

Set existing file entry’'s
date and size as -1

= wersion of this client #1 |——

Add new entry to the
list with name, date,
size, and version =0

Save new list in
a variabde for
nixl process

Diagram 4. Flowchart for comparing current list and previous list in sync process.

13

Sync - Compare local and remote list

[Start j

Each fila has a
version object

|

Compara version
objects on local and
remote

yas
ni

yes
-

client

[a]
sarver?
no

equal file
size and
data?

file mark as
remaved?

file mark as
removed?

remaoved ¥

Skip

Conflict

Remove
Remote File

Upload from Local

Delete Local File

Download
from Server

file mark as

Remove Remoie &
Delete Local File

Conflict

End

Diagram 5. Flowchart for comparing local list and remote list in sync process.

14

4.2. Class Diagram

Full version of the class diagram is in Appendix A, following diagrams extract some
significant functions and classes of the Android application.

The SavedList is a group of classes that handle to directory list. Every time at the
beginning of synchronisation, the system will get the latest list and compare with the
saved list; this comparison performs using compare() method in SavedListUtils.
SavedListUtils contains all common methods used by LocalSaved and RemoteSaved,
such as comparing list, add file entry to the list and mark file entry as removed.

RemoteSaved is using FtpsULtlis to operates all ftps connections, this class is used to
formulate the results to a group of methods similar to LocalSaved. This approach helps
to organise two types directory list and ease the comparison between them.

savedlist
<<Interface> >
soedbiees dFiletfilePath - Stri Path : String) : JSONA el
TAC = “LocaBavedlis? +readFileffilePath : String, rootPath : String) : rray
petoaeerth +writeFile(array - |SONArray, filePath - String, rootPath - String) - Boolean

+LocalSaved()] +getCurrentList{fileName - String, rootPath - String, replicald - String) - JSONArray

+readFiletfilePath : String, rootPath : String) : JSONArray +compare(savedAray - [SONArray, currentArray - [SONArray, replicald - String, fileName : String, rootPath - String) : JSONArTay

+writeFile array : JSONArray, filePath - String, rootPath : String) : Boolean | | mrementversioniiledbject - SSONGbject rephcad - stmg} - SONGAect

+getCurrentList(fileName : String, rootPath : String, replicald : String) : JSONArray +editifileName : String, filePath : String, fileObject : SONObject, oldList : JSONArray, rootPath : String) : JSONAmay

+getFileObject(fileName : String, rootPath : String, replicaid : String) : SONObject +addifileName : String, filePath : String, fileObject : JSONObJect, oldList : SONATay, rootPath : String) : JSONArray
+markAsDelete(fileName - String, filePath - String, oldList - JSONAray, rootPath - String, replicald : String) - JSONAmay
+getFileObject(fullPath - String, rootPath - String, replicald - String) - JSONObject

®

SavedListUtils
-TAG = “SavedList" L
ClocalRoote = RemoteSaved
_remateRoat = = -TAG = “RemoteSavedList”

readFile(filePath - String, rootPath - String) - JSONArray ~ftps

+writeFile(array : JSONArray, filePath : String, roctPath : String) : Boolean
-+getFileObject(filePath : String, roatPath : String, replicald : String) : JSONObject

+RemoteSavediftps : FrpsUtils)
+getLocalFileName() : String
-+ readFile(filePath String, rootPath - String) - SONArray

-isConnected() : Boolean

+getCurrentList(fileName : String, rootPath : String, replicald : String) : JSONArray
+getFileObject(fileName : String, rootPath : String, replicald : String) : JSONObject
#getDirectory(filePath : String, rootPath : String) : String

+getFilePathifilePath : String, rootPath : String) : String

+addifileMame : String, filePath String, fileObject : JSONObject, oldList : JSONArray, rootPath : String) : JSOMArray
-+markasDelete(fileName : String, filePath : String, oldList : JSONArray, rootPath : String, replicald : String) : JSONArray
+readLocalFile(fileName : String, rootPath : String) : JSONArray

+writeLocalFile(array : JSONArray, fileName : String, roctPath : String) @ Boolean

+getLocalFile(rootPath - String) - File

|:£ISOMArray T y - JSONArray) : Map <String, JSONObject >

Diagram 6. Class Diagram for SavedList, classes for saved directory list

15

l#getLocalFileName : String
+compare(savedArray : JSONArray, currentérray : JSONArray, replicald : String, fileName : String, rootPath : String) : JSONArray +readRemoteFile(filePath : String, rootPath : String) - JSONArray

+incrementVersion(fileObject : JSONObject, replicald : String) : JSONObject -+writeFile (array : JSONArray, filePath : String, rootPath : String) : Boolean f
+edit(fileName : String, filePath : String, fileObject : JSONCbject, oldList : JSONArray, rootPath : String) : JSONArray [KJ—————(+writeRemoteFile(array : SONArray, filePath : String, rootPath : String) : Boolean

FtpsUltlis is a class responsible for all kinds of ftps connection, like connect to server

using ftps protocol, retrieving directory list, and uploading and downloading files.

It has method to get the latest list of directories called by RemoteSaved, the list will
store in a File TranferHelper object. It also has methods to read and write the list from

ionina

ide directory informati

FTPFileHelp object, to FTPS folder picker in Add/Edit Sync Directory activity.

the server. Furthermore, it has a method to prov

T /T sdy+

e

ploA : (19Ba3u| © PPEIXEWSN|4550014135 4|

PIOA © (jaUQSN|dssaIB014395 +

plioa : (JadjaHssalbold © eIep)ssaIbold1as+|

ploa : (iadayssaibold © B1Ep)ssaIBoI4pu0IagIas+

pioA T (BULITS © PWIjpUBILIOINSUNI|

ueajoog : (Buus © 1uMmuo ‘Buuls : yied)aj4aaum+

Burns - (Buws - yied)apdpead+|

uE|00g | (BULIS : YIEd3|3IAI012 0B +)

<IAC|IHIRSUR [D)14>1517 © (<I2d[FHIRISURILA|14>15[7 T 3|14 IEI0T2(IP+|

<Iad[PHIBISURI |3 H>IS1T T (<IDd|BHIBISURI[3|14> 1517 © 3]14WIN3a0 Jad [aHIa)5URI] 3]l T 3[143)AI0123.10[E 03133 +

<1ad [PHIYSURI | 3)1 4351 | (<JDd[DHISURI 131423517 © S3|141)3A0WRI+

<lad [aHiagsurl] 31415 © (Bung - Ao1rangaowal ‘Bug ¢ AT a0 URIBM0WR) ‘< Iad [AHIBISURI] 3|14>1517 151753 14U1mal) AU0133 103A0 Wal +

Jad|apiagsurl] ajg © pad [EHIBYSURIL A T 31413]143|6UIS3AD WAL+

<sad[apiagsues [a) 14 >1s1 1517 © sa | 41peOjUMap+

<lad [pHiagsurILA4=1s ¢ (Bus @ Alolzaagiooyowal ‘Buins ¢ Adoizaaigiedo) ‘Bulns | Alonalquualedaiowal ‘Buuis ¢ Aloldadgalowal ‘<iadaHiasue. JAlonangpEouMop +
JadppHaagsurlla)y © (ueajoog : ajqeddyss

sadjEaHIaysuURI LAY © (43
<130 ISR |3 |14 35!

ploA : (Buls @ yedia43pp+
<lad| 315N a4 >1517 * (BUILNS © YIed1ood)1si7a) 41864+

1adj3H3|14d 1 (BuLs © yied)aidd L 96+

<sadpaya)4d L4>151] © (Buns © Alepangiooyatowar ‘Bupns | Aeangiumegaowas ‘Buing - Aopangmowai <iad(E Hajidd L4151 151158 14UIN1a 1S 8]1 44 L 4196 +]
<lad|aHa|ldd L4>1517 ¢ (Bulis © 100a ‘Bus yedps

<Jad [PHA|Idd L4=3517 - (Buas - yiedpsy

Jabau) © aur unod ‘Bu T YIEdRI0WR ‘BuLAS © YIBd|EI0)IIUASHI0 2+

19630 (BULIS T YIEdRI0WRl ‘BULIS T YIB4[EI0[IIUASYI0 24

PloA: (2auu0dIsIp+|

UE2|00] : (JARYRAUOYUMUO

urajooq :

PIOA - (193UUDI+H
2URNDSdLS ¢ (awR)ab +
PIOA © (1X21U0D X AWO0

{ueajoog : 1 dwys)
(JadpHsauaI., djaysypadisnsdid+

MU = IX3IU 0D W
0 = 13543073202
=8-4LN. = JNIJOINT +|
0000T = 1NOINIL+)
JumsweRs-
paomssed-

awewasn-

as|ey = 33dwis |
LS1L. = |03010ud-

1iod-
150y~
|Inu = sc1y+|
_Snsdid, = ovi-
s|nnsdid
snsdy- T

.

£l

Diagram 7. Class Diagram for FtpsUtils.

16

Below is a group of classes for synchronization and services, including
FileTransferHelper, TransferService, ForegoundService, SyncService,
PreferenceHelper and SyncSelectActivity.

File TransferHelper: It contains data of transfer files, like filename, size, date, transfer
status. It used for different classes to communicate the transfer status. TransferService
uses details from this class to perform data connection with the server.
ForegroundService uses details from this class to insert transfer status to log database.
SyncSelectActivity uses details to display file information and perform transfer
command after user selection. Communication between classes perform under
broadcaster and receiver.

TransferService: an IntentService to do transfer file actions, such as upload, download,
delete local and remove remote files. Then record the action to log database. This class
call FtpsUtlis to perform certain tasks.

ForegoundService: a Service that handles the sync interval trigger and receive manual
sync command. This is the class the responsible to show notification. Notification will
show according the message received from broadcaster. Any transfer actions and
status will send broadcast within the app to notify their status.

SyncService: an IntentService that does all comparison on directory lists and send
transfer command to TransferService. When there is more than one sync directory
selected, this service acts as a work queue; IntentService provides such work queue
function.

PreferenceHelper: It requests saved preferences and formulate into a class object to let
other classes to call specific item in preferences.

SyncSelectActivity: a pop-up dialog box interface for selection of file when sync conflicts
happens. It receive a File TransferHelper object that contains file details from
broadcaster. When users made their decision to choose either local file or remote file,
the transfer command for either upload local file or download remote file will broadcast;
then, ForegroundService will receive the command and call TransferService to operate
the command.

17

PIOA (BULIS © UGIIE ' < SaU[OHIBSUT| 314> 1STHELY © S3|1UIRJSUES | PUPLILIDD-
pioa - (Bujns : uope ad) Lap - L

PR L (ACSIOVO +
U PUTHUO
Japuig) - QuaLw ©

S

Ploa: (ssnEquos
PIOA (3]pUNg © 3IEISINCIIIEISIIEISU M ESLIOZ,
PIOA (S0 EHSUTILI| © SLFIEQ

pron adjaHiaysues Lol ¢ 2141 Buias - uonoeluonayeepdn-
DIOA : (MU T MIARI|DUD 4]
PiOA * @Ipung © 3[PUNGIAIERIUOE|

pibo}-|
2114
ueyngadueyu-

IEd10waY w-|

yredTIoTU-

uonngEICTw-|

Do u-

Aoy DaesIuAs |
1§ -

pion - Qi - sBeyy iy © di2segoauam]

W - (IR,

(92084 © 1)RTIH RS 1314 4]

Siigaoug6
BULAS | (IEgRIAERTR6+

wu

1 PILIEIS ‘) © SBEY T ¢ 1090) PUEWALD JEIU +
proa - faieaia |
33113 UAS +

< IR0[aRIR SR (31§15 ARINY M3 = S3g]
QIINSIIAII MIU = SBUMDSS L]

1y = s+

nispuks, = ovis

wasuls

sbumagsdyz

PIOA (BUL * PIOMSSEAIPIOMSSEA1I5 +
Bueis: (paomssegrab-+

16§ BAIBLIASI IS 135+
Bupis : (eweuiasnisb+
uTajoog © ass+
(UadjaHsaaum g +

DI AL [BHI U |31 MBU W32

} (3215 JUIKBLIYM3U [|5ad

UL BT [P SR 31 MBU W3z

| (Ul [32UBG)P IIE JWICIEAEDI 3]

aHaDgsUTI 314 Hgnd

PHaBgsURI L34 Mgnd

} (HOIT A FGE F2Ed MU = BOLVIUD

0 = azigmowa-|
0 = 3zis|E20)-|
0 = DL AOWS-

. = uoe-|
a5/e) = pESOIUOID DI~
a5[2} = PUNOAON3 i

a5y1) = smiers-|
asie) = AlupAioIIaIgS-
. = iEgnn0sgYRoWa-
= MOPaHGANOWa-

~ = swepapgmowa |

= YIRS Ve

TadERIajsUE L9

Ty i

3T = U ATRITUOITE 0

T°0 (180} = AanegiuAs-
LAY, = SWOGIAS
ase) = AUOYIMIUAS-|

0 = s

sy = oanyauAs-

= PIOMSSEgSH 1)

= swrewiasnsd i
LS1L, = [0300ugsd -

12 = uogsty-|

. = 150K 1~
[dppsowempia]

PIoA © (ADISIQUD 4
PISA : (U] : JUIIULAI PUBHUOR

SIPUIEL | (1UAIU] © IR PUIENOH

0P U] PIEIS) ¢ 56T UAIU) © W3 PUBWIWD JLIEISUD 4
ploA - (RIRAITUD 4

(AIAgIy UL+

< RS B 314 23S VARL Y M3U = S3)14i]

sBumagsdie)

1 = sdy+

SRR = OY1F|

ARSI SR 1

sdy+

s
i

pioa

(BULIYS * UDIDE * < 1 [3HIJSUEL L9115 ARLIY © $3141)13)5UB) | PUESI0D-
pron - (rabaau - sas ‘Buing - e Buls - apajLOIIYUD R
PIoA : (Buts : Ay * dsjpabuey3a.

pioa - OAoasaguo+

PIOA © (JOSIND ¢ BIRP * <I0SINY> 1APROT © J3PRD|}13(d WOIPROTUO +
0 QU pRess ‘i sBe P DPURLILLO L IISIO S
oA - GaamsesBulLTIS-|

<> 55T ¢ 5T 2RAAISIEUILUNY I I
PIOA: QaIRAIDS

QaanaspUNIBaIDg+

urapog

TS5 160 g US|
anpeyssaBasd|

saprainsIngU-|

sapnguz
sbrurpAnONwE|
a5t} = paprorosiny-|
) = pALTISIIN
unaiBai0d, = OV

Diagram 8. Class Diagram of Synchronization and Services.

18

4.4. User Interface
4.4.1. Draft Design

Before the start of implementation and final design, | drew draft design on stretch to give
myself a clear idea on how user interface should work. Below section is some of my
drawing on different functions and screens. These figures focus on Android application.

Main Screen

In the main screen, there will be few buttons, including the setting button to redirect to
setting page, and the manual sync button for user to trigger sync action manually. In

addition, a progress bar to show status of synchronisation. Next, it the log section at the
bottom of the screen

m‘ﬂ SeREETy-

—— "'DC\S!—ESE LYo M oy
1o0¥, ?

——ar—— OGN o
(4Ttle & Setmy Imk)

!i | ey,

SN

Figure 2. Draft Design - Main Screen

Sync List

In the list of synchronise directory, each entry will show the local and remote path. In
addition, an icon to indicate their status. When clicking the entry, it will open the edit

dialog box. While long-pressing a menu will pop-up with options to edit or delete the
entry.

19

S I Paxrt LygT
bty SR

Locot =/ Dorswests,” Dolder]
L Rerens /blng porker o
L S —_ P28 ol e
ﬂ%ﬁ s/ Dotpments / Fodar 3, barmolte poxe,
T /Pl £ o fderd Tholsn
‘\E R dpen et e
Ohg ~ ek »
Qluui i Ty - e
2
ndvede 'r.!a-v.‘r-id‘u-n:]- paths “'dﬂfxf—et

Figure 3. Draft Design - List of Sync Path

Log Section

The log section includes all transfer actions like upload, download, delete local file,
remove remote file and skip. Each log includes the action, time of the action, local and
remote file path, and transfer status (Done, Skip, False). When long-pressing the entry,
a menu will pop-up with the option to delete that entry. A clear all button will be included
at the bottom of the section.

:’E:ea . awds
) - Cpdes Zotdrofie! ﬁroﬁ__ {)— Ernnss
UhLopd P T R v | ComathT

M." & bu":.l'l't.f Lapda, .’?!;.-.“e_,-r_;sr_-g- fu EXY S ||
- . - |

Srp Bouwt = ZauFrazior glooes el B |
Laeccl = A Dptemint /P toe o 2 0 tra o ke— fﬁ“ﬁ—l‘_l:{k =
+ f Fobit £ Bt 2 -",'\lltf:.-“ﬁﬂ cort |
T Plas - detese

_——

Figure 4. Draft Design - List of Logs

20

Add / Edit Sync Path Dialog Box

The dialog box for adding and editing sync directory, include, text entries for user to
enter local and remote path. In addition, there is a folder button to call folder picker. The
folder picker let user to select specific folder with a graphical interface, and return a full
path of specific directory. If user click cancel, none of the changes will be saved.

A% Bl BT Pastet Dy

Saux dradory

Bpl ress PATH
Lol Tty

\

R Dol

loa] loaor

T]
| VRueea

}f%li&i

\cnmll !S;t_l_;_xﬂ

_—mm—

IS
I=)

L

\

Figure 5&6. Draft Design - Add/Edit

Solve Conflict File Dialog Box

Sync Directories Dialog, and Folder Picker Activity

This is the pop-up dialog box when file conflict occurs during synchronization. This box
let user to select either local file or remote file. If user choose local file, the application
will upload the file from local client to remote server. Otherwise, if user choose remote
file, the application will download remote file from remote server to local client device.

PQW Tle Sdatrovy

Sewe g — I
1
Lot « B ¢ Dotbmends /Py +ent bt .'I
. 't RR I Aoy [- VTR '
[t - ,
Rarsres /Ul o/ Zapgpn s et f snTm The gy
oo e 2AFF TR 0L O E g *3'_1.-&,."[
o 'R
| F,_'_'__" P |
—ecef 1) Qﬂm:___" I
— Y L amein I
.._,_______________. - 13._.H-,,1..¢ o

Sale ot e
oL - *“C"'\Jﬁeﬁl{'

Figure 7. Draft Design - Conflict file selection dialog

21

4.4.2. Final Design - Android
Main Section

In the main screen, there are few buttons, the most important ones are Preference
Button that redirect user to settings page, and Manual Sync Button to start sync
manually. The switch button at the top in action bar is the switch for foreground service
to enable auto sync; this gives users easy access to control the foreground service. In
addition, at the bottom of the screen, there is a progress bar to show the status of
synchronisation. As this is a prototype of the tool, | placed four different action buttons
on screen in order to test each transfer operation. In future, this screen can be removed;
notification is capable of showing exact progress messages; those four action buttons
are not necessary, they could hidden in context menu of sync list when long-pressing
entry; and the manually sync button can move to action bar.

V4 O tue 28 apr 21:59

o

SYNCLIST

SYNC

UPLOAD DOWNLOAD
DELETE LOCAL REMOVE REMOTE
Is Service running: true
In Wifi
Sync Started

28/04/2015 21:58:56

Screenshot 1. Final Design - Main Screen

22

Log Section

In the draft design log section is under buttons and progress bar, after consideration, |
chose to make log a separate log screen. The log screen includes all transfer actions.
Each log includes the action, time of this log record, local and remote file path, and
transfer status; Icons are used to provide clear indication of each entry. When there are
no logs in the database, “No Logs” message will be shown; therefore user will able to
tell the application is working properly, instead of an empty screen with no indication
and informative feedback. When long-pressing each entry, a context menu will pop-up
with options to delete that entry; this action placed in long-press menu, as people tend
to clear all logs at once in normal situation. On the other hand, a clear all button is at the
right bottom corner of the screen; user should be familiar with this button as they are
part of the android design guideline.

O 4 O tuezsapr21:59

e

SYNCLIST

Date: 25/04/2015 04:10:55

>I Local: /storage/emulated/0/Download/Folder/ J % ©® V4 O suzsa0sos | ®
SubFolder/test2-1.txt
Skip Remote: /Public/SubFolder/test2-1.txt Skip [&

SYNCLIST

Date: 25/04/2015 04:10:55

Local: /storage/emulated/0/Download/Folder/
SubFolder/receive.txt

Remov Remote: /Public/SubFolder/receive.txt

Date: 25/04/2015 04:10:55

Local: /storage/emulated/0/Download/Folder/
SubFolder/newtest.txt

Remov Remote: /Public/SubFolder/newtest.txt

Date: 25/04/2015 04:10:55

Local: /storage/emulated/0/Download/Folder/
SubFolder/test2.txt

Remov Remote: /Public/SubFolder/test2.txt False No Logs

® QO

Date: 25/04/2015 04:10:55
Local: /storage/emulated/0/Download/Folder/

N

SubFolder/SubSubFolder/testing-4.txt
Remov Remote: /Public/SubFolder/SubSubFolder/ False
testing-4.txt

Date: 25/04/2015 04:10:55
>I Local: /storage/emulated/0/Download/Folder/
SubFolder/newtest-1.txt
Skip Remote: /Public/SubFolder/newtest-1.txt

0
®

(Left) Screenshot 2. Final Design - Log Screen
(Center) Screenshot 3. Final Design - Log Screen with No Logs

(Right) Screenshot 4. Final Design - Log Screen when long-press entry

23

Sync List

In the list of synchronise directory, each entry is showing the local and remote directory
path. Besides, due to user's expectation, a response message will be shown to indicate
there is no sync path in the database. When clicking the entry, it will open the edit dialog
box. While long-pressing a menu will pop-up with options to edit or delete the entry. As
in normal circumstances, users are more likely to edit their path rather than delete the
entry; in addition, this long-press action provided an extra precaution where users
accidentally remove an entry. At the bottom of the screen, there is a add button (“+”
which let user to add new entry, a pop-up dialog box will be shown; this implementation
of floating action button (FAB) is one of the material design guideline, it may help users
to reach this action easier, as the other option to place this action button is the action
bar at the top of the screen.

\ O tue 28.apr 21:59 C Y 9 4 O te2sapr22:00

o

SYNCLIST

Local: /storage/emulated/0/Download/Folder/SubFolder
Remote: /Public/SubFolder

(Left) Screenshot 5. Final Design - Sync List
(Right) Screenshot 6. Final Design - Sync List when long-press entry

24

Add / Edit Sync Path Dialog Box

The dialog box for adding and editing sync directory, include, text entries for user to
enter local and remote path; experienced users can enter the path manually for a faster
process. In addition, there is a folder button to call folder picker for novice users; when
there is a path in the text entry, the folder picker will try to open that directory first; this
attempt to help users to check particular directory exists or not, especially those enter
path manually or edit entry after directory removed somewhere else. The folder picker
let user to select specific folder with a graphical interface, and return a full path of
specific directory. If user click dismiss, none of the changes will be saved.

=K ¥ 4 O wezsapr22:00

Select file

Edit Path é
Local Path /storage/emulated/0/Download/Folder
/storage/emulated/0/Download/Folder/: @ Folder
Remote Path
/Public/SubFolder @ Folder One
DISMISS CONFIRM @ Folder Two
@ SubFolder
o testing.txt O
1 2 3 4 5 6 7 8 9 0
qgwe T Tty ui op

asd f gh j kI

4 z x ¢cvbnm @

723 | & . °
CANCEL 0K

(Left) Screenshot 7. Final Design - Edit Sync Directory Dialog Screen
(Right) Screenshot 8. Final Design - Folder Picker (using framework)

30 V4 O wmasue04:08
o B

106 smcust
Add New Path

Local Path

Enter or Select local path

Remote Path

Enter or Select remote path

DISMISS CONFIRM

q' NN y& e pn
a s df gh j kI

4 z x c vbnma@a

2123, @ ° °

(Left) Screenshot 9. Final Design - Add Sync Directory Dialog Screen
(Right) Screenshot 10. Final Design - Sync List when no directories set

25

Notification

In addition to progress bar and status messages in main screen of the application, a
notification will be shown when foreground service started. Below screenshots show
different situations, including when user not having a valid FTPS settings, when getting
the latest list directories, and when uploading file when progress stated. Notification is
the best way to notify users certain action performed and some error occurs, without
disturbing other task performed by the user or requires user to enter the app to get
progresses.

Sync 21:59
Please check if you have valid ftps settings

28/04/2015 21:59:26 ftpSync

Screenshot 11. Final Design - Notification when having invalid FTPS Settings

ftpSync is running 23:36

Sync

In Progress: Getting latest list of directories... Uploading testing-2.txt ... 100%

28/04/2015 23:36:51 ftpSync 28/04/2015 23:38:36 ftpSync

(Left) Screenshot 12. Final Design - Notification when getting and parsing directory list
(Right) Screenshot 13. Final Design - Notification when uploading file

Solve Conflict File Dialog Box

Whenever file conflict occurs during synchronization and user chosen to solve conflict
each time occurs, this dialog box will pop-up. These box contains all information needed
to let user to decide they want to keep either local file or remote file. If user choose local
file, the application will upload the file from local client to remote server. Otherwise, if
user choose remote file, the application will download remote file from remote server to
local client device. This dialog box will only show up if user choose to solve conflict files
each time occurs, alternatively, users can set default action in preferences. In the future,
| might transform this selection dialog box to expanded notification; therefore, users may
have the control of solving conflict files but no pop-up boxes to interrupt the screen.

Conflict: Choose following file

Local Path
/storage/emulated/0/Download/Folder/
SubFolder/testing-1.txt

Date: Wed Apr 29 00:32:51 BST 2015 Size: 8

Remote Path

/Public/SubFolder/testing-1.txt
Date: Tue Apr 28 23:34:37 BST 2015 Size: 15

CANCEL LOCAL REMOTE

Screenshot 14. Final Design - Conflict File Selection Dialog

26

Preferences

The preference screen is split into four sections, FTPS Preferences, Sync, Notification
and About; | split preferences into different sections, so users have a clear message
where each part means certain part of the application. The ftps preferences section
contains all settings about connecting ftps server. Sync section contains settings to
enable auto sync, set sync interval, choose the default action when file conflict occurs,
sync only in specific power condition and battery status, and sync only when user
connect to WiFI network.

L 25(:',::2;: 94 O tue 28 apr 22:01

a vd O tue 28 apr 22:01

< Preferences

<& Preferences

FTPS Preferences Auto Sync .

Enabled
Server
nas.alvinhkh.com

Sync Every

30 minute(s)
Port
2121

Conflict Action

! Select each time
Protoco
o

Using TLS, instead of SSL
Power Condition

Any
Username
test
Wont Sync when battery under
20 %
Password
Fhkkkk
WiFi Only .
Synchronise only in WiFi condition
Sync
Auto Sync . Notification
Enabled
Always On (Run Foreground) >
Enabled
Sync Every
30 minute(s)
About
Conflict Action Author
Select each time AlvinHKH 2015

Power Condition
Anv

Open source licences

Screenshot 15. Final Design - Preferences Screen

27

4.4.3. Final Design - Mac OS X

Status Bar

In Mac OS X version of the application, the main navigation among different screens
and functions is in the status bar. The menu in status bar contains “Window”, “Sync
Now”, “Schedule Sync”, “Preferences” and “Quit”. “Window” uses to open sync list, add
item to sync list and log screen. “Sync Now” trigger sync action manually. “Schedule
Sync” is the option to enable sync automatically every x minutes. “Preferences” uses to
open setting window. As the application needed to stay in background to perform tasks,
and user interface needed to place somewhere on the devices. Instead of an ongoing
window that always on the screen; This approach of using a status bar provides users a
clean and easy way to navigate around the application.

& 10%

Window
Sync Now

v Schedule Sync
Preferences
Quit

Screenshot 16. Final Design - Mac Status Bar Menu

28

Sync List

In the list of synchronise directory, each entry is showing the local and remote directory
path. There are two buttons for each entry, “x” to delete that entry, and “edit” to edit that
particular entry; due to the fact that desktop is not a touch device, | do not use the same
approach as Android application to hide actions in context menu; instead, | placed

buttons along with the entry. Besides, there is a “Add” button at the top of the screen to

navigate to add new entry screen.

(X] Main Screen

View Selected Directories

Back to Log Add

Local: /Users/alvinhkh/Documents/Folder -
Remote: /Public/SubFolder

Screenshot 17. Final Design - List of Sync Directories

Notification

Notification will be shown when sync started, finished, schedule sync is enabled and
disabled. It will also notify user they do not have valid ftps settings. By using rumps
module, the application provides a native experiences on showing notification when
sync started and finished operating.

Today Notifications

4 Python

ftpSync now
Schedule Sync is On
Sync every 5 minutes

ftpSync now
Schedule Sync is Off

Sync every 5 minutes

ftpSync 8m ago
Sync
Finished

ftpSync

ﬁ Sync

Finished

Screenshot 18. Final Design - Notification in Mac App

29

Preferences

The preferences window is split into two sections, “FTPS Settings” and “Sync”. The ftps
preferences section contains all settings about connecting ftps server. Sync section
contains settings to enable schedule sync, set sync interval and choose the default
action when file conflict occurs. In addition, whenever users open the preferences
window or updated settings, the application will check the connection with defined ftps
server, to provide a clear message of server availability.

®@® Preferences
FTPS Settings
Host: nas.alvinhkh.com
Port: 2121
Username: test
Password: = ******
Secure data connection
Checking...
Sync
Schedule Sync
Sync Interval 5 minutes
Sync Conflicts
Skip
© Local First (Upload)

Server First (Download)

Close Save

Screenshot 19. Final Design - Preference Screen in Mac App

Log Screen

The log screen is the first screen after pressing “Window” in menu bar, as this is the
screen users should view most, comparing to add or edit selection of sync directory.
The log section of Mac app is similar to Android app, they both include all transfer
actions. Each log includes the action, time of this log record, local and remote file path,
and transfer status. Logs can be cleared at once by clicking “Clear Log”, but in this
version log cannot be removed individually. A manual sync button is also placed at the
navigation section, along with the sync status.

30

(X J Main Screen
Log

Sync [Not Running] Selected Directories Refresh Clear Log

Local: /U inhkh, 1ts/Folder/test2.txt
delete_local Remote: /Public/SubFolder/test2.txt Do

2015-04-29 03:06:47

Local: /U inhkh, its/Folder/receive.txt
delete_local Remote: /Public/SubFolder/receive.txt Do

2015-04-29 03:06:47

Screenshot 20. Final Design - Log Screen in Mac App

Add / Edit Sync Path Dialog

The window for adding and editing sync directory, include, text entries for user to enter
local and remote path. For local directory, there is a “Choose” button and native
selection window will pop-up. While for remote directory, user can select using the scroll
box on screen. The “Update” button is for user to refresh the list of remote directory box.
If user click back, none of the changes will be saved.

[X] Main Screen
Add Sync Directory
Local: / Choose
Remote: / Update

/Network Recycle Bin 1
Public

Back Submit

Screenshot 21. Final Design - Add Sync Directory Screen in Mac App

31

5. Implementation

5.1. Tools and Framework

It is crucial that tools or frameworks are selected carefully, as choosing the right tools
will lead to successful project outcome and may help implementation a bit smoother.

5.1.1. Android Development

For Android development, | used the Android Studio (version 1.2 beta 3) with gradle
support. Android Studio is developed by Google based on Intellid. It has a better
graphical interface for theming android application. Besides, it is easy to debug the
application via adb connection. Android Studio uses Gradle build system, it allows
developers to add external libraries and frameworks when building and compiling the
application. It makes adding these extensions easier, as developers like me no longer
require to download libraries manually and add to the project, compare to the way that
Eclipse does. | find it practically useful is Android Studio (IntelliJ) has a powerful
refactoring support and Java auto-completion.

| have used two external libraries integrate to the Android application of this project,
“FloatingActionButton” by makovkastar (version 1.3.0) [8] and “NoNonsense-FilePicker”
by spacecowboy (version 1.1.3) [9]. These libraries are open source and | credited them
within the application in the preference screen. In addition, | extended the file picker to
support listing FTPS directories and files using the class written to connect FTPS server
in this project (FTPULlis). | chose to integrate these libraries to the project as they are
easy to adopt and suitable for the application.

As this is my first time in coding on Android platform, | tend to think | should put more
effort on implementing the core function, file synchronization, instead of putting time on
developing elements that other developers had implemented and shared publicly.
Besides, in order to match the material design language introduced by Google in
Android 5.0, | used the material design icons package provided by Google. [10]

32

5.1.2. Mac OS X and Python Development

On the other hand, when developing Mac OS X version of the application, | used
PyCharm CE by JetBrains, the same organisation who develop Intellid. They have a
similar user interface and same powerful refactoring support and Python autocomplete.
It has on-the-fly error checking and keeps code quality under control with PEP8 checks,
therefore | can less worry code standard like naming variables and methods. Although
in this project | was developing on two different platforms using two different languages,
| used the same IDE for different platform with a similar programming environment.

In terms of modules | used in the Mac OS X version of the application, there are two
external modules and few default modules. In this project, | used rumps, Ridiculously
Uncomplicated Mac os x Python Statusbar apps [11], to generate a simple launch menu
that feels native to Mac OS X system. The module shorten code require building status
bar application in Mac OS X and Python. Besides status bar, it has native Mac
notification support which fit the use cases of this project. Another external tool | used in
this project, is py2app [12]. py2app is a Python setuptools command which will allow me
to make standalone application bundles and plugins from Python scripts. It makes
packaging python scripts into Mac OS X application easier.

For the core functions of the applications, | used Tkinter module to build graphical
interface for all windows like log screen, preferences window, sync list screen and add
sync directory window. In addition, | wrote a class to connect FTPS server using ftplib
module. shelve module is used as the database of the application, logs and sync list are
stored using this module.

(XX # FTPUtils.py - python - [~/Google Drive/Cardiff Year Three/ftpSync/python]

python) | FTPUtils.py) Fipsync - | B & © Q
& @) project | © = | 4+ I~ | [@ FTPUtispy x | [@ FTPSyncpy x | @ WindowFramepy x | [@ ViewLogFramepy x | [@ setuppy x | [@ Syncpy x
£ 7 [Cipython (~/Google Drive, print ret =
4| > Cibuid
& » g

O def disconnect(self):
a self.ftps.close()

self, array_json, local_file_path, remote_file_path):
s.path. join(local_file_path, '.ftpsync-remote’)

[

ray_jsonliten]})

root': remote_file_path, 'list': write_array}, f)

f. ftps.ntransfercnd(“RETR %s" % remote_file)

r(resp):
ory %s>' % remote_file_path)

with open(local_file, 'wb') as fd:
while 1:

26:T0D0 & Python Console [Terminal Event Log
BEO e UTFEE: b B

Screenshot 22. Use of PyCharm CE to develop Python application.

33

5.1.3. General Tools
Filezilla FTP

During the development of file transfers and other ftps connections, | used FileZilla to
check the directories and files on the server. | chose to use FileZilla as it is already
install on my laptop and linked to my ftps server which use for testing during the project.
This software offers a command-line console output, therefore | can check whether the
ftps server is working properly. More importantly, | can check files synchronised
correctly or not, and to make sure remote saved list is in correct format.

Git

Git was used to track changes made throughout the implementation stage. Git very
useful to this project especially on the Android development. As | had no experience on
developing Android applications, | tried multiple things like using different layout
structure, i.e. ListView vs RecycleView. Experimenting with new methods do not always
get optimum results; Git enable the ability to revert changes made to previous working
state.

This also make backup and versioning a simple process, as it allow me to store
changes at various stages in an increment way without the needs to backup the whole
project every time. With the help of platforms like Bitbucket and Github, | can store a list
of changes and a full backup in the cloud. My work has fewer chances to be total lost,
as they are saved in local hard drive and in the cloud.

[X X J ftpsync-android (Git)
vEEQ @ & d & 4t asN B U 1t
View Commit Checkout Remove Add/Remove Fetch Pull Push Branch Merge Tag Show in Finder Git Flow Terminal Settings
FILE STATUS All Branches Show Remote Branches Date Order Jump to:
@ Working Copy @ Graph Date

Commit
o . 5 May, 2015 7:4...
5 May, 2015 7:4...
21 Apr, 2015 1:0,
20 Apr, 2015 8:3.
20 Apr, 2015 8:3,
20 Apr, 2015 7:3,
20 Apr, 2015 7:2
20 Apr, 2015 6:4
20 Apr, 2015 6:3.

BRANCHES
ofadfis

¢194c81
930dda0
not) 9ag0a7a
590f9e6
5443ect
d2b7920
93f3das
sftftac
EE
n favour of floating action button 970102
e screen 1142728
3670936
633e42e
dOec81e
5692363
8941139

TAGS
REMOTES
STASHES
SUBMODULES

SUBTREES
20 Apr, 2015 4:0,
20 Apr, 2015 3:1
20 Apr, 2015 1:2...

20 Apr, 2015 1:2.
20 Apr, 2015 12:
20 Apr, 2015 12:
19 Apr, 2015 10:
19 Apr, 2015 10:
19 Apr, 2015 10:

6faffoe 19 Apr, 2015 10:
8dd6ff4 19 Apr, 2015 4:1....
le service, activity to select action when sync conflict 955acf8 26 Mar, 2015 10:...
5622251 14 Mar, 2015 3:1...
f rw everv aan77ha coms 14Mar 501520
Sorted by path Q 2 v
sro/com/alvinhkh/ftpsync/sync/SYncService.java
Reverse h
Commit: 9fadf
[9fadfig] AveHKH
Parents: c194c81ad6
Author: AvinHKH <email@alvinhkh.com>
Date: 5 May, 2015 7:43:15 am GMT+1 e fil file
1 ahale: HE, v if (file.getName().startswith(".") || file.getName().startswith("~!
(D & U master @clean @4 Atlassian

Screenshot 23. Use of Git for version control.

34

5.2. Methodology

5.2.1. Development Model

Originally, | was going to use Waterfall software development model, which means |
need to fully complete each phase and | cannot go back and make changes. Testing
can only be done at the end of the project, | found this model does not suitable my
development process. Therefore, | chose to adopt a hybrid Waterfall-Agile methodology,
where | allow changes to be made after the initial planning. Testing at each function
implemented which ensures that the bugs are caught and taken care of in the
development cycle. [13]

Requirements

Evaluation Design
Testing <+—————— Implementation

Diagram 9. Development Cycle

5.2.2. Android Development

For Android Ul, | use Fragments and Tab view to show different sections, including,
main section (MainFragment), log section (LogFragment) and sync list section
(PathsFragment). All tabs fragments handle under MainActivity. The ActionBar contains
a switch to enable auto sync service, and a button to navigate to preference screen.

| chose to use “NoNonsense-FilePicker” framework for folder picker when adding or
editing sync directory. The framework includes local directory selection and support
extend framework with other types. | implemented the ftps directory selection by
extending the framework using FtpsUltils class, the class written for all kinds data
connections to ftps server.

In addition, | develop a custom dialog box for editing path (PathEditActivity) and select
file when sync conflict occurs. Dialog boxes show as a pop-up activity will not cover the

35

whole screen. For further enhancement, the file selection dialog can show as expanded
notifications in order to avoid distributing users’ activity.

Android provides a powerful xml driven framework to manage user preferences, that
allows me to easily create preference screens using PreferenceFragment. However, the
framework has limited default type of preferences. | added the
NumbersPickerPreference for sync battery option (SyncBatteryPreference) and sync
interval picker (SyncintervalPreference).

Receivers are part of broadcast system, some receiver tags are broadcast by system
activity and some receiver tags are broadcast by self-implement classes. The
SyncReceiver enable to set and trigger schedule synchronization automatically in a
given time frame, when receive com.alvinhkh.ftpsync.action.SYNC_CLOCK tag.

In addition, | used several receivers to get system states, AutoStartReceiver to get
android.intent.action.BOOT_COMPLETED signal that notify when device boot up
completed, NetworkStateReceiver to get android.net.conn. CONNECTIVITY_CHANGE
signal when network connection state changes, PowerReceiver to get
android.intent.action.ACTION_POWER_CONNECTED,
ACTION_POWER_DISCONNECTED, ACTION_BATTERY_LOW,
ACTION_BATTERY_OKAY, in order to check battery status.

5.2.3. Python (Mac OS X) Development

For the Mac version, the whole application has a similar flow to Android application. For
example, the use of an object to contain file transfer details, and the use of save list
class to retrieve directory list. The main differences between Android version is the Ul,
except the programming language. For the main Uls, | implemented them using Tkinter
module. Each section has its own frame, when user navigate to that section, the frame
will bring to the front of the screen. The WindowFrame is the container of all frames and
main ui, it handles ViewLogFrame, ViewSelectionFrame and UpdateSelectionFrame.
These three frames represent view logs, view sync list and add/edit sync directory. The
Preference screen is a separate window, each time the user hit save button, the
application will check the ftps configuration and try to connect to the server. Shelve
module is used to record logs and store sync directory. This structure enable expansion
of frames; | can easily add new frame to the array in WindowFrame.

The whole application is navigated using menu in status bar tray. This menu bar used
rumps module to implement. The menu includes links to Main Window, Preference
Screen, button to sync manually, and turn on or off schedule sync. | did not implement
the dialog window for user to select conflict file like the Android application due to time
limit, but there is a setting to default choose local or remote file when conflict happens.
Using the status bar is the most compact solution, as the application is designed to run
in background with occasional access to log screen and set sync directory.

36

5.2.4. Different Approaches

The normal FTP protocol which does not secure and has many known vulnerabilities,
like Brute force attacks, Spoof attacks and Username protection. There are several file
transfer protocol with different security method, for example, FTPS, SFTP and FTP over
SSH. In this project, | chose to focus on one protocol with secure data connection.
Hence, | chose FTPS protocol, as FTPS is an extension to the FTP standard and it is
the required protocol from project description.

Number of cloud solutions, such as Dropbox, Google Drive and iCloud Drive, are using
a fixed parent directory and choose which sub-directories to be synchronise. | tend to
think this restriction will limit the use cases but lower the chances of running into
problems. This limitation may not major affect desktop users, however, this may be a
big problem to mobile devices. As mobile devices usually have a small storage size
comparing to desktops or laptops; in addition, some directories may not able to change
under the application defined folder, for example, DCIM keeps captured camera photos,
most of Android devices cannot change the path to other folders. If | adopt single fixed
sync directory, these users will not able to synchronise this folder containing all photos
taken. Therefore, | chose to adopt multiple sync directories with different parent folders.

To take care mobile users with limited network plan, the Android application applied the
ability to sync only in WiFi condition. In addition, for phone with small battery, the
application can limit synchronization while device is not charging.

Coding Approach

There are several ways to handle Ul layer and background actions. Developments on
Android using Java requires tasks separate from the main ui thread, especially
operations requires network connection. This approach makes sure rendering ui will not
block or wait forever until certain data thread loaded. FPS represents the
responsiveness of the ui on devices. Mixing operation and ui thread will cause
significant FPS drop which lead to low responsive between user touch and screen
updates.

In addition, | implemented a FTPS connection class, FTPUlils, to operate all kinds of
data transfer and request using org.apache.commons.net.ftp Java library. The class
contains methods to download or upload single file or multiple files in a directory,
remove files on remote server and request directory list... Besides, all file and transfer
details like local path, remote path and sync status, are transmitted using a class object,
FileTransferHelper. The class is Parcelable object, therefore, data can pass from
background services to main activity and other services via broadcast. An alternative
way to implement such functions is implement in a single class file, however, separating
different modules help organise different part of the program.

As the ftps protocol does not support request server time, in order to check the time
difference between local client and remote server. First set the ftps connection in local
time zone, then create and upload a temporary file from local to server. Finally, compare

37

its last modification date with current time on the client device. This approach can give
extra insurance for setting timestamps on files. This is useful for time-based
synchronization, however, after consideration, | adopt the version-based
synchronization, this method is less important.

A good code quality and practice led to a successful, readable and expendable
outcome. The tools | use for developing two applications provide guides to follow
recommend variable and method naming guidelines. Whenever the name of variables
and methods, the IDEs will highlight errors.

| tried to keep different functions in a separate classes to ease maintenance and
development. If everything are put in one component, it becomes entangled and causes
problems with Ul crashes on Android. Separating different modules help to debug the
application and ease future enhancement,

In Android, to save records of sync directories and logs, | need a database. | chose to
use SQLite with own implementation of content provider. To provide access to the
database using Java classes. This gives me a more flexible way to deal with database
data and display items on ListView element.

There are different ways to perform jobs in background, asynctask, intentservice and
service. | initially used asynctask to perform sync operation, but later | found out if | use
asynctask, | will encounter problems when extending to background sync, due to
asynctask need to trigger from main thread. While IntentService provides a working
queue for long tasks, file transfer can be a long task if file size is huge. The following
table is the comparison between different options. [14]

38

Service Thread IntentService AsyncTask
When to Task with no Ul, |- Long task in - Long task - Small task
use ? but shouldn't be |general. usually with no having to
too long. communication to |communicate with
Use threads within|- For tasks in main thread. main thread.
service for long parallel use
tasks. Multiple threads |- If communication |- For tasks in
(traditional is required, can |parallel use
mechanisms) use main thread |multiple instances
handler or OR Executor
broadcast intents
- When callbacks
are needed (Intent
triggered tasks).
Trigger Call to method Thread start() Intent Call to method
onStartService() |method execute()
Triggered |Any thread Any Thread Main Thread Main Thread
From (Intent is received
(thread) on main thread
and then worker
thread is
spawned)
Runs On Main Thread Its own thread Separate worker |Worker thread.
(thread) thread However, Main

thread methods
may be invoked in
between to
publish progress.

Limitations /
Drawbacks

May block main
thread

- Manual thread
management

- Code may
become difficult to
read

- Cannot run tasks
in parallel.

- Multiple intents
are queued on the
same worker
thread.

- one instance can
only be executed
once (hence
cannot runin a
loop)

- Must be created
and executed from
the Main thread

Table 1. Comparison between Service, Thread, IntentService and AsyncTask.

39

5.3. Encounter Problems and Solutions

During the implementation stage, | encounter few problems when developing different
functions and features. Below is a list of problems and corresponding solutions.

Problem

Solution

When there is an ongoing progress dialog
box, Ul may crash if rotating the screen in
Android.

In addition, the framework | use for folder
picker when using AyncTask to get FTPS
directory list, the application may crash.

A workaround is to disable screen
orientation detection while displaying the
dialog box or implement Handler to show
messages.

At the end, | chose to show progress bar
on Ul and notification bar, instead of
popup progress dialog box.

When clicking the notification, user can
return to the application. However, it
creates a new activity instead of opening
existing window. Widgets may not
showing messages from broadcaster
correctly.

use
android:launchMode="singlelnstance" to
avoid crash on Ul elements and widgets
not showing correctly when messages
get by broadcaster.

ftps protocol do not have command to
request server time, time might be wrong
and not synchronise between client and
server.

Let user to select which files remain is
one of the possible solution for such
conflict when file synchronise.

Android has a bug on setLastModified
method call. [15]

Standard method call is in place, if bug is
solved or particular device support
setLastModified then it can run without
workaround.

Otherwise, the application will call su
command to set time, which needs root
access.

Limitation on time for testing on various
version of android and make code
compatible with older devices. | only own
a mobile device with the latest version of
android at this period. As previous

As | own a Nexus 6 (Android 5.0
Lollipop), | target the application to
Android API level 21, version 5.0 Lollipop.

40

problem with set last modification date, |
cannot simply run the application on
emulator, hence, no devices for testing.

Standard types of Preference is not
suitable for picking multiple numbers.

Instead of making it a text field to enter
numbers. | created custom preference,
NumbersPickerPreference

Tkinter module seems do not have the
ability to create Mac OS X status bar tray
icon Window

Use rumps module to handle the status
bar tray app window. The module
provides an interface with few method
calls to handle menu icon and items click
actions

Using ftplib module to connect ftps server
under TLS. prot_p() method call is
needed in order to secure all the file data
connection, not only the user and
password is encrypted. But some ftps
server may fail to work with this function
call. [16]

Make a workaround to the issue by
setting this function call optional in
preference.

41

5.4. Limitations

There are few limitations of the current implementation of both Android and Mac OS X
application. The Android application is target version Android 5.0 and above, this issue
can be solve in short term by giving more time to extend and test the compatibility.

Besides, there is a bug in Android [15] that block the use of setLastModified in
java.io.File class to change timestamps of a file. A workaround implemented by using su
command to set timestamps, however, this means the application require root access
which general users might not have it. According to comments in the issue ticket some
vendor implemented some workarounds in system level [17], which make
setLastModified method usable. If particular devices support or Android solve this bug,
the application can run without root access, as code to use standard method to modify
timestamp already in place.

In addition, in version 4.4.2, Android has limited applications access external sd card
[18]; this issue should be solved in Android 5.0 with new APl and permission model, but
| do not have a device with external sd card support. If this bug still exist in 5.0 or when
the application extend to support Android 4.4, this will be a limitation due to user would
be able to synchronise directories in external storage.

Regards to Mac OS X application, the script written in Python using ftplib module to
connect to ftps server. prot_p() method is to secure data connection, however, some
server may not support implicit connection [19]. As mention in above section, | made
this function optional in preference to make the system usable.

On both applications, the system is design to work with FTPS protocol only. With a little
extra effort they can support ftp protocol, which carry data in lower security but with a
higher transfer data speed.

42

6. Testing and Evaluation

6.1. Test Cases

There are few preconditions before the test, user must have their own ftps server set
up, and they must have access right to the server. Due to the fact that Android on some
devices has a bug blocking application to set last modification date of a file using
standard Java function call, root access is needed in order to workaround the issue. |
tested each functional requirements set at the beginning of the project, and the full
results are listed in Appendix D.

Testing Environments

- Mac OS X platform:

o Macbook Pro (Retina, 13-inch, Mid 2014), OS X 10.10.3 Yosemite
- Android platform:

o Nexus 6, Android 5.1.1
- FTPS Server:

o Own FTPS Server located in Hong Kong

The most important test for this project is to ensure sync method | implemented work as
intended. This operation is a combination of multiple actions and test case. First, the
application needs to retrieve list of local directories; then, perform comparison between
current and previous; repeat the same with remote directories; after that, compare the
latest local list and remote list; during the comparison, files will be identify to do certain
actions; files need to update to server will upload from local, files updated on server will
download to local, files removed will mark as deleted on the list; finally, save the latest
list and notify users action completed. So far, the application works in ideal situation
with controlled environment.

Most of the tests against functional requirements pass the test; however, there are
things that indicated improvements are needed. First, when network connection is
unavailable, Android application will show connection unavailable, and Mac OS X
application will stop working without any notice. Both applications need to implement a
better solution to let user know their network connection affects the application to
synchronise data. Secondly, if directory disappear after last sync and directory exist on
either local or remote side, synchronization run normally. Otherwise, directory disappear
may cause data loss.

On the other hand, there are some situations where cases could not be tested. For
examples, situations where there are lots of clients that the server and the saved
directory list are not workable, devices with other versions of OS and ftps server without
user name and password.

43

6.2. User Evaluation

With the user evaluation, | adopted the think-aloud evaluation. Basically, when the
tester doing each evaluation tasks, they speak out their thoughts, such as, things they
are try to do and things they read; what make them take series of actions and questions
that arise in their mind; and most importantly things they find confusing, so | can
improve the application.

To maximise the outcome of this test, | follow the protocol for six stages to conduct a
user test. First, | developed the test plan by using use cases and the specification
developed.

Second, as one of the pros of think aloud evaluation is to do with non-expert; | invited
my house mates as participants of this evaluation.

Third, | prepare a video clip as an example of think aloud user test in order to give a
brief idea to the participants what they need to do during the test.

Fourth, | did a pilot test once for myself to check everything run smoothly and work well.

Fifth, while conducting the real test, there is a facilitator that keep reminding users to
think aloud by asking them questions, for example, things they are thinking right now,
the reason they are doing such actions or responses, etc. During the test, | act as an
observer and being quiet to take notes about things happened especially those critical
incidents that affect user experiences and satisfaction.

Finally, | did the analysis and report for the testing process and the results are list
below. | decided to use Nielsen’s 10 usability heuristics to show each usability problem
user encountered; this enhanced our evaluation process of testing (Nielsen Norman
Group,1995).

The tables below define the severity and ease of fix rating systems applied. Severity
ranks are based on those defined by Jakob Nielsen (Severity ratings for usability
problems) [20].

44

Level of Severity Ratings

Rating | Description

0 Violates a heuristic but doesn’t seem to be a usability problem.

1 Unimportant usability problem: does not occur often and can be easily
overcome by the user. Fixing should be given very low priority.

2 Minor usability problem: this problem occurs more frequently and is
more difficult for the user to overcome. Fixing should be given low
priority

3 Major usability problem: this problem occurs very often and users are
unable to fix the problem. Very important to fix.

4 Usability catastrophe: this problem impairs use of the product by users

cannot be overcome. This should be given the highest priority to fix.

Ease of Fixing the Problem Ratings

Rating | Description

0 Problem is very easy to fix

1 Problem is easy to fix

2 Problem would require more effort to fix, the problem may involve more
than one aspects of the interface

3 Problem would be problematic to fix, it may involve a number of

sections of the interface

45

Task - View and Add Sync Path using Android application

W4l O wezsapr21:59

o

Q Local. Dy
Remote: /Public/SubFolder

Add New Path

Local Path

Enter or Select local path

Remote Path

Enter or Select remote path

DISMISS CONFIRM

B

9 0

q1 Wi e3 r4 t5 y6 u7 iao p
a s d f gh j k I

4 z x cvbnma@a

723, @ °

Usability Principle

Complies
(Y/N/NA)

Note

Visibility

Y

User can identify that they are adding new sync
path to database or viewing list of sync path,
and understand what actions are possible.

Speak the user
language

Users should recognise required input and
message from experience. No technical terms
are used.

User Control and
freedom

YIN

Users are able to cancel the operation by
clicking dismiss button and quit the current
activity. Delete record

do not have any notice, and not be able to
undo.

Consistency

No technical words are used. Icons come from
Google Material Design Guideline, users should
feel natural in Android platform. Add button on
view list screen adopt floating action button
introduced by Google.

Error prevention

Y/N

When either local or remote path is empty, new
entry will not save and notify user.

In view list screen, user unable to tell whether
the sync directory exist and available or not.

46

Recognition vs. recall |Y

Appropriate controls are provided, for example,
button to “Submit” and “Dismiss”, folder icon to
select directory using folder picker.

Flexibility

NA

Minimalist design Y

Flat and clean design. Some graphics are used
to represent meaning of some text.

Recognise, diagnose N
and recover from error

Accidentally delete entry without notice.

Help Y A message shown when there are no
directories selected.
Usability Usability Guidelines Severity | Ease of | Recommendation
Problems these problems violate | Rating Fixing
outlined in [21] Problem
feedback
sessions
Users User control and 4 1 Add a confirmation
accidentally freedom: pop-up dialog box.
delete There is no indication on
records and the screen to notice
not able to users that record will be
undo deleted when pressing
“‘Delete”.
Recognise, diagnose
and recover from error:
There is no way to undo
this delete decision.
User unable Error prevention: 3 2 Check directory
to tell In view list screen, there status when

whether the
sync directory
exist and
available or
not.

is no indication that
selected directories are
available and have right
to access and write files.

refreshing the list,
and update the
cloud icon on the
left of each row to
indicate the
availability.

47

Task - Manually Sync using Android application

Sync

| Please check if you have valid ftps settings

28/04/2015 21:59:26

ftpSync is running
Uploading testing-2.txt ... 100%

28/04/2015 23:38:36

e Wi O wezsan21:59
21:59
ftpSync &
ftpSync MAIN 106 sYNcusT
Date: 25/04/2015 04:10:55
}l Local: ulated/0/Download/Folder/ \/
est2-1.txt
Skip ubFolder/test2-1.txt Skip
23:36
Date: 25/04/2015 04:10:55
- Local: /storage/emulated/0/Download/Folder/
SubFolder/receive.txt
Remov Remote: /Public/SubFolder/receive.txt False
ftpSync

Conflict: Choose following file

Local Path

/storage/emulated/0/Download/Folder/

SubFolder/testing-1.txt
Date: Wed Apr 29 00:32:51 BST 2015

Remote Path
/Public/SubFolder/testing-1.txt
Date: Tue Apr 28 23:34:37 BST 2015

CANCEL LOCAL

Size: 8 Remov Remote: /Publ

Size: 15

Remov Remote: /Public/SubFolder/newtest.txt

Date: 25/04/2015 04:10:55

== Local: /storage/emulated/0/Download/Folder/ @
SubFolder/test2.txt

Remov Remote: /Public/SubFolder/test2.txt False

Date: 25/04/2015 04:10:55
Local: /storage/emulate
SubFolder/SubSu

4|

Skip Remote: /Public/SubFolder/newtest-1.txt

REMOTE

Usability Principle

Complies
(Y/N/NA)

Note

Visibility

Y/N

User can see the progress of synchronisation
through notification and progress bar.

First-time users may not have a clear instruction
to set up all necessary settings.

Speak the user
language

Users should recognise sync button to initiate
the action.

User Control and
freedom

N/Y

User unable to cancel or stop ongoing sync
process.

User able to select options to resolve conflict
files.

Consistency

No technical words are used. Icons come from
Google Material Design Guideline, users should
feel natural in Android platform.

Error prevention

Y/N

If user do not have a valid ftps settings to
continue the sync process, or users are not in
valid condition like battery is low, proper
messages will be shown.

48

No message shown when start synchronisation
with empty list of sync directory.

Recognition vs. recall |Y

Same notification will show up each time. Same
sync button and progress bar on main screen.

Flexibility Y User able to set default action when file conflict
occurs.
Minimalist design Y/N Notification provide relevant and important

information regards to sync progress.
Resolve conflict dialog box contain necessary
information, like file size and date, to let user
choose suitable file.
Log Screen is too detail for novice users.

Recognise, diagnose |Y
and recover from error

All error messages like require valid ftps settings
are expressed in plain language and precisely
indicate the problem in notification.

Help N There is no documentation or user guide
especially for first-time users to begin with.
Usability Usability Guidelines Severity | Ease of | Recommendation
Problems these problems violate | Rating Fixing (More details in
outlined in [Problem | below Future
feedback Enhancement
sessions section)
No ways to User control and 4 3 Implements the
cancel freedom: emergency exit in
operation Once sync process TransferService to
when users started, there is no way detect whether
started the to cancel or stop the cancel operation
sync process | operation. There is no flagged.
“‘emergency exit” for
users.
No message | Error prevention: 3 1 Check Sync List
shown when | There are no messages every time
start or notifications to notify synchronization
synchronisati | users that the list is start.

49

on with empty

empty, except a

list of sync message on the list Ask user to add
directory. screen. sync directory
when user launch
the application
first-time after
setting the ftps
configuration.
Log is too Minimalist design: Add a filter control
details, but Log Screen contains too in log screen to
no general much information for select date range,
overview of novice users. transfer actions, or
each sync sync status.
action Visibility:
There is no overview of Add new type of
each sync, i.e. sync log to record
status of sync directory overview status of
as a whole, not individual sync directory.
files inside the directory.
First-time Visibility of system Add a user guide

Instructions

status:

There is no instruction at
any time. When ftps
server settings are
empty, users are not
able to leave preference
screen.

Help and documentation:
It is straightforward to
use, once users find out
how at first. But there is
no user guide or flow for
first-time users.

for users run the
application for the
first time. Help
users to setup
necessary settings.

50

7. Conclusion

The aim of this project is to build a DIY cloud solution, based on an FTPS server
controlled by the user. Overall | believe the project to be a success as | achieved most
of the requirements set at the beginning of the project. | developed an application for
Android devices using Java and one for Mac OS X platform using Python. The
application able to synchronise selected directories with ftps server.

Even though there are many uncertain in my initial plan, | ultimate decided things | need
to work on. Although the project has been a challenge, it has also been entertained to
learn about new aspects. As a result of this project, | learnt a lot throughout the process;
| gained hand-on experiences on programming in Android platform, a wider knowledge
of methods Java provided, the use of tools like Android Studio and PyCharm, and
problems and solutions to remote synchronization issues.

The outcome of this project effectual done various things. The system is implemented
on Android and Mac OS X platform; it able to use ftps protocol to synchronize
directories between local client and remote server automatically in a given time frame.
Most of the requirements are implemented; the results shown in testing section above.
In addition, some problems found during user evaluation; some fixes has been made
according to the recommendation and some are listed in future enhancement.

Definitely there are numerous areas that can be improved within both applications. For
examples, current execution do not support multiple devices on same platform; it
depends on a single file to retrieve the directory list; and it only sync folders but not
single file; others are outlined in future work section. Both applications are still supposed
to be a prototype of this project idea, they are not ready for prime time.

51

8. Future Enhancement

Throughout the project | came up with some additional ideas. | have implemented some
of them and indicated above, for example, a log screen. However, there are many more
ideas that were not achievable in the time frame given. As | try to stick with the work
plan set at the beginning of the project; if this project was run two semesters instead of
one, | would do much more than currently achieved.

There are numerous further enhancement can improve and add to the applications to
make the system better. Some of these ideas already mentioned in different sections in
the report. Below is the list of opportunities that can enhance the application.

Improvements on User Experience

e Cancel Sync Action: Let user to cancel the operation at any time at any stage of
the synchronization process.

e Log Filter: Current implementation of log record and show all transfer actions
including those file skipped. In addition, logs are not recording synchronise
directory set in general view. i.e. Set sync “Folder_A” and log show transfer
actions for all files inside “Folder_A” but not generally show this folder is
synchronising or finished.

e User Guide: A user guide for first-time user to help user to set up necessary
settings like ftps server settings and enable scheduled sync. Current
implementation for Android app is user unable to navigate to other activity when
they have invalid ftps settings. They can either continue edit preferences or exit
the application.

e Make it compatible with older version of Android.

Improvements on Sync Algorithm and Flow

e Sync individual file: As a workaround, user can now make a folder and place one
file in it. The underlying code for synchronising single file is almost complete, but
there is one issue that block this feature listed as implemented. The problem is
related to handle record of saved directory list for single file.

e Saved List in Database: Hence, in order to improve both showing sync
directories status and handling save list entries for single file. Instead of using
ftpsync JSON file to save the directory list and each file version number, the
application can add a database to store each sync file entries. This will enhance
and solve followings:

52

o Improve comparison between files from difference time by having a longer
list of history of files, currently only the last synchronise list.

o Save latest list when each transfer action complete, rather than save it
once at the end of synchronisation.

o Avoid save list .ftpsync file deleted by user accidentally using other file
manager apps.

e Backup Files: Current implementation of replacing existing files is, first, replacing
the existing file with a different name, then upload the new file, remove the old
file. A new approach can be done to lower the chances of loss of data during
sync. Delete files move to a folder act as recycle bin, instead of delete it directly.
Store both files when sync conflicts with the client names, therefore, if anything
happens before user select which file is the latest one, both file will not loss and
exist in both local client and remote server.

Improvements on User Interface

e The user interface of Android application looks good at this moment, however
certain screens do not scale properly on larger devices. Despite these screen
works on tablets but the size of buttons and layout configurations need to
improve for a better user experiences.

e The user interface of Mac OS application does not native to system enough,
except the status bar menu which uses rumps module, there is a need to choose
another python module to build the user interface elements instead of Tkinter.
This needs more research on different python modules that draw window
interface on Mac OS X platform, therefore, | have not rewritten those windows on
the Mac app.

e As mention above, this application can be improved by adding a user interface
clearly show file status of each sync file, but not the log of transfer action. i.e.
visualise the saved directory list with version numbers of each files.

e Folder Picker: Implementing own folder picker with better user interface that
matches material design which let to better user experience. In addition,
reimplement the ftps folder picker with a faster loading speed on requesting ftps
server file list, for example, cache the parent and loaded directory lists so request
to server is not needed when navigating previous loaded directories.

53

More enhance features

e Multiple FTPS server account: Instead of connecting one ftps server, the
application can add multiple ftps server, therefore users can sync across different
servers. Moreover, the application can act as intermediary between two ftps
server.

e Server Mode: Run application with built-in ftps server, along with sync client, to
make it easier for general users to adopt cross-devices file synchronization.

e More platform support: Implement the system on other platforms, for example,
Windows. As Python and Java are cross-platform programming language, they
should be able to run on other platforms with some addition framework to build
native user interface.

54

9. Reflection

Throughout this assignment, | have couples of new challenges and gain some new
skills. This project provided me with an exciting opportunity to apply what | have learnt
in project planning, design and some HCI; in addition, throughout this project, | gained
some new experiences and skills on programming and time management.

This is my first experience with Android development; | was not sure which framework
and approach should use to begin with. Design well before implementation is important
to led to successful outcome. Initially, | tried to work on timestamps-based
synchronisation; as mentioned in the report, timestamps-based sync has its limitation, in
addition to the bug on android that causes unable to modify timestamps, | found out
current solution to use version vector is better option. More research and planning
before implementation assist me to know my skill limitation, and limitation of different
programming languages, platforms, modules and frameworks.

Using one programming language may be faster to implement; it depends on project |
work on and things that need to develop. In this project, | do not feel comfortable
enough to use Java on both Android and Mac OS X, as it would be two new platforms
for me to develop. | have had experience on developing Python application on desktop
and writing code in Java during time at university, but | had no experiences on Android
platform before this project. In the future, | should take more factors to consider and do
more research when implementing a system on two different platforms using two
different languages at a given time frame for a single project.

Moreover, | learnt the usefulness of keep a record of decision on different approaches |
took to complete each tasks; these notes recorded help me to show my critical thinking
on vital aspects in this report. Besides, | made use of some HCI skills developed in
second year module, to take care user experiences and conduct the user evaluation in
testing stage.

Regards to time management, | tend to think the biweekly work schedule planner is well
operated. As the planning for each tasks are high-levels, such planning gives a suitable
time span to implement and test those planned features, which led to a successful
completion of the project. However, | found the time plan should put more time on
implementation and it should start earlier. A more compact schedule may help to leave
more time at the end, to test and improve the application, especially when working with
a new platform. | feel myself lack of time to perform a more comprehensive testing on
both applications. Alternatively, | would plan everything one or two weeks earlier, as |
was able to maintain to stick with my initial work plan at the beginning of the project;
This way | would be able to leave more time to document all my steps and approaches
to solutions, and testing. In this project, | learnt to be more organized, to establish a
working plan and to follow this plan strictly; furthermore, | learnt to prioritise importance
of tasks that need to conduct and take consideration that risks might encounter.

95

To conclude, | build up programming experiences on Android platform with Java, and
Mac OS X with Python. | took a lesson on well-design and better work plan make better
execution with less time wasted. | have also learnt the importance of time planning and
management. Additionally, | used knowledge from previous projects to help to build a
user-friendly product with HCI to take care user experiences, and other report writing
skills. | look forward to taking these skills further and developing them as | move through
my professional career.

56

References

[1] Lucas Mearian, Computerworld, 2013. No, your data isn't secure in the cloud [Online].
Available at:
http://www.computerworld.com/article/2483552/cloud-security/no--your-data-isn-t-secure-in-th
e-cloud.html [Accessed: 30 January 2015].

[2] SparkleShare, 2015. WWW [Online]. Available at: http://sparkleshare.org/ [Accessed: 20
April 2015]

[3] OwnCloud, 2015. WWW [Online]. Available at: https://owncloud.org/features/ [Accessed:
20 April 2015]

[4] Syncany, 2015. WWW [Online]. Available at: https://www.syncany.org/ [Accessed: 20 April
2015]

[5] Syncany, 2015. What is Syncany? [Online]. Available at:
http://syncany.readthedocs.org/en/latest/what_is_syncany.html [Accessed: 20 April 2015]

[6] prikryl, WinSCP, 2013. Synchronizing [Online]. Available at:
http://winscp.net/eng/docs/task_synchronize [Accessed: 20 April 2015]

[7] Bryan, 2010. Why Vector Clocks are Easy [Online]. Available at:
http://basho.com/why-vector-clocks-are-easy/ [Accessed: 30 April 2015]

[8] makovkastar, 2015. FloatingActionButton [Online]. Available at:
https://github.com/makovkastar/FloatingActionButton [Accessed: 10 March 2015]

[9] spacecowboy, 2014. NoNonsense-FilePicker [Online]. Available at:
https://github.com/spacecowboy/NoNonsense-FilePicker [Accessed: 10 March 2015]

[10] Google, 2015. Material Design icons by Google [Online]. Available at:
http://google.github.io/material-design-icons/ [Accessed: 10 March 2015]

[11] jaredks, 2015. Ridiculously Uncomplicated Mac os x Python Statusbar apps [Online].
Available at: https://github.com/jaredks/rumps [Accessed: 10 March 2015]

[12] py2app, 2015. WWW [Online]. Available at: https://pythonhosted.org/py2app/ [Accessed:
10 March 2015]

S7

[13] Base36, 2012. Agile & Waterfall Methodologies — A Side-By-Side Comparison. Available
at:
http://www.base36.com/2012/12/agile-waterfall-methodologies-a-side-by-side-comparison/[Ac
cessed: 1 March 2015]

[14] Tejas Lagvankar, 2011. Android Thread Constructs(Part 4): Comparisons [Online].
Available at: http://techtej.blogspot.co.uk/2011/03/android-thread-constructspart-4.html
[Accessed: 10 April 2015]

[15] setLastModified() always fails on Xoom unless running as root, Android Open Source
Project - Issue Tracker [Online]. Available at:
https://code.google.com/p/android/issues/detail?id=18624 [Accessed: 10 April 2015]

[16] Ye.Wang, 2013. Error when connecting to FTPS servers not supporting SSL session
resuming [Online]. Available at: http://bugs.python.org/issue19500 [Accessed: 10 April 2015]

[17] Workaround to setLastModified() [Online]. Available at:
https://code.google.com/p/android/issues/detail ?id=18624#c50 [Accessed: 10 April 2015]

[18] MicroSD access for applications on Google Play edition devices, Android Open Source
Project - Issue Tracker [Online]. Available at:
https://code.google.com/p/android/issues/detail?id=63879 [Accessed: 10 April 2015]

[19] Jeremy.Brock, 2012. FTP_TLS in ftplib not supporting prot_p storlines in FTP7.5 [Online].
Available at: http://bugs.python.org/issue16318 [Accessed: 10 April 2015]

[20] Jakob Nielsen, 1995. Severity Ratings for Usability Problems [Online]. Available at:
http://www.nngroup.com/articles/how-to-rate-the-severity-of-usability-problems/ [Accessed:
30 April 2015]

[21] Nielsen Norman Group. 1995. 10 Usability Heuristics for User Interface Design [Online].
Available at: http://www.nngroup.com/articles/ten-usability-heuristics/ [Accessed: 1 May 2015]

Appendices

Appendix A. Class Diagram of Android Application
Appendix B. Work Plan

Appendix C. Use Cases

Appendix D. Test Cases

58

