
Monte Carlo Tree Search for Go

Abstract
This report details an investigation into the Monte Carlo Tree Search (MCTS) algorithm applied to

Go. It discusses the background of the MCTS algorithm, and details an implementation of the

MCTS algorithm in Java. It ends with a statistical analysis of the different features discussed in the

background and implementation. This is the first Java MCTS Go player released open-source, and

the first report to detail the statistics behind every feature chosen for the final implementation.

Contents

Abstract ... 1

Introduction .. 3

The Game of Go ... 4

Computer Go ... 6

Theory .. 8

Monte Carlo ... 8

Multi-armed Bandit Problem .. 8

UCB .. 8

Monte Carlo Tree Search .. 9

All Moves As First (AMAF) ... 10

Rapid Action Value Estimation (RAVE) .. 10

MC-RAVE ... 11

Prior Values .. 11

Simulation Policy ... 12

Setup ... 14

Implementation ... 15

Vegos ... 15

MCTSEngine .. 15

Opening Book ... 16

The Player .. 20

Playing Moves ... 20

Author: Thomas Ager

Supervisor: Steven Schockaert

Moderator: Paul Rosin

Module Number: CM3203

Module Title: Individual Project

Credits Due: 40

Developing the Tree .. 22

Selection Policy ... 24

Expansion .. 25

Simulation ... 26

RAVE ... 29

Experiments ... 31

UCB1, SimpleUCB, UCB-Tuned, .. 31

UCT, AMAF, RAVE, MC-RAVE, RAVE Skip ... 31

Binary Scoring, Even Scoring ... 31

Opening Book ... 31

Exploration Weight.. 31

Bonus First Play Urgency, First Play Urgency.. 32

Bonus Patterns, Bonus Avoid Eyes.. 32

Simulate Avoid Eyes, Simulate Patterns, Simulate Mercy Rule ... 32

Vary Sim Eyes, Vary Sim Patterns ... 32

pickRobust, pickMax, pickSecure, pickMaxRobust, .. 32

clearMemory, pruneNodes, developPruning, .. 33

Future Work .. 34

Multi-Threading.. 34

Simulation Policy .. 34

Pondering .. 34

Conclusion ... 35

References ... 36

Introduction
Go is a skill-based game in which two players take turns putting black and white stones on a board

with the objective of surrounding vacant areas. Well known for its strategic diversity and tactical

complexity, Go has been a staple game across Asia for centuries. Its rich history of study, endless

potential for improvement, and a varied history of attempted solutions has elevated the task of

creating a computer Go player that can rival top human players into a grand challenge of

Computer Science.

Before the Monte Carlo Tree Search (MCTS) algorithm, no attempted solutions were met with

success above that of an amateur player. This report takes on the task of investigating the benefits

and limitations of MCTS, discussing the effectiveness of different modifications to this approach,

as well as a statistical analysis of every feature included in the project.

To begin, this report discusses the groundwork of research that lead up to the modern MCTS

algorithm, as well as detail about the algorithm itself. Once MCTS has been introduced, different

enhancements featured in the latest and greatest MCTS Go players are covered, followed by how

some of these enhancements were developed for our own open source Java implementation. The

report then moves onto a statistical analysis of every feature in the implementation, with analytical

investigation into finding the optimal values for those features. Finally, the report concludes with a

discussion about the overall effectiveness of the current implementation, and a hypothetical

discussion about the direction of possible future research.

The Game of Go

The Challenge of Go comes from the way its simple rules are utilized. The strategic and tactical

possibilities of Go are endless, allowing the game to accommodate any playstyle and any

development. Players are skilled not purely because they have learned the rules and applied them,

but because Go allows players to make use of their unique intuition insights and apply their

personality to create a unique playstyle that can defeat their opponent.

Starting on an empty board, players place take turns placing stones on the board to surround

vacant areas, called territory. Stones are placed on the intersections of the lines, called points, with

each player placing a single stone on a vacant point to complete their turn. The colours of the

stones are black and white, with black going first. There are three popular board grid sizes, 9x9,

13x13, and 19x19, and each of these board types give the option to handicap players by giving their

opponent up to nine stones at the start of the game. The game is played until both players pass

their move or one resigns completely. There are a few different types of scoring. The scoring that

we will be used in this report is Tromp-Taylor scoring, where each player receives a point for each

vacant point inside their own territory, and one point for every stone of their colour. The player

with the most points at the end of the game wins.

An example figure showing various Go situations, from [Bau11]

Playing the same colour stone vertically or horizontally adjacent to another stone makes both

stones part of a single group, which can then be used to capture territory or enemy stones.

Free spaces next to stones are called liberties. Capturing opponent stones is done by surrounding

groups so that the group no longer has any liberties, in which case the opponent stones are

removed from the board. A stone or group of stones with a single liberty is in Atari, and self-Atari

is known as one of the worst moves that a player can do. However, Go games are varied enough

that like all generally bad moves, self-Atari moves are sometimes necessary.

The ko-rule does not allow a player to instantly re-capture a single stone once it has been

surrounded, forcing players to play tactically around waiting for a move before they are able to

capture the stone back.

An eye is described as a vacant space is surrounded by a group of a same-colour stones. Eyes are

one of the most important tactical concepts for Go. Playing within opponent’s eyes without

capturing the stones around the eye instantly removes the stone being played. This move is

considered illegal. This means that if a group has two eyes, then it is impossible to capture. Finding

a way to give a group of stones an eye or two eyes is known as a life and death problem.

An example figure showing a life and death situation, from [Bau11]

Computer Go
There have been many different approaches to solving the game of Go. The most successful

algorithm out of the classical Go techniques is A-B pruning/minimax, with efforts culminating in

GNUGo [BFB+]. A minimax algorithm is an algorithm that computes the value of possible moves

for both you and your opponent, then makes decisions based on what move will give your

opponent the lowest possible value option for their move. This can be represented as a tree, with

every node being a move that can be taken from the parent move. In GNUGo [BFB+] this was

combined with alpha-beta pruning, an algorithm that prunes tree branches that cannot possibly

influence the final decision.

A minimax tree, from url: http://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Minimax.svg/2000px-

Minimax.svg.png.

Early on in Go, an algorithm was created for use in pattern-based play [B0090], which matched

5x5 windows with patterns that could be determined with a generated pattern database [BC05].

However, this approach had required an immense amount of domain knowledge and a gigantic

amount of patterns to be effective. Despite the classic approaches and other popular alternative

approaches like neuron networks [Enz96] falling short of the mark, some sub problems of Go were

solved. Solvers of isolated life and death problems are now capable of solving that are considered

of professional-level difficulty [Wol07].

Despite the monumental amount of effort invested in domain-knowledge techniques, The thrust of

a good deal of Computer Go research is now to determining which variations and enhancements of

the MCTS algorithm are best suited for Go. [Iee12] GNUGo, considered the strongest of the classic

computer Go programs, has not been competitive since 2008 [BFB+]. The MCTS approach is the

only approach to come close to defeating professional players any board above 8x8. In 2008 MoGo

[Gel+06] managed to take a game from professional Go Player Cătălin Ţăranu, 5th dan pro, on a

http://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Minimax.svg/2000px-Minimax.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Minimax.svg/2000px-Minimax.svg.png
https://en.wikipedia.org/wiki/C%C4%83t%C4%83lin_%C5%A2%C4%83ranu

9x9 board. In 2013, Crazy Stone beat Yoshio Ishida, professional 9 dan player with a four stone

handicap [1]. The future is promising for MCTS Go players.

[1] A performance list gathered from https://en.wikipedia.org/wiki/Crazy_Stone_(software).

https://en.wikipedia.org/wiki/Crazy_Stone_(software)

Theory

Monte Carlo

Monte Carlo is a semi-random approach that makes use of randomly simulating games according

to a policy, and then updating statistics

Monte Carlo approaches use the results of semi-random simulations to determine statistics about

the possible solutions to the problem. The first Monte Carlo approaches were not successful

[Bru93], and further research did not show much of an improvement [BH03]. Monte Carlo

simulations were used to determine the next possible moves, rating the move high if the random

simulation was not likely to play a move and low if the random simulation was likely to play the

move. This was good at finding strategic moves that set up a large attack or enclosed a chunk of

territory, but suffered problems in tactical situations. [Bau11]

Multi-armed Bandit Problem

The multi-armed bandit problem is a decision making problem based on the idea of slot machines

named one-armed bandits, where the player inserts a coin and then receives a reward from the

bandit according to a fixed probability distribution. In the multi-armed bandit problem, there are

multiple arms each with different fixed probability distributions. In order to maximize the reward,

arms should be chosen in a way that maximizes the possible gain. These estimations can then be

used to choose the bandits that are most likely to lead to the total highest reward. [LR85], [KS06]

and [GW06] define the K-armed bandit as a sequence of random rewards 𝑋𝑖𝑡 ∈ [0,1], i =

1, . . . , 𝐾, 𝑡 ∈ N where each arm has an index i and t denotes successive plays of the arm. [Bau11]

The most effective algorithms for solving this problem make use of the idea of balancing

exploration and exploitation. Exploring the environment to find potentially profitable actions, and

exploiting the current highest reward from the best arm. Regret is the term used for the expected

loss due to not playing the best arm. [Iee12] defines the regret Rn as such: let µi denote the

estimated expectation of arm i, µ∗ denote the expectation of the optimal arm, and Ti (n) the

number of times arm i has been played after the first n plays:

𝜇𝑖 = E [
1

𝑇𝑖(𝑛)
∑ 𝑋𝑖𝑡

𝑇𝑖(𝑛)

𝑡=1

]

𝜇∗ = max 𝑖 𝜇𝑖

UCB

A bandit expectation policy π is a function that selects the next arm to be played based on previous

rewards, designed to minimize the amount of regret [Bau11]. Lai and Robbins [LR85] show that

there is no policy with a regret that grows slower than O(log n). If a policies regret is proven to

grow at O(log n), then it is said to solve the multi-armed bandit problem. Lai and Robbins a policy

that solved the multi-armed bandit problem, making use of hard to compute upper confidence

indices. Following this, a family of algorithms called UCB was proposed by [ABF02] that expressed

the upper confidence index in a simpler way, finally resulting in an extension of the UCB policies

to fit the sequential, tree-based planning required for Artificial Intelligence applications [KS06],

which has been used in top Go programs MoGo [Gel+06], and [Enz+10], as well as many others.

UCB1

UCB1 is one of the policies introduced by [KS06] that solve the multi-armed bandit problem. It

calculates uncertainty relative to the amount of visits to the node by maintaining the number of

times an arm has been played in addition to the empirical mean. This means that arms that it will

visit low-expectation arms if others are too uncertain.

UCB-TUNED

UCB1-TUNED is an algorithm introduced by [ABF02] that has no theoretically proven guarantees

for its regret bound, but has been shown through research to vastly outperform UCB1 [Gel+06]

[ABF02]. It uses variance for its upper confidence bound, calculated using every individual reward

from a bandit [2]. In [ABF02], UCB-Tuned is defined as:

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS), first introduced as Upper Confidence Tree (UCT) in and proven

to converge on the minimax action value function by [KS06]. The MCTS tree is simple, every node

is a state of the game, and the children of those nodes are the next possible moves. MCTS treats

each state of the tree as a multi-armed bandit, using a UCB policy to calculate the value for each

state. To obtain the values to calculate the UCB for each node, semi-random Go games are played

out and the amount of visits to that node are recorded.

MCTS has many benefits. Its tree is built online and can be stopped anytime to choose a result that

improves as more time is spent. It is highly memory efficient, growing asymmetrically based on the

prevailing direction of the search, and as the values of intermediate states do not have to be

evaluated as in depth-limited minimax search, only simple domain knowledge is required to make

a big impact.

The algorithm develops the tree until it has reached the end of its predefined budget, typically an

amount of seconds or an amount of simulations. It is first initialized by a single root node, which

represents the state that we are looking to find a decision for. [Iee12] Outlines four steps to

developing the tree:

1. Selection: The tree is descended according to a selection policy until a non-terminal node

with unexpanded children is found.

2. Expansion: The child nodes are expanded based on the pruning policy.

3. Simulation: A simulation is run from the new node(s) according to the simulation policy

to produce an outcome.

4. Backpropagation: The simulation result is backed up through the selected nodes to

update their statistics.

MCTS Diagram, From [Iee12]

Once the budget is reached, a move is selected from the root node according to a move selection

policy, typically the most simulated node. In [Iee12], there are four criteria for selecting the

winning action:

1) Max child: Select the root child with the highest mean reward.

2) Robust child: Select the most visited root child.

3) Max-Robust child: Select the root child with both the highest visit count and the highest

reward. If none exist, then continue searching until an acceptable visit count is achieved

[70].

4) Secure child: Select the child which maximises a lower confidence bound

All Moves As First (AMAF)

Introduced before MCTS [BH03], the All Moves As First (AMAF) heuristic is the underlying idea

that there can be one value for each move, regardless of when it is played. This allows information

about moves to be shared across every situations subtree, updating a significant amount of nodes

for a single result.

Rapid Action Value Estimation (RAVE)

The RAVE algorithm proposed by [GS07], gave MCTS a major leap in strength by combining

Monte-Carlo tree search with the all-moves-as-first heuristic. The basic idea of RAVE is to

generalise over subtrees by replacing Monte Carlo values in the tree with RAVE values. The

assumption is that the value of a move in a situation will be similar to all states within the subtree

of that situation. Thus, the value of a move is estimated using all relevant simulations, regardless

of exactly when the move is played. For every position in the simulation that is represented in the

tree, and for every subsequent move of the simulation the AMAF value of is updated according to

the simulation outcome [GS07].

AMAF Example diagram, from [Iee12]

MC-RAVE

Despite RAVE creating large amounts of information to be shared early on in the development of

the tree, drastically reducing the need for explicit exploration [GS11], the idea that the value for a

move is the same no matter what time it’s played can be proved wrong fairly trivially. To counter

this, both the Monte Carlo and the RAVE statistics are stored, and both are calculated when

requested. Then, both of the calculated values are balanced based on the amount of simulations for

the node, giving more value to RAVE if the simulation count is lower, and more value to the Monte

Carlo value if the simulation count is higher.

Prior Values

The UCB1 policy requires nodes to be initialized with a value. Generally, this is done by playing a

random simulation for each new node [Iee12]. Because of the additional time taken to play

simulations for every node, as well as the possibility that a large amount of nodes initialized will

never need consideration for playing, we have opted for a technique called First Play Urgency

(FPU) instead.

FPU is a technique used by a few Go players [Gel+06] to allow their policy to explore new nodes

more often. It assigns a high predefined value to every new node, which can be adjusted higher to

increase exploration and lower to decrease it. In our tests [3] we found that FPU handily defeated

other approaches.

There are two other ways to initialize prior values: Applying a ranking function and pruning all

children that are below a certain value threshold, and adjusting the expectation of nodes through

virtual simulations based on heuristic rules. One advantage of the latter approach is that the bonus

is devalued as more simulations are developed, reducing the overall impact of the virtual

simulations. This technique was used in both Fuego [Enz+10] and Pachi [Bau11].

Simulation Policy

In the general MCTS algorithm, the simulation policy picks random move after random move until

there are no more moves to play. Although this can give some effective results for some

applications [Iee12], in order for meaningful game-related results the simulation policy must use

domain knowledge heuristics to play moves [Gel+06]. The most common simulation policy for Go

is playing a game from start to a pre-determined finishing point, usually when there are no more

moves to play apart from within friendly eyes. This approach works, but does not play tactically

very well.

This limitation can be countered by using heuristics to determine which move should be played.

MoGo [Gel+06] and Fuego [Enz+10] uses a set of heuristic rules in a fixed-order. These rules are

simple principles of how to tactically play Go, in MoGo [Gel+06] and Fuego [Enz+10], a set of 3x3

patterns are matched on the spaces around the last move. These patterns are flipped, rotated and

the colours of the stones within are stopped in order to find a move, and if a move is not found

then the next heuristic rule is attempted. In Fuego, this is checking if an opponent can be put into

Atari, or if an opponent can be captured.

Hane 3x3 patterns, as described by MoGo [Gel+06]

Other players use a probability distribution policy [Cou07] where all available moves are assigned

an expectation as a product of evaluations by individual heuristics matching the particular move

and its surrounding spatial patterns. The move is then given a probability to be played in the

simulation. Pachi [Bau11] uses a similar probability function for their fixed-order methodology,

giving each rule a certain probability to be played.

Despite heuristics being effective at improving the playing ability of MCTS, the implementation of

a heuristic will always result in a bias that ends up playing a specific case wrong. This can be a

serious problem when playing against an opponent that can recognize and exploit a weakness. An

example of an approach in AI that takes advantage of this is YoGo’s opening book, which contains

a large number of positions designed by professional 6 Dan Yu Ping that are often misplayed by

current MCTS [Enz+10].

Binary Scoring

The scoring of a simulation game can be returned as the real score of that game or a more

simplified, binary score [4], where 1 is returned for a win and 0 is returned for a loss. This decision

gives a more robust playstyle that avoids preferring moves that have just a small chance of a large

score swing, instead aiming to obtain a win no matter how many overall points are in the result.

The binary score can be adjusted to create more humanlike behaviour by returning half of a win

(0.5) if the score is near-even. Additionally, small bonuses for shorter playouts and higher scores

can be given like in Fuego [Enz+10]. For our approach, we adopted the humanlike even-scoring

but not the bonuses for shorter playouts and higher scores, in order to keep the implementation

focused on scoring a win by any means necessary rather than doing it quickly or with a larger

score.

Setup
The idea behind the setup of the implementation was to make use of already existing software and

players in order to maximize the time spent investigating and statistically analysing MCTS. This

resulted in less time spent implementing features, and more time spent understanding them.

There is already a well-established set of tools for developing a Go AI. GTP, a command protocol

used to interact with well-known tools, and GoGUI, an open-source GUI that can receive GTP

commands to play out AI games.

In order to get a solid base for the board representation, I used Vegos, an oldschool Monte Carlo

implementation that uses simulating annealing [1] to find a solution. Vegos had all the tools I

needed for the baseline of developing an MCTS application [2]. The implementation was

developed on that base using the Java programming language, as at the time of writing this report

there are no MCTS Go players available in Java. I also used the ideanest and the Apache Commons

for some trivial functionality implementations.

[1] Vegos Simulated Annealing report url: http://www.ideanest.com/vegos/LasVegasGo.pdf

[2] Vegos site with source code url: http://www.ideanest.com/vegos/

http://www.ideanest.com/vegos/LasVegasGo.pdf
http://www.ideanest.com/vegos/

Implementation
In this section, I will be discussing how the final software works with every option that resulted in

a higher win rate when used. The actual implementation has complete configuration options, but

for the sake of brevity the implementations of alternative options will not be covered.

The configuration for the software was done on a player-by-player basis, with each player

requiring an input of a ruleset which includes information about every feature. This ruleset is then

used during the tree development and the move selection to make decisions appropriate to what

the user has specified. Below are the functional features that can be initialized for the

configuration.

/* set the values for different features */
this.nodeRuleSet = new Configuration(binaryScoring, uct, amaf, rave,
openingBook initialWeight, aAmafWeight, raveWeight, raveSkip, bonusFpu,
firstPlayUrgency, bonusPatterns, bonusAvoidEyes, explorationWeight,
simulateAvoidEyes, simulatePatterns, simulateMercyRule, varySimEyes,
varySimPatterns, pickRobust, pickMax, pickSecure, pickMaxRobust, clearMemory,
pruneNodes, developPruning, ucb, simpleUcb, singleLogUcb, ucbTuned,
evenScoring);

The following are the options that we chose based on our theoretical and experimental research.

Every option has been justified by an increased winrate or a significant difference in playstyle.

The configuration for the software was done on a player-by-player basis, with each player

requiring an input of a ruleset which includes information about every feature. This ruleset is then

used during the tree development and the move selection to make decisions appropriate to what

the user has specified. Below are the functional features that can be initialized for the

configuration.

/* set the values for different features */
Configuration(binaryScoring = true, rave = true, openingBook = true, raveWeight
= 1000, raveSkip = 20, firstPlayUrgency = 0.9, bonusPatterns = 50,
bonusAvoidEyes = -5000, simulateAvoidEyes = true, simulatePatterns = true,
simulateMercyRule = true, varySimEyes = 0.05, varySimPatterns = 0.3, pickRobust
= true, clearMemory = true, pruneNodes = 2, ucbTuned = true, evenScoring = 10);

Vegos

In Vegos, an engine uses a player to generate moves using the AI modules, then that move is

translated into a GTP command using the GTP modules. For my implementation, I used the exact

same setup. The board in vegos is represented as an array of points, each with the property of

EMPTY, BLACK, WHITE, or OUT_OF_BOUNDS. The game used Tromp-Taylor Rules, and a

more restrictive Semi-Primitive game type [1] disallows playing in eyes.

[1] This type was renamed to SimulateGame, as I exclusively used it for simulations.

MCTSEngine

The MCTSEngine is a modified version of the Vegos Engine, with the simulated annealing specific

classes removed. The two most important classes are the ones that handle the opponents moves,

play(move), and the AI player’s moves genmove(color). Play works first by checking if the game is

over or the colour doesn’t match the one on the pre-built game. If this passes then the move is

played using the game class by converting the GTP command into a position on the board.

public void play(Move move) {

 /* if the game is over or it isn't our move */
 if (game.isOver() || move.color != game.getNextToPlay()) {
 // play out of order, simulate a pass
 boolean r = game.play(Game.MOVE_PASS);
 assert r;
 }
 assert move.color == game.getNextToPlay();
 boolean r = game.play(move.vertex.toPosition(game.getGrid()));
 game.recordMove(move.vertex.toPosition(game.getGrid()));
}

Genmove works by checking if the player has been initialized, and if it hasn’t then starting off the

variables for the player-specific game. The updated game is then set in the player, ensuring that

the new game state is used for the next tree development. Then, if the game is over, the player

passes with a -1 move, and if it isn’t over then the a request is sent to the player to get the move.

Once the move is returned, it is converted to a vertex and sent back as a GTP command.

public Vertex genmove(Color color) {
 Player player = players[color.getIndex()];
 if (player.getPlayingColor() != color) {
 // bring player into the game
 player.startGame(game, color);
 }
 player.setGame(game);
 int move;

 if (game.isOver()) {
 move = -1;
 } else {
 move = player.playMove();
 }
 return Vertex.get(move, game.getGrid());

}

Opening Book

The opening book is imported from a data file provided by Fuego [Enz+10], consisting of a

sequence of lines, each one containing a move to be played, information about the board size, and

the moves that need to be played in order for that opening book move to be matched. The data is

imported into list of integer arrays, with each integer within the arrays containing a single move.

The lists are split into two sets of integer arrays, the moves to take once a pattern is matched, and

the pattern to match to the moves played.

/* For every line in the opening book */
for(String line: FileUtils.readLines(new File("D:/#Work/Learning/Third Year
Project/Project/book.dat"))) {

 /* If the line is not empty */
 if(line.startsWith(sideSize)) {

 /* Split it into the moves to match and the moves to play */
 String[] pipeSplit = line.split("\\|");
 String[] tempBeforeMoves = pipeSplit[0].substring(2).split("\\s");
 if(tempBeforeMoves == null || tempBeforeMoves.length == 0) {
 tempBeforeMoves = new String[1];
 tempBeforeMoves[0] = "";
 }
 String[] tempMovesToTake = pipeSplit[1].split("\\s");
 int[] beforeMoves = new int[tempBeforeMoves.length];
 int[] movesToTake = new int[tempMovesToTake.length];

 /* If there are no moves to match, set a value to recognize that */
 if(tempBeforeMoves[0].isEmpty()) {
 beforeMoves[0] = -1;

 /* If there are moves to match, convert them into points on the board */
 } else {
 for(int i=0;i<tempBeforeMoves.length;i++) {
 String[] splitBeforeMoves =
tempBeforeMoves[i].split("(?<=\\D)(?=\\d)|(?<=\\d)(?=\\D)");
 int move = new Vertex(convertLetterToInt(splitBeforeMoves[0]),
Integer.parseInt(splitBeforeMoves[1])).toPosition(game.getGrid());
 beforeMoves[i] = move;
 }
 }
 if(tempMovesToTake != null && !tempMovesToTake[0].isEmpty()) {
 for(int i=0;i<tempMovesToTake.length;i++) {
 String[] splitMovesToTake =
tempMovesToTake[i].split("(?<=\\D)(?=\\d)|(?<=\\d)(?=\\D)");
 int move = new Vertex(convertLetterToInt(splitMovesToTake[0]),
Integer.parseInt(splitMovesToTake[1])).toPosition(game.getGrid());
 movesToTake[i] = move;
 }
 } else {
 String removeWhiteSpace = pipeSplit[1].replaceAll("\\s+","");
 String[] splitMovesToTake =
removeWhiteSpace.split("(?<=\\D)(?=\\d)|(?<=\\d)(?=\\D)");
 int move = new Vertex(convertLetterToInt(splitMovesToTake[0]),
Integer.parseInt(splitMovesToTake[1])).toPosition(game.getGrid());
 movesToTake[0] = move;
 }

 /* And add the array of ints to the list of arrays */
 this.beforeMoves.add(beforeMoves);
 this.movesToTake.add(movesToTake);
 }
 }
}

Then, the values in the arrays are rotated, flipped and mirrored to form a set of new arrays.

public int[] modifyArray(int[] array, int type) {
 int[][] rotate = Game.rotate(convertArrayToGrid(array));
 switch(type) {
 case 0: return array;
 case 1: return convertGridToArray(rotate, array.length);
 case 2: return convertGridToArray(Game.rotate(rotate), array.length);
 case 3: return convertGridToArray(Game.rotate(Game.rotate(rotate)),
array.length);
 case 4: return
convertGridToArray(Game.verticalFlip(convertArrayToGrid(array)), array.length);
 case 5: return
convertGridToArray(Game.horizontalFlip(convertArrayToGrid(array)),
array.length);
 }
 return null;
}

It is these new arrays, as well as the initial arrays, that are tested to match the board. If they match,

then the move is played and the opening book method returns success. A value is set if there are

more than one moves to play.

public boolean playOpeningBookMove(int[] mostRecentMoves) {
 move = 0;
 boolean broken = false;

/* if no moves have been played */

 if(mostRecentMoves[0] == 0) {
 /* find a move without beforemoves */
 for(int i = 0; i < beforeMoves.size(); i++) {
 if(beforeMoves.get(i)[0] == -1) {
 /* and play it */
 move = movesToTake.get(i)[0];
 System.out.println(move);
 return true;
 }
 }
 }

 /* if there were moves already recognized and they weren't all equal */
 if(movesLeft > 0) {
 /* get the next move and decrement */
 int tempMove =
movesToTake.get(moreMovesToPlay)[movesToTake.get(moreMovesToPlay).length -
movesLeft];
 if(!isContainedInArray(mostRecentMoves, tempMove)) {
 move = tempMove;
 movesLeft = movesLeft - 1;
 return true;
 }
 }
 List<int[]> beforeMoves;
 List<int[]> movesToTake;

/* for every type of modification to the moves */

 for(int j=0;j<6;j++) {
 /* modify the beforeMoves and movesToTake */
 beforeMoves = modifyList(this.beforeMoves, j);
 movesToTake = modifyList(this.movesToTake, j);
 /* for every line */
 for(int i = 0; i < beforeMoves.size(); i++) {
 /* if there are more moves than the moves that are being checked then
skip this line */
 if(beforeMoves.get(i).length == movesTaken) {
 broken = false;
 /* if any of the opening moves last moves match the last move */
 if(beforeMoves.get(i)[beforeMoves.get(i).length - 1] == game.getMove(0))
{
 /* check if the whole sequence matches, if the length is larger than
one */
 for(int n=0;n<beforeMoves.get(i).length;n++) {

 /* if the element in the beforemoves 0-n doesn't match the move -
beforeMoves.length ago, with -1 to accommodate for the way that getmove
functions */

 if(beforeMoves.get(i)[n] != mostRecentMoves[n]) {
 /* there's no need to look at any other moves, so just move onto
the next line */
 broken = true;
 break;
 }
 if(broken) {
 continue;
 }
 }

 /* if a move set matched, the move is equal to the matching move to
take */
 int tempMove = movesToTake.get(i)[0];
 if(!isContainedInArray(mostRecentMoves, tempMove)) {
 move = tempMove;

 /* if there's more moves to play for this set, then set the value
equal to the iteration */
 if(movesToTake.get(i).length > 1) {
 moreMovesToPlay = i;

 /* and set the amount of moves left to go through equal to the
length -1 */
 movesLeft = movesToTake.get(i).length -1;
 }
 return true;
 }
 }
 }
 }
 }
 return false;

}

The Player

The player, named MCTSPlayer makes use of three methods and an initializer method. setGame(),

which updates the game state, endGame() which resets game-related values, and playMove()

which goes through a sequence of events in order to play a move on the board, and return that

move to the engine. setGame() and endGame() exist so that the game state can be updated from

the engine after an opponent’s move has been played, playMove is setup as a single method so that

multiple different attempts at getting the move can be tried by accessing other classes, based

entirely on the configuration. This means that the methodology for obtaining the move is

determined by the player, which is an important distinction to make when considering that each

player can have a different configuration setup.

Playing Moves

First, the player checks if they are being beaten to a degree that it would be impossible to recover.

/* If it is lategame and the opponent has a much higher score than us, just
give up */
if(movesTaken>=((game.getSideSize()*game.getSideSize()) -1) && game.mercy()) {
 /* just end the game */
 return -2;
}

Then, if there exists a move to record, meaning that the opponent has played a move, then record

it in the most recent moves. Then, based on the most recent moves check if it is possible to use a

move from the opening book, and if it is possible then the move is played.

/* If using an opening book and no moves have been taken */
if(game.getMove(0) != -3 && openingBook.movesTaken < 15) {

/*Add a first move and increase the amount of moves taken in the
openingBook*/
 firstMoves[openingBook.movesTaken] = game.getMove(0);
 openingBook.movesTaken++;
}
/* If there are still possible moves left to be played, and the opening book
matches the moves played */
if(openingBook.movesTaken < 15 &&
openingBook.playOpeningBookMove(mostRecentMoves)) {

 /* Set the move to the opening book move */
 move = openingBook.move;

 /* Play the move on the board for this player */
 game.play(move);

 /* And add that move to the mostRecentMoves */
 mostRecentMoves[openingBook.movesTaken] = move;

 /* Incrementing the amount of moves taken in the opening book, and
setting the initrootNode variable to false, meaning that there is not a tree

that has been built because an opening book move has been taken. This triggers
code below to recreate the rootNode from scratch. */
 openingBook.movesTaken++;
 initRootNode = false;

}

If that’s not possible and a root node does not already exist then it creates a root node.

/* Check if the rootNode requires initialization */
if(!initRootNode) {

 /* If it does, create a TreeNode that represents the players current position
 * And set the initRootNode value to true, meaning that the rootNode can be
used
 * Later to re-use subtrees. */
 initRootNode = true;
 UCB ucbTracker = new UCB(nodeRuleSet);
 rootNode = new TreeNode(game, game.getMove(0), 0, side, nodeRuleSet,
ucbTracker);
}

If a root node does exist, it searches through its children to find the node that matches the

opponent’s most recent move, and re-uses the subtree developed from that node.

/* If the rootNode doesn't require initialization, then find the new root node
 * Out of the old root nodes children, by matching the move taken from that
node To the last move played by the opposing player.
 */
} else {
 TreeNode oldRootNode = rootNode;

 /* The root node is equal to the child that matches the last move played in
the game. The game knows which move was played because setGame was called
before a move was requested by the engine.
 */
 rootNode = rootNode.getChild(game.getMove(0));

 /* Once the old root node has been discarded, there is no need to store any
of its values or its children in memory. This algorithm iterates over the
entire subtree, setting every child in the subtree of the root node that is not
the new root node to null. */
 oldRootNode.clearParentMemory(rootNode, oldRootNode.getChildren());
}

Once a root node is initialized or selected for re-use, the tree is developed from that root node.

/* If the player wants to make use of time */
if(time > 0) {

 /* Initialize a timer */
 ElapsedTimer t = new ElapsedTimer();

 /* Until that timer has elapsed its predefined limit */
 while(t.elapsed() < time) {

 /* Develop the tree from the root node */
 rootNode.developTree();
 }
}

/* If the player wants to use the amount of iterations/simulations, then
 * just run developtree the amount of times they've determined.
 */
if (iterations > 0) {
 for(int i=0;i<iterations;i++) {
 rootNode.developTree();
 }
}

Once the tree is developed, the highest value node is taken from the children of the root node,

based on the criteria detailed in the configuration.

/* Get the highest value move from the root node, based on the criteria set out
in the config */
move = rootNode.getHighestValueMove();

/* Play the move on the board for this player */
game.play(move);

The opening book moves are updated, and the child of that move is then found so it can be used to

find the subtree for the opponents move later.

/* If the opening book still has moves to play, then add this move to the moves
played and increment the amount of moves taken on the openingBook instance. */
if(openingBook.movesTaken < 15) {
 mostRecentMoves[openingBook.movesTaken] = move;
 openingBook.movesTaken++;
}
/* If re-using the subtree, then the child node of the current root must be
navigated to In order to get the child node of that node once the opponent
takes their move */
TreeNode oldRootNode = rootNode;
rootNode = rootNode.getChild(game.getMove(0));

Finally, the move is returned, and the memory of the parent that is going to be discarded is

removed.

oldRootNode.clearParentMemory(rootNode, oldRootNode.getChildren());
/* Collect all of the parent memory that has been cleared */
System.gc();

/* And return the move to the engine, so it can be converted into GTP */
return move;

Developing the Tree

Tree development is done in four stages [1]. First, the tree navigates to a leaf node, initializing a list

of all visited nodes and adding the root node to the visited list.

/* create a list of all visited nodes to backpropogate later */
List<TreeNode> visited = new LinkedList<TreeNode>();

/* set the current node to this node, and add it to the visited list */
TreeNode cur = this;
visited.add(this);

while (!cur.isLeaf()) {
 /* follow the highest uct value node, and add it to the visited list */
 cur = select(cur.getChildren());
 visited.add(cur);
}

Then, the leaf node is expanded.

/* at the bottom of the tree expand the children for the node, including a pass
move but only if it hasn't been expanded before */
cur.expand();

And if the leaf node was non-terminal, a random child is selected. This is because first play

urgency is being used, meaning that all of the newly expanded nodes will have an equal value.

/* get the best child from the expanded nodes, even if it's just passing */
TreeNode newNode = null;
if(cur.children.size() > 0) {
 newNode = cur.selectRandom();
 visited.add(newNode);
} else {
 newNode = cur;
}

Once a random child node has been selected, the node is simulated.

/* simulate from the node, and get the value from it */
double value = simulate(newNode);

And that value is backpropagated across all visited nodes.

/* backpropogate the values of all visited nodes */
for (TreeNode node : visited) {

 /* type 0 for just uct updating */
 node.updateStats(0, value);

}

Finally, the RAVE statistics are updated for the parents subtree.

/* based on the amaf map of the node that was just simulated */
updateStatsAmaf(newNode.amafMap, cur.getChildren(), value);

[1] The basic tree development algorithm was based on the http://mcts.ai/ algorithm.

http://mcts.ai/

Selection Policy

Nodes are selected across all of the current nodes children. First, the Rave Skip heuristic is

checked. If it hasn’t reached the predefined value, then the value is retrieved normally. If Rave

Skip activates, then rave is disabled before retrieving the uct value.

/* if the amaf skip counter has reached the amount of times to wait until
skipping amaf */
if(raveSkipCounter < nodeRuleSet.raveSkip) {

 /* get the uct value using standard rules */
 uctValue = ucbTracker.ucbValue(this, c);

 /* and increment the counter */
 raveSkipCounter++;

} else if(raveSkipCounter == nodeRuleSet.raveSkip) {

 nodeRuleSet.rave = false;
 uctValue = ucbTracker.ucbValue(this, c);
 nodeRuleSet.rave = true;

 /* and set the counter to 0 */
 raveSkipCounter = 0;
}

Then, if the uct value is larger than the current best value, the current child is selected as the

highest value node and the best value is updated.

/* if the uctvalue is larger than the best value */
if (uctValue > bestValue) {

 /*the selected node is that child */
 selected = c;

 /* and the best value is the current value */
 bestValue = uctValue;

}

The weighting between the MC value and the RAVE value is calculated using the weighting

formula introduced in the theory section.

double weight = Math.sqrt(nodeRuleSet.raveWeight / (tn.nVisits[0] +
nodeRuleSet.raveWeight * tn.nVisits[0] + nodeRuleSet.raveWeight * tn.nVisits[0]
+ nodeRuleSet.raveWeight));

return (weight * calculateUctValue(1, parent, tn)) + ((1 - weight) *

calculateUctValue(0, parent, tn));The UCT values are calculated using the UCB-TUNED

algorithm.

The UCT values for MC and RAVE use the UCB-Tuned algorithm. If this is the node has not been

visited before, then the first play urgency value is returned instead.

private double calculateUctValue(int type, TreeNode parent, TreeNode tn) {

 if(nodeRuleSet.firstPlayUrgency > 0 && tn.nVisits[0] == 0) {
 /* random values added to the end to break random ties */
 return nodeRuleSet.firstPlayUrgency + r.nextDouble() * epsilon;
 }
 double mean = tn.totValue[type] / (tn.nVisits[type] + epsilon);
 return mean + getBonus(tn) * (Math.sqrt((Math.log(parent.nVisits[type]+1)) /
(tn.nVisits[type] + epsilon)) * getVariance(type, mean, parent, tn)) +
r.nextDouble() * epsilon;
}

The variance is calculated using the recorded individual simulation rewards and the mean

calculated earlier.

public double getVariance(int type, double mean, TreeNode parent, TreeNode tn)
{
 double value = 0.25;
 /* estimate of the variance + sqrt(2 log(n) / n)
 * variance computed by subtracting the mean from each value of the reward,
and then getting the mean
 * of those subtracted values squared*/
 double variance = 0;
 if(type==0) {
 for(double result : tn.simulationRewards) {
 variance = variance + Math.sqrt((result - mean));
 }
 } else {
 for(double result : tn.amafRewards) {
 variance = variance + Math.sqrt((result - mean));
 }
 }
 variance = variance / (tn.nVisits[type]);
 variance = variance + Math.sqrt(2*Math.log(parent.nVisits[type]+1) /
tn.nVisits[type]);
 if(variance < value)
 value = variance;
 /* if overall V is less than 0.25, return 0.25 */
 return value;
}

Expansion

For our expansion algorithm, we used the same dynamic tree technique as MoGo [Gel+06] and

Pachi [Bau11]. If the amount of visits is less than a predefined amount, then the nodes aren’t

expanded. This stops expansion of nodes that will never be used. If the node does have enough

visits, all of the empty points on the board are set to a list of positions, and then a move is

attempted in each one. If the move cannot be played, then it is not added as a child.

if(nVisits[0] >= nodeRuleSet.pruneNodes) {

 /* get all of the empty points on the board */
 PositionList emptyPoints = currentGame.board.getEmptyPoints();
 int emptyPointsSize = emptyPoints.size();
 int childrenCounter = 0;

 /* for every empty point on the board */
 for (int i=0; i<emptyPointsSize; i++) {

 /* just try and play on it normally, ensuring the rules of the game are
followed */
 Game normalGame = currentGame.duplicate();
 boolean canPlayNormal = normalGame.play(emptyPoints.get(i));

 /* checking if it is possible to play that point, checking if we're
playing into an eye */
 if(canPlayNormal) {

 /* create a new child for that point */
 TreeNode newChild = new TreeNode(normalGame, emptyPoints.get(i),
raveSkipCounter, playerColor, nodeRuleSet, ucbTracker);

 /* and add it to the current nodes children */
 children.add(newChild);
 childrenCounter++;
 }

 }

Once all of the children have been expanded, it is then decided whether a pass move should be

added to the children. In Go, a pass move should only be used if the game is even and near the end

of the game, so the game can finish. This has been accommodated by checking how many empty

spaces there are left. The pass move is only added if there are very few or there were no other

children.

/* passing isn't something that should be done unless requesting an end to the
game meaning that there is a clear winner, one way or another. with this in
mind, passes are only added to the tree when there are few spaces on the board
left
 */
if(emptyPointsSize <currentGame.getSideSize()*2 || childrenCounter == 0) {
 /* add a pass move as well as playing on every allowable empty point */
 Game passGame = currentGame.duplicate();
 passGame.play(-1);
 TreeNode passChild = new TreeNode(passGame, -1, raveSkipCounter,
playerColor, nodeRuleSet, ucbTracker);
 /* and add it to the current nodes children */
 children.add(passChild);
}

Simulation

The simulation policy is split into two parts. The move selection for the simulation using a

simulation player, and the collection of values. First of all, a simulation player is created using the

rules set out in the configuration. Then, a duplicate of the game is created to play moves on.

/* create a duplicate of the game */
TreeNode simulateNode = tn;
Game simulateGame = simulateNode.currentGame;
SimulateGame duplicateGame = simulateGame.semiPrimitiveCopy();

/* initialize the game using the duplicate */
randomPlayer.startGame(duplicateGame, null);

Then, until the game is over a map of values representing where the simulation player placed

stones is created. This is used in RAVE to determine which children of the subtree should be

updated.

/* until the simulation has finished, play moves */
while(!duplicateGame.isOver()) {

 /* get the move, and play on the board */
 int move = randomPlayer.playMove();

 /* if the move isn't a pass */
 if(move > -1) {

 /* set the last move takens colour on the amaf map */
 tn.amafMap[move] = randomPlayer.game.getNextToPlay().inverse();
 }
}

Finally, the score is determined using Tromp Taylor Rules and translated into binary scoring, with

a 10 point variance used to decide whether or not it is an even game.

/* get the score for the players color, from the perspective of black */
float score = duplicateGame.score(playerColor);
/* if we want the score from the perspective of white */

/* if we are using even scoring, and the scores end similarly */
if(score < 10 && score > -10) {
 return 0.5;
}
/* return 0 for loss, 1 for win */
if(score > 0)
 return 1;
return 0;

The moves chosen in the simulation are in the same fixed-order set out in Fuego, in order to

maximize the possibility that a move will be played that uses our pattern matching algorithm. First

the player checks if it should surrender.

/* get the last move of the game */
int lastMove = game.getMove(0);
/* if the opposing side has more than 30% of the board in captured pieces */
if(simulateMercyRule && movesTaken >= ((game.getSideSize() *
game.getSideSize()) -1) && game.mercy()) {
 /* just end the game */
 return -2;
}

Then, based on a certain set variance, the game attempts to match a pattern around the last move.

if(simulatePatterns && Math.random() > varySimPatterns) {

 /* if the opponents move matches any mogo patterns */

 if (game.matchPattern(lastMove)) {

 /* if it returns true, that means a random mogo pattern was picked and
played, so return that move*/
 return game.getMove(0);
 }
}

This pattern matching is based on the details set out by MoGo [Gel+06]. There are a set of 3x3

patterns that are flipped, rotated, and mirrored. If all of these options fail, then the stones are

swapped. This is the only part of the Game implementation that I changed for my development

process. The algorithm works by creating a series of 3x3 grids based on the positions surrounding

the last move. Then, all of those grids are flipped, rotated and mirrored, then tested to match

against the MoGo patterns. If this doesn’t work, then the MoGo pattern colours are swapped.

public boolean matchPattern(int z) {
 /* Get all of the positions surrounding the current position */
 int[][] surroundingPositions = populateSurroundingPositions(z);
 /* For every surrounding position */
 for(int i=0;i<3;i++) {
 for(int j=0;j<3;j++) {
 /* If that position can be played */
 if(play(surroundingPositions[i][j])) {
 /* Collect all of the grids with each position of the surrounding
positions at the center */
 int[][] patternMatchGrid =
populateSurroundingPositions(surroundingPositions[i][j]);
 /* And create an array of all the pattern types, flipping, rotating,
mirroring */
 int[][][] patternTypes = populatePatternTypes(patternMatchGrid);
 /* For every pattern type */
 for(int k=0;k<patternTypes.length;k++) {
 /* That matches the patterns using a simple loop */
 if(matchesPatterns(patternTypes[k])) {
 /* Return true */
 return true;
 }

 }
 /* If none match, then swap all the pattern colours and try to match the
default option */
 swapPatternColors();
 if(matchesPatterns(patternTypes[0])) {
 swapPatternColors();
 return true;
 }
 swapPatternColors();
 }
 }
 }
 return false;
}

The flips are done using simple loops. These are the same algorithms used in the opening book.

public static int[][] rotate(int[][] grid) {
 int[][] out = new int[grid.length][grid.length];

 for (int i = 0; i < grid.length; ++i) {
 for (int j = 0; j < grid.length; ++j) {
 out[i][j] = grid[grid.length - j - 1][i];
 }
 }

 return out;
}

public static int[][] horizontalFlip(int[][] grid) {
 int[][] out = new int[grid.length][grid.length];
 for (int i = 0; i < grid.length; i++) {
 for (int j = 0; j < grid.length; j++) {
 out[i][grid.length - j - 1] = grid[i][j];
 }
 }
 return out;
}

public static int[][] verticalFlip(int[][] grid) {
 int[][] out = new int[grid.length][grid.length];
 for (int i = 0; i < grid.length; i++) {
 for (int j = 0; j < grid.length; j++) {
 out[grid.length - j - 1][j] = grid[i][j];
 }
 }
 return out;
}

RAVE

Stats are stored as the amount of simulations visiting the node and the amount of reward given to

the node. The individual rewards are recorded in order to inform UCB-Tuned.

/* update the stats for this node */
private void updateStats(int type, double value) {

 /* for the uct value or amaf value, dependent on the type input */
 if(type == 0) {
 simulationRewards.add(value);
 } else {
 amafRewards.add(value);
 }
 if(type == 0) {
 nVisits[1]++;
 }
 nVisits[type]++;
 totValue[type] += value;
}

The method to update amaf stats uses type 1. It works through the subtree recursively, checking if

the move being played matches the one on the amafMap recorded during the most recent

simulation. If it does, then the stats are updated, and if the node that was or was not updated has

children, then those children are updated too.

/* share the updated values across the subtree of the move too */
private void updateStatsAmaf(Color[] amafMap, List<TreeNode> children, double
simulationResult) {

 /* for every child of this node */
 for (TreeNode c : children) {
 Color inverseColor = c.currentGame.getNextToPlay().inverse();
 c.currentGame.getNextToPlay().inverse();
 /* if the move being played for this node matches the move being played
in the simulation */
 if(inverseColor == amafMap[c.currentGame.getMove(0)]) {

 /* update the total value of that node with the simulation result */
 c.updateStats(1, simulationResult);
 }

 /* if there is more subtree to explore */
 if(c.children.size() > 0) {

 /* recursively iterate through the whole subtree */
 updateStatsAmaf(amafMap, c.getChildren(), simulationResult);
 }
 }
}

Experiments
These experiments were conducted using the gogui-twogtp feature, which allows the user to play

two AI’s against each other. All of these experiments are conducted using self-play on the 9x9

board. The win% for black, variance of that result, games, iterations and the type of tree

development are listed in the table. To begin with, we analysed black VS white.

Testing Black win% Variance Games Iterations Time/Iterations

Black VS White 48% 7.10% 100 1000 Iterations

UCB1, SimpleUCB, UCB-Tuned,

Testing Black win% Variance Games Iterations Time/Iterations

ucbVSucbTuned 14% 4.90% 50 1000 Iterations

UCB1vsUCBTunedWeighted1Ex 20% 12.60% 10 1000 Iterations

simpleUCBvsUCB1 0% 0% 10 1000 Iterations

UCT, AMAF, RAVE, MC-RAVE, RAVE Skip

Testing
Black
win% Variance Games Iterations Time/Iterations

UCTvsRAVEcheck 33% 7.30% 42 1000 Iterations

UCTvsWeightedRave 40% 15.50% 10 1600 Time

UCTvsRAVEcheck 33% 7.30% 42 1000 Iterations

1000ravevs1500rave 55% 5% 100 1000 Iterations

noRaveSkipVSraveSkip 44% 7% 50 1000 Iterations

Binary Scoring, Even Scoring

Testing
Black
win% Variance Games Iterations Time/Iterations

binaryVSnonBinary 100% 0% 20 1600 Iterations

noEvenScoringVSevenScoring 30.80% 9.10% 26 1000 Iterations

5EvenScoringVS15EvenScoring 60% 6.90% 50 1000 Iterations

15EvenScoringVS10EvenScoring 44% 7% 50 1000 Iterations

Opening Book

Testing
Black
win% Variance Games Iterations Time/Iterations

OpeningBookVSNoOpeningBook 61% 4.90% 100 1000 Iterations

Exploration Weight

Testing
Black
win% Variance Games Iterations Time/Iterations

noExploreWeightVSExploreWeightUCT 70% 8.40% 30 600 Iterations

exploreWeightVSnoExploreWeight 88% 4.60% 50 1000 Iterations

exploreWeightVSnoExploreWeight 86% 4.90% 50 1000 Iterations

noExploreWeightVSExploreWeight 11.80% 7.80% 17 2300 Iterations

Bonus First Play Urgency, First Play Urgency

Testing
Black
win% Variance Games Iterations Time/Iterations

0.1FPUvs1FPU 28.60% 9.90% 21 1600 Iterations

noFPUVSFPU 0% 0% 35 1600 Iterations

noBonusFPUVSbonusFPU 72% 9% 25 600 Iterations

0.9FPUVS10FPU 54.80% 7.70% 42 1000 Iterations

0.9FPuvs0.8FPU 55% 5% 100 1000 Iterations

Bonus Patterns, Bonus Avoid Eyes

Testing
Black
win% Variance Games Iterations Time/Iterations

5000bonusPatternVS50BP 38.50% 13.50% 13 1600 Iterations

MaxRobust-500VSMaxRobust5000 67.10% 6% 70 1000 Iterations

50PatternVS500Pattern 60% 6.90% 50 1000 Iterations

0VS137Pattern 50% 7.10% 50 1000 Iterations

0PatternVS50Pattern 50% 6.90% 50 1000 Iterations

137PatternVS200pattern 48% 7.10% 50 1000 Iterations

17patternvs50pattern 46% 7% 50 1000 Iterations

Simulate Avoid Eyes, Simulate Patterns, Simulate Mercy Rule

Testing
Black
win% Variance Games Iterations Time/Iterations

simEyesVSnoSimEyes 67.10% 6% 70 1000 Iterations

simPatternsVsnoSimPatterns 60% 6.90% 50 1000 Iterations

simMercyRuleVsnoSimMercyRule 50% 7.10% 50 1000 Iterations

Vary Sim Eyes, Vary Sim Patterns

Testing
Black
win% Variance Games Iterations Time/Iterations

varyEyes0.01VSvaryEyes0.1 34% 6.70% 50 1000 Iterations

0.3VaryVS0.5Vary 58% 4.90% 100 1000 Iterations

0.3VaryVS0.2Vary 42.90% 18.70% 7 1000 Iterations

0.01varyEyesVS0.05varyEyes 44% 5% 100 1000 Iterations

pickRobust, pickMax, pickSecure, pickMaxRobust,

Testing
Black
win% Variance Games Iterations Time/Iterations

MaxMeanVSmostVisited 16.70% 15.20% 6 N/A Iterations

MaxChildVSMaxRobust 26.70% 11.40% 15 1000 Iterations

PolicyVSMaxRobust 13.30% 8.80% 15 1000 Iterations

MostSimulatedVSMaxRobustBoth5k 76.90% 5.80% 52 1000 Iterations

clearMemory, pruneNodes, developPruning,

Testing
Black
win% Variance Games Iterations Time/Iterations

0DynamicTreeVS2DynamicTree 48% 7.50% 37 1000 Iterations

2dynamicVS4dynamic 44% 9.90% 25 1000 Iterations

Future Work
I know that this implementation can compete competitively with just a few more modifications. In

the future I am planning to implement features found in Fuego [Enz+10] in order to compete in

Computer Go tournaments, as well as attempting to integrate some personally observed domain

knowledge. With the release of this work open-source, anyone could develop this project into a

full-fledged commercial software.

Multi-Threading

With multi-threading, Fuego is capable of running 12,000 simulations a second. [Enz+10].

Without multi-threading, my software is capable of running 1000. Once the implementation has

been adjusted so that it fits the multi-threaded architecture, I believe it will become tenfold

stronger.

Simulation Policy

The weakest part of the current software is its simulation policy. Because it does not feature

heuristics for detecting Atari, the simulations do not contain knowledge of how to put opponents

into Atari, or avoid it. This is a massive tactical flaw. Even though this is fairly trivial to implement

compared to the complexity of MoGo patterns, I believe that it will result in a monumental

increase in playing strength. The software should no longer make game-changing tactical errors

based on capturing or self-Atari once this change has been developed.

Pondering

Currently, when the opponent is thinking, the tree rests still. In Fuego [Enz+10] the tree is further

developed while the opponent waits to take their move. I believe that this would greatly increase

my programs playing strength, and I am excited to see the possible results.

Conclusion
The implementation was developed in Java, and tested using a 9x9 board. Even though it is

completely capable of playing at any board size at low-amateur level, without multi-threading time

optimisation or complex domain specific problem solving, the software detailed in this report is

not at the level of commercial software. Through extensive testing and coverage of key modern

MCTS features, this implementation gives researchers the opportunity to use the groundwork here

to develop a competitive application. Before this, a statistical analysis across every feature of an

implementation had not been released to the public. This information should be invaluable for

researchers looking for information on the effectiveness of different MCTS features, or looking to

fine-tune the values for their implementation. Covering the main developments in the leading Go

implementations, this report and implementation lays the groundwork for further developments in

the Java Go world.

References
[Bru93] Bernd Bruegmann. “Gobble: Monte Carlo Go”. 1993. url:

http://www.cgl.ucsf.edu/go/Programs/Gobble.html.

[Bou07] Bouzy, Bruno. "Old-fashioned Computer Go vs Monte-Carlo Go". IEEE Symposium on

Computational Intelligence and Games, April 1–5, 2007, Hilton Hawaiian Village, Honolulu,

Hawaii. url: http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf.

[BH03] Bruno Bouzy and Bernard Helmstetter. “Monte Carlo Go Developments”. In: Advances in

Computer Games conference (ACG-10), Graz 2003. Ed. by Ernst. Kluwer, 2003, pp. 159/174. url:

http://www.math-info.univparis5.fr/~bouzy/publications/bouzy-helmstetter.pdf.

[Bau11] Peter Baudis. “MCTS with Information Sharing”. 2011. url:

http://pasky.or.cz/go/prace.pdf.

[Iee12] Cameron Browne, Member, IEEE, Edward Powley, Member, IEEE, Daniel Whitehouse,

Member, IEEE, Simon Lucas, Senior Member, IEEE, Peter I. Cowling, Member, IEEE, Philipp

Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis and Simon Colton. “A Survey

of Monte Carlo Tree Search Methods”. IEEE Transactions on Computational Intelligence and AI

in Games, Vol 4, No.1, March 2012. url: http://ccg.doc.gold.ac.uk/reports/browne_tciaig12_1.pdf

[LR85] * T. L. Lai and H. Robbins, “Asymptotically Efficient Adaptive Allocation Rules,” Adv.

Appl. Math., vol. 6, pp. 4–22, 1985

[A95] R. Agrawal, “Sample mean based index policies with zero (log n) regret for the multi-armed

bandit problem,” Adv. Appl. Prob., vol. 27, no. 4, pp. 1054–1078, 1995.

[ABF02] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the Multiarmed Bandit

Problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256, 2002.

[KS06] L. Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Proceedings of

ECML, pages 282–293, 2006.

[Rob52] Herbert Robbins. “Some aspects of the sequential design of experiments”. In: Bulletin of

the American Mathematics Society. Vol. 58.1952, pp. 527/535.

[Gel+06] Sylvain Gelly et al. Modification of UCT with Patterns in Monte-Carlo Go. English.

Research Report RR-6062. INRIA, 2006. url: http://hal.inria.fr/inria-00117266/en/.

[Enz+10] Markus Enzenberger et al. “Fuego” An Open-source Framework for Board Games and Go

Engine Based on Monte-Carlo Tree Search?. In: IEEE Transactions on Computational Intelligence

and AI in Games 2:4 (2010), pp. 259/270.

[B0090] Mark Boon. “A Pattern Matcher for Goliath”. In: Computer Go 13 (1990), pp. 12/23.

[Enz96] Markus Enzenberger. The Integration of A Priori Knowledge into a Go Playing Neural

Network. 1996. url: http://webdocs.cs.ualberta.ca/~emarkus/neurogo/neurogo1996.html.

[Wol07] Thomas Wolf. “Two Applications of a Life & Death Problem Solver in Go”. In: Journal of

ÖGAI 26 (2 2007), pp. 11/18.

[KS06] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Planning”. In: Machine

Learning: ECML 2006. Ed. by Johannes Fürn-kranz, Tobias Sche”er, and Myra Spiliopoulou. Vol.

http://www.cgl.ucsf.edu/go/Programs/Gobble.html
http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf
http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf
http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf
http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf
http://www.math-info.univparis5.fr/~bouzy/publications/bouzy-helmstetter.pdf
http://pasky.or.cz/go/prace.pdf
http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf
http://hal.inria.fr/inria-00117266/en/
http://webdocs.cs.ualberta.ca/~emarkus/neurogo/neurogo1996.html

4212. Lecture Notes in Computer Science. 10.1007/11871842.29. Springer Berlin / Heidelberg,

2006, pp. 282/293.

