
 1

A comparison of Chess and Go.

http://spectrum.ieee.org/comp

uting/software/cracking-

go/chess-vs-go

Initial Plan Monte-Carlo Tree Search for Go

Project Description

This project is about the implementation of a computer player for the board game Go using Monte-

Carlo Tree Search (MCTS). Go is a game in which two players take turns putting black and white

stones on the intersections of a grid of lines to surround areas.

In Artificial Intelligence, games like Chess have had success using a search-and-evaluate approach

called Minimax. These kinds of techniques increase in complexity according to the number of

children for each node of the search tree, called the branching factor. For chess, that factor is

roughly 40, and a typical chess game lasts for about 50 moves. In Go, the branching factor can be

more than 250, and a game goes on for about 350 moves. The amount of options in Go quickly

becomes too much for a standard search algorithm, making it difficult for a program to defeat even

an amateur with this approach. [1]

There are many proposed solutions for Go, and the one with the greatest success is Monte-Carlo

Tree Search (MCTS). Instead of determining the best choice through the use of a decision-making

heuristic, MCTS uses probabilities and randomly played out games to decide which move has the

highest chance of resulting in a win. With this technique, computer players for Go are reaching

ever higher ranks. In March 2014, a system called Crazy Stone defeated Norimoto Yoda, a

professional Go player. [2]

This project will research the variants and performance of MCTS for Go, and provide an

implementation of one of those variants. This will give an understanding of the MCTS algorithm,

and the opportunity to evaluate the performance of a chosen variation of MCTS. The

implementation will have its runtime measured and compared with other variants, and will have

its rank determined playing against Go players. This will allow the quality of the implementation to

be determined and the effect different design decisions can have, giving the implementation and

its analysis a place in the field of MCTS Go research.

 [1] http://spectrum.ieee.org/robotics/artificial-intelligence/ais-have-mastered-chess-will-go-be-

next

[2] http://remi.coulom.free.fr/CrazyStone/

Author: Thomas Ager

Supervisor: Steven Schockaert

Moderator: Unassigned

Module Number: CM3203

Module Title: Individual Project

Credits Due: 40

http://spectrum.ieee.org/computing/software/cracking-go/chess-vs-go
http://spectrum.ieee.org/computing/software/cracking-go/chess-vs-go
http://spectrum.ieee.org/computing/software/cracking-go/chess-vs-go
http://spectrum.ieee.org/robotics/artificial-intelligence/ais-have-mastered-chess-will-go-be-next
http://spectrum.ieee.org/robotics/artificial-intelligence/ais-have-mastered-chess-will-go-be-next
http://remi.coulom.free.fr/CrazyStone/

 2

Project Aims and Objectives

Core Components

Background

 Compare the functionality, advantages, disadvantages and performance of the Monte-Carlo

algorithm compared to other proposed solutions in Go.

 Compare the functionality, advantages, disadvantages and performance of different variants

of Monte-Carlo in Go.

 Choose a variant of Monte-Carlo to implement for the solution.

Approach to Implementation

 Choose the language and Go GUI for the implementation.

 Research the functionality, advantages, disadvantages and performance of different data

structures in the context of MCTS for Go.

Implementation

 Create pseudocode for the chosen Monte-Carlo variant.

 Implement the computer player for Go.

Analysis

 Analyse the performance of the implementation in millisecond time and Go rank.

Conclusion and Reflection

 Critically appraise the results of the analysis of the implementation compared to the

performance of other solutions proposed for Go.

Optional Objectives

Implementation

 Implement different variants of the algorithm.

Analysis

 Analyse the performance of different variants of the algorithm in millisecond time and Go

rank.

Conclusion and Reflection

 Critically appraise the results of the analysis of the implementation variants compared to

each other and other solutions proposed for Go.

 3

3 Work Plan

 02/02/2015 09/02/2015 16/02/2015 23/02/2015 02/03/2015 09/03/2015 16/03/2015 23/03/2015 30/03/2015 06/04/2015 13/04/2015 20/04/2015

Background

Approach

Implementation

Extra features

Analysis

Conclusion

Review

Hand-In

Meet Supervisor

Review Progress

