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Abstract

This Final Year Report documents the work that has been completed to develop a proof-of-
concept system capable of recognising and measuring human emotion whilst viewing web-based
media. This involves using a facial capture system, to obtain a set of key facial features, and
to then apply a machine learning approach to these features to recognise particular emotions.
Emotion recognition has received a lot of attention with many potential applications in areas
such as healthcare, marketing, and social computing. The main focus of the project was to
apply this technology to a mobile device, and to develop general-purpose tools to conduct
emotion experiments. These tools were then validated through conducting an experiment
to further understand how humans respond to different types of web-based media such as
YouTube videos, Tweets, and web pages.

The developed system involves an iOS application capable of displaying different types of
web-based media, performing facial capture using the mobile device’s camera, and applying an
emotion classifier to the obtained data. This application is supported by 2 web applications and
APIs developed to set up emotion experiments and to analyse the results. A significant amount
of time has also been spent researching and developing Support Vector Machine classifiers
capable of accurate and robust classification of the emotions Anger, Contempt, Disgust, Fear,
Happiness, Natural, Sadness, and Surprise.

The report details the purpose, approach, and implementation details for each of the
system’s components, with relevant theory explained where necessary. Evaluations of the
system have been made against a set of user requirements, as well as through analysing the
results from the validation experiment carried out with 16 participants.

Finally, the report concludes with analysis of the current state of the solution, with
suggestions for potential future improvements and functionality, along with personal reflections
and learning points from the project.

2



Acknowledgements

The success of this project has been underpinned by the work completed for the CUROP project
"Facial Expression Analysis on a Smartphone" during Summer 2015. As such, I would like to
thank Hristo Georgiev and Abhijat Biswas for their contributions to this project, and for all
those at Cardiff University who provided me with the opportunity of undertaking the project.

I am very grateful to all those who gave up their time and participated in my experiment.
The data and qualitative feedback gained during this process was invaluable.

Throughout the project, I have been lucky enough to receive advice and guidance on my
project from PhD students within the School of Computer Science & Informatics, Cardiff
University. Specifically, I would like to thank Beryl Noë, Nyala Noe, and Liam Turner for their
support. I would also like to thank Professor Roger Whitaker for providing knowledge and ideas
that helped to shape the project.

Finally, I would like to express my gratitude to my supervisor, Professor David Marshall, for
his encouragement and support throughout this project, and throughout my time at University.

3



Contents

List of Figures 7

List of Tables 9

1 Introduction 10
1.1 Aims of project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Intended Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 14
2.1 Face tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Active Shape Models . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 FaceTracker Library . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Emotion Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Emotion databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 IntraFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 EmoVu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Other work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Developed System 25
3.1 An API-centric web application capable of creating experiments and viewing

experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 An API for accessing/modifying experiment related data . . . . . . . . . . 26
3.3 An iOS application capable of performing these emotion classification

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Emotion classifiers to measure different emotions . . . . . . . . . . . . . . . 28

4



4 Specification & Design 29
4.1 System design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 User requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Emotion experiment creation tool design . . . . . . . . . . . . . . . 31
4.2.2 Emotion experiment capture tool design . . . . . . . . . . . . . . . 32
4.2.3 Emotion experiment results tool design . . . . . . . . . . . . . . . . 34

4.3 API design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Experiment API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Result API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 User interface design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Implementation 39
5.1 Tools used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Emotion experiment creation tool - Tools . . . . . . . . . . . . . . . 39
5.1.2 Emotion experiment capture tool - Tools . . . . . . . . . . . . . . . 40
5.1.3 Emotion experiment results tool - Tools . . . . . . . . . . . . . . . 41
5.1.4 Emotion classifier - Tools . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Emotion experiment creation tool . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 MEAN stack setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Experiment API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Experiment creation web application . . . . . . . . . . . . . . . . . 44

5.3 Emotion experiment capture tool . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.1 Application interface . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Obtaining experiment information . . . . . . . . . . . . . . . . . . . 47
5.3.3 Loading experiment items . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.4 Face tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.5 Emotion classification . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.6 Recording experiment participants . . . . . . . . . . . . . . . . . . 53

5.4 Emotion experiment results tool . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.1 Result API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.2 Experiment results web application . . . . . . . . . . . . . . . . . . 56

5.5 Emotion classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.1 Obtaining features . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . 60
5.5.3 SVM training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Results and Evaluation 63
6.1 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.2 Experiment execution . . . . . . . . . . . . . . . . . . . . . . . . . 64

5



6.1.3 Experiment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Further emotion classifier work . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Experiment simulation . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Multi-class classifier with distributed training data . . . . . . . . . 72
6.2.3 Database specific multi-class classifiers . . . . . . . . . . . . . . . . 73
6.2.4 Multi-class classifier with a subset of emotion databases . . . . . . . 74

6.3 Requirements evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusions 80

8 Future Work 82
8.1 Emotion classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2 Results API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.3 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.4 Analysing/visualising experiment results . . . . . . . . . . . . . . . . . . . 84
8.5 Emotion experiment capture tool . . . . . . . . . . . . . . . . . . . . . . . 85

9 Reflection and Learning 87
9.1 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 91

6



List of Figures

2.1 A set of labelled facial landmarks that represent a human face . . . . . . . . . 14
2.2 Root-mean-squared (RMS) errors between ground truth landmarks and result-

ing fit from various face tracking methods over 5000 frames [9] . . . . . . . . . 17
2.3 Comparison of the IntraFace [28] and CUROP iOS apps [7] when expressing

Surprise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Screenshot of the web-based EmoVu demo [27] . . . . . . . . . . . . . . . . . . 23

3.1 Screenshots of the developed experiment creation web application . . . . . . . 25
3.2 Screenshots of the developed experiment results web application . . . . . . . . 26
3.3 Screenshot of an Experiment API GET request . . . . . . . . . . . . . . . . . 27
3.4 Screenshot of a Result API GET request . . . . . . . . . . . . . . . . . . . . . 27
3.5 Screenshots from the iOS application used to conduct emotion classification

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Abstract flow chart for the experiment process . . . . . . . . . . . . . . . . . . 29
4.2 Sitemap design for the experiment creation web application . . . . . . . . . . 32
4.3 Abstract flowchart of the main tasks involved in an experiment on the iOS

application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Sitemap design for the experiment results web application . . . . . . . . . . . 34
4.5 Abstract data model for an Experiment . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Abstract data model for a Result . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 UI mockup for the emotion capture iOS application . . . . . . . . . . . . . . . 37

5.1 AngularJS form developed to facilitate experiment creation . . . . . . . . . . . 45
5.2 XCode Storyboard for the experiment iOS application . . . . . . . . . . . . . 47
5.3 Experiment interval screen displayed before each experiment item . . . . . . . 51
5.4 Memory allocations instrument recordings from iOS Instruments development

tool whilst viewing experiment items . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Cross-validation plot for the emotion classifier used in experiments . . . . . . . 62

7



6.1 Average emotion measurements for BBC News experiment item . . . . . . . . 66
6.2 Average emotion measurements for ’DadJokes’ Twitter feed experiment item . 67
6.3 Average emotion measurements for Guinness World Record YouTube video

experiment item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Average emotion measurements for Tweet experiment item . . . . . . . . . . . 68
6.5 Comparison of average emotion measurement results for participants viewing a

cute animals Twitter item. Results are from the original classifier used in the
validation experiment (left) and a classifier with distributed training data (right) 73

6.6 Comparison of average emotion measurement results for participants viewing a
news blooper item. Results are from the original classifier used in the validation
experiment (left) and a classifier with no GEMEP-FERA [25] training data
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.7 Experiment participant videos available through File Sharing in iTunes . . . . 77
6.8 Examples of the different types of content supported by the experiment iOS app 78

8



List of Tables

2.1 Distribution of emotion-labelled images used to build emotion classifier . . . . 21

5.1 Mapping of Implementation sections to source code archives and GitHub
repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Experiment API routes using CRUD model . . . . . . . . . . . . . . . . . . . 43

6.1 Details of experiment content used in the validation experiment . . . . . . . . 63
6.2 Cross-validation results of database-specific emotion classifiers . . . . . . . . . 74

9



Chapter 1

Introduction

Every day, we view different types of web-based media such as Tweets, online videos, and
articles. Each of these types of media can produce a different emotional response such as
happiness, anger, or surprise. Automatic classification of these responses has received a lot of
attention in the image and video analysis communities, as well as in social computing. For
example, AI researchers at Carnegie Mellon University’s Human Sensing Laboratory recently
released work on new emotion detection techniques [1]. Microsoft’s Project Oxford has also
recently released new vision APIs for emotion detection in images [2]. This existing work has
focused on methods of detecting emotion, whereas this project is more about applying this
technology to a real-time application on a mobile device.

1.1 Aims of project

The main aim of this project is to develop a proof of concept system that allows emotion
classification experiments to be conducted using a mobile device. Within the scope of this
project, an emotion classification experiment involves a participant viewing a small number of
web-based media items such as YouTube Videos, Tweets, or websites, whilst their emotional
response is captured in the background via a mobile device’s camera. To validate this aim,
an experiment with a small number of participants will be designed and executed using the
developed system.

The system will be designed in components that will provide general tools for emotion
classification. The main objectives to meet the aims of the project, as outlined in the initial
plan [3], are:

• To develop an API for accessing/modifying experiment related data

• To develop an API-centric web application capable of creating experiments and viewing
experiment results
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• To develop an iOS application capable of performing these emotion classification experi-
ments

• To further develop emotion classifiers to measure different emotions

To provide context, a high-level summary of the work completed for each of these objectives is
provided within the Developed System chapter (Page 25).

1.2 Intended Audience

Emotional classification has potential impact in areas such as healthcare, marketing, and social
computing. Some example scenarios of how the technology could be used in these areas include:

• Healthcare - Monitoring conditions including depression or anxiety based on facial
expressions of patients. This technology is already starting to be used to help children
with autism to recognise and express emotions through a Samsung developed Android
application [4].

• Marketing - Gaining insight into consumers through facial reactions to advertisements.
Companies including Unilever, PepsiCo [5], and Bentley [6] are already using emotion
recognition technology to better understand their customers.

• Social - Integrating the technology into social media/dating/video conferencing applica-
tions to help users read the facial expressions of those they are interacting with.

This project should particularly help to understand how feasible emotion classification is on a
mobile device, and may start to provide insight into how users respond to different types of
content. With further development, it is possible that this project could contribute to future
research in the University.

1.3 Approach

The approach taken for this project involves working through 3 main stages:

1. Research stage - Researching the existing work that has been completed in this area, and
sourcing information required for the development stage such as the tool/libraries to use
and available emotion databases for emotion classifier training.

2. Development stage - Developing the main components that will make up the system
including the API, web applications, and iOS application. It will also involve the
development of an emotion classifier.
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3. Validation stage - Validating the developed system through designing, conducting, and
analysing a series of user experiments, with guidance from Professor Roger Whittaker
and PhD Students in the School of Computer Science & Informatics.

There may be some overlap between these stages, such as when technical research is required
during development, or when validation is required of an early version of the system. When
working on a particular stage, different pieces of work will be carried out in parallel to help to
avoid any problems or delays that may have an impact on the delivery of the project.

1.4 Assumptions

Some assumptions have been made in the project to make it feasible to deliver a proof-of-
concept system in the allocated timeframe. The main assumptions are related to the conditions
that an emotion classification experiment will be carried out in:

• Adequate lighting - An experiment should be carried out in a location that is well-lit so
that individual facial features can be detected by a face tracker. Methods of trying to
cope with different lighting conditions such as histogram equalisation will be considered,
but these methods will only have a limited effect.

• Pose constraints - An experiment participant should be facing the mobile device’s camera
directly. Pose estimation methods have not been considered for the face tracker, and the
experiment results may be inaccurate if the experiment is completed using another pose.

• Device position - In addition to the pose constraints, an experiment participant should
hold/mount the mobile device at a sufficient distance so that their full face is visible by
the device’s camera.

• Device platform - The device used in the experiment will run the iOS platform. Attempting
to build an application for multiple platforms in the allocated time would be infeasible.
This platform was chosen based on knowledge of the platform and existing work that
has been completed.

• Internet access - The system’s components communicate with each other using an API.
Some form of Internet access such as 3G/WiFi, will be required when completing an
experiment to retrieve experiment information, to load web-based content, and to send
experiment results back to the API.

It is also assumed that part of the project will be based on work completed during a CUROP
project undertaken in Summer 2015 [7]. The CUROP project also had face tracking and
emotion classification components, built for the iOS platform. Specifically, the code used to set
up and interface with a face tracking library will be used. Also, the emotion classifier developed
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in the CUROP project will initially be used to test the system, until a new emotion classifier is
developed in the latter stages of the project. This classifier will also act as a benchmark when
completing further emotion classifier work.
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Chapter 2

Background

Within the project, there are two key technologies that drive the emotion classification system
- a face tracker and an emotion classifier. Face tracking involves detecting and tracking a
set of points of the face. Emotion classification involves using these points, to understand
someone’s current facial expression, and to use that knowledge to give a set predictions of how
likely particular emotions are being expressed. This chapter outlines both of these technologies,
including their role in the project, with details provided for why particular decisions were made
when using these technologies. It also provides an overview of some of the existing solutions in
the current research field related to the project.

2.1 Face tracking

The basis of the emotion recognition in this project is to use facial expressions to give an
indication of a person’s emotions. In order to know a person’s facial expression, a set of key
facial landmarks (Fig. 2.1) such as points around the mouth, and jaw, need to be detected
and tracked in real time.

Figure 2.1: A set of labelled facial landmarks that represent a human face
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As this tracker will be used for a real-time application on a mobile device, there are some
requirements for the face tracker. Firstly, the tracker needs to provide access to the raw facial
landmark data in order to calculate features for the emotion classifier. Secondly, for the tracker
to be capable of running on a mobile device. It will need to be lightweight in terms of memory
and CPU requirements, especially as there will be other tasks running on the iOS app that will
be using resources such as streaming web-based content and performing emotion classification.
Finally, the tracker will need to be reliable to detect changes in movement. This is particularly
important in emotion classification as changes in facial expressions can often involve only subtle
facial changes.

There are various approaches that can be taken to track faces. Two approaches that are
often considered with this type of research are using an Active Appearance Model (AAM)
or using an Active Shape Model (ASM). They both involve trying to fit known statistical
models that represent an object such as a face, to an unseen example of the object i.e. an
image containing a face. Previous work in the School has found that ASM provides faster and
more accurate tracking over AAM, whilst meeting the other outlined tracker requirements [8].
Therefore, an ASM approach will be used in the project for face tracking.

2.1.1 Active Shape Models

An Active Shape Model (ASM) will be used in the project in order to detect and track a
participant’s face during an experiment. An ASM is a statistical model of the shapes of an
object i.e. a face, which iteratively deforms to fit an example of the object in a new image
[11]. The shapes within the model are constrained by a Point Distribution Model (PDM).
A PDM is used for describing features that have a general shape but are not rigid and are
subject to variation. The PDM is built through a training process that involves looking at
normalised images, and performing Principal Component Analysis on the facial landmarks
within the images. This results in a statistical model that provides the range of variation for
each facial landmark to constrain the approximations made by the ASM [12].

The general process of applying an ASM representing a face, to a new image, involves
alternating between the following steps:

• Generate a suggested face by looking in the image around each facial landmark for a
better position for the landmark. This normally involves looking for strong edges or
calculating distance measures.

• Conform the suggested face to the PDM.

This process is repeated until the improvements made from changing facial landmark positions
becomes negligible.
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The main disadvantage when considering the use of an ASM is the complexity involved in
building the underlying statistical model. An ASM is heavily dependent on the training data
it is provided with, and it will struggle to recognise any variation not found in the training
data. Due to the limited time in the project, a pre-built ASM face tracker will be used - the
FaceTracker library, authored by Jason Saragih and maintained by Kyle McDonald [10]. This
library has already been trained on more than 750,000 varied faces using the CMU Multi-PIE
Face Database [13], which significantly reduces the dependence on training data.

2.1.2 FaceTracker Library

The specific implementation of ASM face tracking that has been chosen for this project is the
FaceTracker Library, developed originally by Jason Saragih. The library is written in C++, and
provides deformable tracking of 66 facial landmarks. One of the major reasons for choosing
this library is that it is open-source. All of the tracking data is accessible from the code, and
the library can easily be built for multiple platforms such as iOS/Desktop. The face tracker will
be integrated into the iOS application component of the system, to obtain the test features
required to complete emotion classification. The face tracker will also be needed for the
Desktop environment during the emotion classifier training process, to extract training features
from training data.

Another reason for choosing this library is it is robust. An emotion classification experiment
will involve viewing multiple items of varying durations, with the face tracker needing to work
well for the duration of the experiment. The FaceTracker library is suitable for this application
as it is capable of performing well over time and is able to recover well from any failed attempts
of tracking through automatically resetting the ASM process. When the library was originally
developed, analysis was carried out against other face tracking methods. The results found
that FaceTracker library (shown in pink in Fig. 2.2) had the best performance in terms of
ability to recover from failures, and overall tracking success.

A potential drawback of using this particular ASM implementation is that the library uses
constraints and relationships between certain facial landmarks in order to improve tracking
speed. This is particularly noticeable with the facial landmarks that make up the mouth where
subtle changes in facial expression, such as moving one corner of the mouth are not detected.
Although this limits the accuracy of data that can be detected, the improvements in speed will
allow the library to work well on a mobile platform.
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Figure 2.2: Root-mean-squared (RMS) errors between ground truth landmarks and
resulting fit from various face tracking methods over 5000 frames [9]

Provided with the library is a pre-trained generalised ASM model. As mentioned in the
ASM overview (Page 16), this means that time will be saved through not having to train a
new model. However, the provided model is not modifiable, and so there no possibility of
trying to complete further training with new faces to personalise the model to an experiment
participant. As the model has been trained on a large database of varied faces, the general
model should still be able to recognise most faces that it will encounter. Whilst there has
been recent research into using a personalised approach to SVMs [1], this approach will not be
considered in this project. Comparing the general approach taken to a personalised approach
could be possible future work for this project.

2.2 Emotion Classification

In the scope of this project, emotion classification involves using data from the facial tracker
component of the system to obtain probabilistic predictions of how likely particular emotions
are being expressed at a given time. One of the main decisions for the project, was deciding
which emotions the proof-of-concept system would support. Within Psychology, there are
various theories that are used to describe the basic/core emotions. After reviewing existing
work in this area, the following emotions have been considered:

• Anger

• Contempt

• Disgust

• Fear

• Happiness

• Natural
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• Sadness

• Surprise

This list is made up of the 6 basic emotions stated in Ekman’s original List of Basic Emotions
[14], as well as the addition of ’Contempt’, that was added to the list by Ekman in 1990 [15].
Whilst other emotions appeared in the list in 1990, and are involved in other theories, it is not
always possible to encode these emotions via facial expressions. Existing work, particularly
databases of emotion-labelled images, have already used this set or a subset of these emotions.
’Natural’ has also been considered in the system as this emotion is often available in emotion
databases as the individuals who are recorded for this work will start from a neutral expression.
Existing work in emotion recognition, particularly emotion image databases, have already
used this set or a subset of these emotions. Using this set of emotions will make the work
more compatible with existing work in this area, and it will make it easier to source training data.

In order to achieve these predictions, the approach that will be taken will involve calculating
a series of distance measures from the facial landmarks provided by the face tracker. These
distance measures will indicate the expression the face currently has. There are 86 distance
measures in total:

• 17 measures from the jaw points to the centre of the nose

• 5 measures from the left eyebrow points to the centre of the right eye

• 5 measures from the right eyebrow points to the centre of the right eye

• 5 measures from the nose bridge points to the centre of the nose

• 6 measures from the left eye points to the centre of the left eye

• 6 measures from the right eye points to the centre of the right eye

• 18 measures from the mouth points to the centre of the nose

• 9 measures from the mouth points to the centre of the mouth

• 5 measures from the left eyebrow points to the right eyebrow points

• 5 measures from the left eyebrow points to the centre of the nose

• 5 measures from the right eyebrow points to the centre of the nose

These distances are loosely based on the Facial Action Coding System (FACS) [16]. FACS
is a system that encodes different human facial movements such as raising the eyebrows, or
stretching the lips into Action Codes. A combination of these coded movements can be used
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to code any facial expression [17].

This is just one possible approach for classifying emotion. Another possible approach for
emotion recognition is Eigenface based recognition. This involves applying Principal Component
Analysis to a set of face images in order to extract a set of eigenface images. The weights of
these output images can then be used for emotion recognition in unseen images [18]. There
is also the Artificial Intelligence approach to emotion recognition that involves deep learning.
This approach is briefly discussed during the analysis of existing solutions (Page 22).

2.2.1 Support Vector Machines

The algorithm that has been used for emotion classification in the project is a Support Vector
Machine (SVM). An SVM is a popular classification method that finds a linear separating
hyperplane between classes. This is achieved through mapping the training features into a
higher dimension space to find the hyperplane with the maximal margin, using a kernel function
[19]. For this emotion classification task, the classes will be 8 emotions (Page 17). The
features used by the classifier will be made up of the outlined distance measures calculated
from tracked facial landmarks (Fig. 2.1). In order to normalise all of these measures for the
classifier, the measures are normalised through dividing by the distance between the eyes. This
distance was chosen as it remains the same when different facial expressions are expressed. It
is necessary to normalise the features as there will be a lot variety in the training data across
different databases, as well as in the test data. Other distance measure combinations have
been previously considered during the CUROP project [7], but when the different feature sets
were compared during SVM training, this feature set provided the best accuracy.

The main drawback of using an SVM is like many classifiers, they can be quite sensitive
to the training data, and there may be biases towards particular classes. It will therefore be
important to use a large enough set of training data for each emotion. Another drawback of
using an SVM is that there is still a large amount of research taking place for the optimal
design of multi-class classifiers that achieve acceptable results. One of the reasons for choosing
the LIBSVM machine learning library [20] to complete the SVM classification is because it has
multi-class classification support, amongst other reasons.

LIBSVM

The LIBSVM machine learning library [20] has been used in the project to build a SVM classifier
and to test it on unseen data, i.e., the detected facial landmarks of an experiment participant.
As mentioned, one of the main reasons for choosing this library is its support for multi-class
classification. This means that predictions for the 8 emotions can be achieved through a single
classifier, as opposed to having 8 individual classifiers. LIBSVM uses a voting strategy to
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achieve this. There are other approaches to multi-class classification but these are beyond the
scope of this project.

Another reason for choosing this library is that it is open source. Like with the face tracker,
one of the key requirements for the classifier library is access to the data it produces. By
having access to the source code of the library, all of the result data can be extracted, and
wrappers can be written as necessary for different applications i.e. predicting emotion on the
iOS application/training an emoton classifier on the Desktop. The exact process used to build
the emotion classifier using LIBSVM will be covered in the Implementation section (Page 61).

2.2.2 Emotion databases

In order to accurately recognise emotion, the SVM requires sufficient training data. The
training data required is images of human faces with different facial expressions that have
been manually labelled to indicate the emotion being expressed. Before this project began, an
emotion classifier was built with 2 databases:

• Extended Cohne-Kanade Dataset (CK+). This database contains 486 short video
sequences from 97 individuals, with validated sequence-based emotion labels [21].

• Karolinska Directed Emotional Faces (KDEF). This database contains approximately 4900
images, from 70 individuals expressing 7 different emotions, photographed at different
camera angles [22].

Both of these databases were originally developed for psychological and medical research
purposes. More specifically, the content of these databases was designed to be particularly
suitable for human emotion experiments such as the ones that this project aims to conduct
[22]. Both databases contained a large volume of data to train a classifier with. This was
important to have sufficient examples of each emotion being expressed. There was also variation
amongst the faces that featured in the databases, such as differences in gender, age, and race.
This was important to represent the possible variations that may be found on unseen faces.
Unfortunately, this classifier had biases towards particular emotions, and struggled with certain
faces. To rebuild a more accurate and robust classifier, more training data was needed.

With help from my supervisor, an additional 3 databases were sourced and used to build a
new emotion classifier for this project:

• The Japanese Female Facial Expression (JAFFE) Database. This database contains 213
images, from 10 individuals expressing 7 different emotions to various degrees [23].
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• Radboud Faces Database (RaFD). This database contains approximately 8000 images,
from 67 individuals expressing 8 different emotions, with different gaze directions and
camera angles [24].

• GEneva Multimodal Emotion Portrayals - Facial Expression Recognition and Analysis
challenge dataset (GEMEP-FERA). This database contains 242 short video sequences
from 7 individuals, with validated sequence-based emotion labels [25].

These databases were also chosen based on the volume of data they contained, as well as the
variety of faces that featured in the databases. The databases were also chosen based on the
ease and cost of obtaining the data. All of the databases were available for free for research
purposes, and were downloaded from the database websites. Whilst there were other emotion
databases available, they often had a cost and/or involved waiting for them to be physically
delivered. For example, although the CMU Multi-PIE Face Database [13] contains more than
750,000 images, to obtain it, it would have cost $350 and it would have had to have been
physically sent on a hard-drive. Sourcing this database would have likely caused a delay to the
project’s timeline and meant that less classifier work could have been completed.

Due to the face tracker library used in the project, only images/videos taken of individuals
from a frontal view could be used. Table 2.1 shows the distribution of the training data:

CK+ KDEF JAFFE RAFD GEMEP-FERA Total
Angry 90 280 60 402 994 1826
Contempt 36 0 0 402 0 438
Disgust 118 280 58 0 0 456
Fear 50 280 64 402 1024 1820
Happiness 138 280 62 402 1128 2010
Natural 0 280 60 402 0 742
Sadness 56 280 62 402 1474 2274
Surprise 166 280 60 402 0 908
Total 654 1960 426 2814 4620 10474

Table 2.1: Distribution of emotion-labelled images used to build emotion classifier

This distribution shows that there is a significant difference in the data available between
emotions. There are 2274 images labelled with ’Sadness’, whereas there are only 438 for
’Contempt’ and 456 for ’Disgust’. Ideally, there would be more of a normal distribution to this
data, but the emotion databases do not always feature all the emotions the system will support.
This will need to be kept in mind when conducting experiments and analysing the results.
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2.3 Existing solutions

As mentioned in the Introduction (Page 10), emotion classification is a very popular research
area, that has the potential to be applied to many different applications. As a result, there are
many existing projects that are completing similar work to what is being done in this project.
Two particular projects, IntraFace and EmoVu, stood out whilst researching existing solutions,
as the work in these projects aligns the most with this project’s objectives. Other notable work
in this area will also be briely discussed.

2.3.1 IntraFace

IntraFace is a software package developed by researchers from Carnegie Mellon University
and the University of Pittsburgh. They have recently released software with face tracking,
pose estimation, and expression functionalities, as well as releasing an application on the iOS
App Store to showcase the expression functionality [28]. The main focus of their work has
been on developing the approach used to complete emotion classification. IntraFace also
uses an SVM, but rather than using a general SVM, they use a personalised approach. This
works through simultaneously learning an emotion classifier whilst reweighting the training
data that is most relevant to the unseen face [1]. This is a different focus to this project,
which is more concerned with the applications of using this kind of technology on a mobile device.

To analyse the IntraFace expression functionality, the IntraFace iOS application was com-
pared to the emotion classification iOS application developed for the CUROP project [7], which
uses a very similar approach to this project. When expressing emotions common to both
applications such as ’Surprise’, there did not seem to be a significant difference in measurement
between the applications (Fig. 2.3).

Figure 2.3: Comparison of the IntraFace [28] and CUROP iOS apps [7] when expressing
Surprise
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However, the IntraFace application only shows the strongest emotion measurement to the
user, as a coloured bar, so it is difficult to know how good the measurements are. This lack
of data means it is difficult to compare the two approaches practically. On 30 March 2016,
the underlying software used in the IntraFace iOS application became available for public use.
Unfortunately, this was too late in the project timeline to use, but it has been noted as a
potential piece of future work to conduct more tests and comparisons on both these approaches.

2.3.2 EmoVu

EmoVu is commercial emotion recognition software developed by the Artificial Intelligence
company Eyeris. They offer a C++ mobile SDK designed to be used in third-party applications
to obtain information on a user’s emotions as well as other demographic information such as
age group and gender. Whilst there was not enough time in the project to test this Mobile
SDK, a web-based demo that has the same kinds of functionality was available to test (Fig.
2.4) as well as reviewing their published documentation and research [26].

Figure 2.4: Screenshot of the web-based EmoVu demo [27]

The web demo was fairly impressive, with metrics such as engagement and expressiveness
available based on the emotion measurements [26]. It is important to note that this demo was
completed on a fairly powerful Desktop PC. Without trialling the Mobile SDK, it is difficult to
know if such results could be achieved using a mobile device’s camera. As the system developed
in this project has been designed to be modular, there is scope in the future to trial this SDK
with the other tools developed in this project. It is unclear on if there would be any cost or
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limitations to using this SDK for research use.

Another key difference between EmoVu and this project is the approach taken to complete
emotion classification. As EmoVu is an Artificial Intelligence company, they have used a deep
learning approach to develop this software, compared to the SVM approach used in this project.
Whilst deep learning has received a lot of attention in the Computer Vision community and
would have been an interesting approach, it would have required significantly more data than
what could have realistically been sourced and used in the 12 weeks of the project.

2.3.3 Other work

Aside from Intraface [1], and Emovu [26], there are many other examples of work in the current
research field that align with this project. Whilst discussing them all is beyond the remit of this
report, there are some notable pieces of work to be aware of that have informed this project to
some extent.

One of these notable projects is Microsoft Cognitive Services, also known as Project Oxford
by Microsoft [2]. They use an Artificial Intelligence approach similar to EmoVu, and have
released many Vision APIs for Face [29], Emotion [30], and general Computer Vision tasks [31].
Whilst their Emotion API was available during the project, it currently focuses on support for
the Windows platform, which would make it difficult to use in or test this project without a
significant amount of extra development work. This work is notable because of the publicity
it has gained for emotion recognition in general. Microsoft released a web-based tool to the
public that provided emotion scores for images uploaded to their site [32]. The tool became
’viral’, and it highlighted some potential use cases for emotion recognition technology.

Another notable project is Affectiva [33]. This is commercial software that has similar
functionalities and approach as EmoVu. What is particularly notable about the project is the
volume of emotion data they have collected and use in their software. Their website claims to
have the world’s largest emotion data repository, with nearly 4 million faces analysed, from
more than 75 countries. This work informed this project by highlighting the importance of
having a large volume of varied emotion data in order to achieve accurate results. Consequently,
a significant effort will be made to source different types of emotion databases to use in this
project.
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Chapter 3

Developed System

This chapter will provide a high level summary of the proof-of-concept system developed for
the project. This will be achieved through providing an overview of the work completed in
the project with respect to each of the project’s main objectives (Page 10), with screenshots
where necessary. The purpose of this chapter is to provide context for the rest of this report.
Subsequent chapters will then discuss the details of the design, implementation, and evaluation
of this system.

3.1 An API-centric web application capable of

creating experiments and viewing experiment

results

Before being able to conduct an emotion classification experiment on a mobile device, infor-
mation such as the web-based media that a participant will view, and the duration of the
experiment needs to be defined. To meet part of this objective, an API-centric experiment
creation web application was developed to allow a user to create an experiment that can be
conducted using the system (Fig. 3.1).

Figure 3.1: Screenshots of the developed experiment creation web application
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This web application provides basic facilities that allow a user to add multiple experiment
items of varying durations, as well as some summary information about the experiment such as
the creator and a brief experiment description, through a form.

To meet the other part of the objective for viewing experiment results, an experiment
results web application was developed (Fig. 3.2).

Figure 3.2: Screenshots of the developed experiment results web application

This web application provides an interface to the results captured during experiments. Its
main purpose is to allow the downloading of experiment data, and to visualise the emotion
predictions recorded during an experiment.

3.2 An API for accessing/modifying experiment

related data

The system developed is data-driven, with data being generated by both the creation of
experiments, and the results recorded during an experiment. To meet this objective, and to
support the previously discussed web applications, 2 APIs have been developed.

The first API that has been built is used to manage all information relating to an experiment
(Fig. 3.3).

As seen in the Experiment API example, for each experiment, there are summary fields
such as the experiment name and description as well as an array of experiment items. Each of
these items have fields for display time, data source, and content type.
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Figure 3.3: Screenshot of an Experiment API GET request

The second API that has been built is used to manage all of the information relating to the
results of each experiment item (Fig. 3.4).

Figure 3.4: Screenshot of a Result API GET request

As seen in the Result API example, this includes information on the experiment item that
corresponds to that particular result, as well as the main field of this API, the result data field,
that is used to store all of the emotion predictions at a frame-level, and is also capable of
storing all of the facial landmark data captured by the face tracker.

3.3 An iOS application capable of performing these

emotion classification experiments

The main component of the system that has been developed is an iOS application capable of
conducting emotion classification experiments with participants (Fig. 3.5).
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Figure 3.5: Screenshots from the iOS application used to conduct emotion classification
experiments

In order to meet this objective, the application needed a variety of functionalities. Initially,
it reads in a QR code generated by the experiments creation web application, in order to access
the experiment information it needs from the Experiment API. It then has to retrieve and
display each web-based experiment item, for predefined amounts of time, in an appropriate
view such as in a YouTube player or a browser. Whilst the experiment items are being displayed
to a participant, a facial capture system is running in the background of the application to
acquire the facial landmarks of the participant, using the front camera of the mobile device.
The captured facial landmarks then act as input for an emotion classifier, that will produce
a set of emotion predictions for each captured frame. All of the emotion predictions for an
experiment are then sent back to the Result API.

3.4 Emotion classifiers to measure different emotions

The last objective of the project was to further develop emotion classifier work that had been
started during a CUROP project [7]. A significant amount of time in the project has been spent
developing classifiers capable of accurately and robustly classifying emotion. A Python-based
training pipeline was developed to acquire features from all of the data within the obtained
emotion databases (Page 20), and to use these training features with the LIBSVM library
[20] to train a multi-class SVM classifier. The classifier with the best training cross-validation
results was then integrated into the iOS application for the experiment phase of the project.
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Chapter 4

Specification & Design

This chapter provides details relating to the design of the system. This includes outlining the
main experiment process, a set of user requirements, the functionality required of each of the
system’s components, user interface design, and API design.

4.1 System design

After outlining the main components that would make up the system, it was necessary to
consider how all of this work would fit together into a coherent system. This was achieved
through designing the main experiment process that the system would need to complete (Fig.
4.1).

Figure 4.1: Abstract flow chart for the experiment process

This flow chart shows how a typical experiment will be carried out using the system. The
first step in the flow chart is to design the experiment using the Emotion experiment creation
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tool. This will be a web application that will provide the user with multiple input fields, to
specify the information necessary to create an experiment. The main responsibility of this
component is to set up the experiment so that the other components can access this data and
produce results for the experiment items.

After creating an experiment, an experiment will be conducted with participants using an
Emotion experiment capture tool. This will take the form of an iOS application, and it will
handle the execution of a designed experiment. It will use data from the experiment creation
tool to load in experiment items, and to capture results such as emotion predictions and facial
tracking data using the mobile device’s camera. This is where the main work of the system
will take place, and where all of the meaningful data will be captured.

Once a suitable number of experiment participants have completed the experiment, the
process will finish with viewing/analysing experiment results. This will mainly involve looking
at the emotion predictions recorded during the experiments through the Emotion experiment
results tool in a meaningful way such as through charts or tables.

Each component will not have direct communication with each other, but will use Application
Programming Interfaces (APIs) to access/modify necessary data. This approach of encapsulating
components has been used so that there no component relies on the implementation of another
component, only the API. By designing the process in this way, individual components can
be reused/changed/replaced as modules in the future, with no side effects for the rest of the
system as long as the components continue to interface via the API.

4.2 User requirements

Before starting the development of the outlined system, a set of basic user requirements were
created. These requirements outline the expectations of the system and will be used during
Evaluation (Page 76). As the system is intended to be a proof-of-concept, different levels of
requirements have been specified, in order to prioritise particular system expectations over others.

Must Have...

• A means of a user setting up an emotion experiment to be carried out. This will involve
specifying information such as what the experiment items will be and how long each
item will be viewed for.

• An iOS application capable of carrying out these emotion experiments. This will involve
tasks such as displaying content, and recording emotional response.
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• A means of a user collecting results from an experiment. This will involve a facility that
allows you to obtain all results for a particular experiment.

Should Have...

• A facility that allows the analysis and visualisation of results

• A means of recording experiment participants to review with experiment results

• Support for different types of web-based content that can be used as an experiment item

Could Have...

• A login system to allow an experiment and the subsequent results to be viewed only by
the user who set up the experiment

• Emotion metrics based on the emotion measurements gathered during an experiment

• Synchronisation of original experiment items and result data when viewing experiment
results

4.2.1 Emotion experiment creation tool design

The emotion experiment creation tool is required in the system in order to allow a user to
specify the content they would like participants to view during an experiment, and for how
long. Whilst it would be possible to manually hardcode this information inside the experiments
iOS application, it would limit the functionality and usability of the system considerably. By
building a basic web application, that is API-centric, a user is able to create/modify/delete
multiple experiments that are all capable of running on the experiments iOS application with
no configuration changes required in the application.

To understand the functionality required of this tool, a basic sitemap was produced using
Creately [34] to design the structure of the web application (Fig. 4.2).
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Figure 4.2: Sitemap design for the experiment creation web application

This diagram outlines the main views of the application:

• Home - This view will provide a listing of all of the available experiments. Information
such as total experiment length, and experiment name will be available in a table. This
view will also provide the experiment specific links for the ’Edit’ and ’Delete’ views, and
a means of navigating to the ’Create’ view.

• Create - This view will contain a form that will provide all of the necessary input fields
to create an experiment such as text boxes and dropdown boxes. Once the form has
been submitted, a user will be redirected to the ’Home’ view and will see the newly
created experiment listed.

• Edit - This view will provide similar input fields as the ’Create’ view, but the components
will already have been loaded with the experiment information the user wants to edit.
Some form of experiment identifier will be passed to this view to load this information.
Once the information has been updated, a user will be redirected to the ’Home’ view
and will see the modified experiment listed.

• Delete - This view will be used to delete a created experiment from the system. Once
confirmed, the user will be redirected back to the ’Home’ view, where the experiment
will no longer be listed.

• View - This view will provide a summary of all the information for a single experiment.
Some form of experiment identifier will be passed to this view to load the experiment
specific information such as the name, creator, and items. The view will also present
some kind of code that can be inputted into the experiment capture tool.

4.2.2 Emotion experiment capture tool design

The main aim of the project is to carry out experiments on a mobile device. As such, this
component will be the most important in the system, and as already stated, will be developed
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as an iOS application.

A basic flow chart has been created to define the experiment process that will be carried
out by the application (Fig. 4.3). These tasks will be used to design the user interface, and
will be used to structure the development of the application.

Figure 4.3: Abstract flowchart of the main tasks involved in an experiment on the iOS
application

The main tasks are:

• View welcome message - A short summary of the application when a user launches
it. There will be an option to proceed to the next screen once this information has been
read.

• Enter experiment identifier - The participant will be asked to enter an experiment
identifier from the experiment creation tool, to retrieve experiment information. This
will likely involve using the camera to scan a code, as typing an identifier may be time
consuming. Once entered, the next screen will load automatically.

• View experiment information - Once experiment information has been retrieved, a
summary of the experiment will be shown including experiment name and creator. There
will be an option to proceed to the next screen once this information has been read.

• Face tracking preview - A preview screen that will show the front camera view
overlayed with the currently tracked facial landmarks. This will allow a user to ensure the
device is positioned appropriately for the tracker to detect landmarks as expected. Once
a user is happy with the tracker output, there will be an option to begin the experiment.
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• View experiment items - This will involve loading each of the experiment items.
Content will be loaded differently according to its type, and the content will be shown for
a varying number of seconds defined during experiment creation. Whilst a user is viewing
this content, at each frame captured by the front camera, the face tracker will be applied,
and the resultant data will be used to predict emotion measurements using an emotion
classifier. The data will then be sent to the Results API after each experiment item.

• View experiment summary - Once the experiment has ended, a short summary will
load to indicate to the participant that no more items will be displayed.

4.2.3 Emotion experiment results tool design

The emotion experiments results tool is required in the system in order to provide an interface
to the Result API. Although all of the result data will be accessible through the Result API, the
volume of data that this API will hold means that a basic web interface will be a better solution.
Ideally this tool should also offer means of querying/analysing/visualising results, however some
of this functionality may need to be sacrificed over other development/experiment work. At a
minimum, it will be designed to allow a basic means of retrieving/viewing results.

To understand the functionality required of this tool, a basic sitemap was produced in
Creately [34] to design the structure of the web application (Fig. 4.4).

Figure 4.4: Sitemap design for the experiment results web application

• Home - This view will provide a summary of all of the available experiment results. There
should be some form of sorting to this view, such as by experiment or by participant. A
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summary of each result including the experiment and experiment item identifier will be
available, along with result-specific links to the ’Result’ view.

• Result - This view will display all of the available for a single result. This will likely be
displayed visually such as through a line chart, due to the amount of data per result.
There will also be tools to download the stored data. Some form of result identifier will
be passed to this view to load the requested result.

• Delete - This view will be used to delete an experiment result from the system. Once
confirmed, the user will be redirected to the ’Home’ view, where the result will no longer
be listed.

This web application will be developed after the Emotion experiment creation web application
using a very similar approach and tools. As this has application has less requirements than the
creation tool, and shares some of the basic functionality, this component of the project should
not take long to develop.

4.3 API design

The system will be data-driven, and will need well-designed API’s in order to manage all of
the data generated through experiments. After considering the applications that the API
would be used for, it was decided to split the API into 2 API’s - one that would model an
Experiment, and one that would model an Result. By doing this, it reduces the complexity of
the API work, through not having to model a result and an experiment together. It also makes
querying and other API actions easier for the distinct applications of the system. Although
there will be 2 APIs, they will be implemented in a very similar way, and to make it easier as a
proof-of-concept, they may share some data fields such as experiment item details.

4.3.1 Experiment API

The Experiment API is used by the Emotion experiment creation tool to store all experiment
data. It is then used by the Emotion experiment capture tool to retrieve this data to display
the relevant information to a user during an experiment. After considering the information
needs of these applications, an Experiment data model was designed (Fig. 4.5).

Each experiment instance represents a single experiment that has been created by a user.
A small number of experiment summary fields are used to provide an experiment partici-
pant with some context - ExperimentName, ExperimentDescription, and CreatedBy. The date
and time of the most recent update to experiment information is also stored in a UpdatedAt field.
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Figure 4.5: Abstract data model for an Experiment

The main part of an Experiment is the ExperimentItems field. As shown in the diagram,
the ExperimentItems field of a single experiment will be made up of one or more Item objects.
Each Item object stores all of the information necessary to display a single experiment item to
a user in an experiment. The Data field provides the source of the content, which will most
likely be a URL. The DataType field has been included to distinguish different types of content
such as YouTube videos or a Web page. Finally, the DisplaySeconds is a field that allows a
user to specify how long they would like an experiment participant to view an item.

4.3.2 Result API

The Result API is used by the Emotion experiment capture tool to store all of the generated
result data. It is then used by the Emotion experiment results tool to present this stored data
to a user. After considering the information needs of these applications, a Result data model
was designed (Fig. 4.6).

Figure 4.6: Abstract data model for a Result

Each Result instance represents the results of a user viewing a single experiment item. For
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contextual purposes, fields from the experiment that generated the results are stored - Ex-
perimentName, ExperimentID, and OriginalItem. Whilst this information could be looked up
through the Experiment API later, as an experiment can be edited at any point, it is important
to retain the information used in that particular experiment, to enable accurate analysis and
comparison of results. The date and time that the result was recorded is also stored, to help
with the analysis of results.

The main part of a Result is the Results field. As shown in the diagram, the Results
field of a single Result will be made up of one or more ResultData objects. Each ResultData
object has 2 fields - TrackingData and EmotionData. For each frame processed during an
experiment, an array entry will be created in TrackingData to record the co-ordinates of the
facial landmarks in the frame. This entry will be an array of numbers representing the 66
tracked landmarks. An array entry will also be created in EmotionData for each frame, to
record the 8 emotion measurements obtained from the emotion classifier. This entry will
be 8 key-value pairs comprised of the emotion i.e. ’Happy’ or ’Sad’, and the corresponding
measurement from the classifier.

4.4 User interface design

The main component that will be interacted with by users is the emotion experiment capture
tool. To ensure that this tool supported the user requirements, a basic wireframe design of the
iOS application (Fig. 4.7) was designed using the Balsamiq Mockups wireframing software
[35].

Figure 4.7: UI mockup for the emotion capture iOS application
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This wireframing process involved prototyping different ideas for how a participant would
interact with the iOS application during an experiment, and what content would need to be
shown. This process structured the application into views, and outlined the main UI elements
that would be needed. Some of the key design decisions that were made as a result of these
mockups were:

• How a user would retrieve experiment information? After initially designing the application
with a text input box where you could manually enter an experiment identifier, it was
decided that this would take too long for a large number of participants. Instead, the
application was designed so that a user scans a generated experiment QR code using the
device camera.

• How a user could check that the face tracker was working? It was important that a
user was able to see if the face tracker was working before viewing any experiment items.
Initially, the option of being able to view a preview at any point in the application was
considered but this complicated the application’s design, and it would not have been
compatible with all of the interface components such as full screen video players. Also, a
user may have been more focused on the preview throughout the experiment, instead
of viewing the experiment items. Instead, a separate calibration view was designed that
allowed a user to view what the face tracker was detecting before starting an experiment.

Having this design provided a specification to work to during development, and although design
changes were made after receiving feedback, time was saved through making design decisions
using these inexpensive mockup tools compared to making these decisions during development.

As the emotion experiment creation tool and emotion experiment results tool will be
accessed by only a small number of people, and have very basic requirements, there will be less
of a focus on designing a custom user interface for these components. The user interface for
these components will rely on the popular front-end framework, Bootstrap [36]. This framework
provides standard HTML elements and page templates that mean that even if the design of
these components were to drastically change, it will involve not much work to change.
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Chapter 5

Implementation

This chapter will document the development of each of the system’s components. Although
the emotion classifier is part of the Emotion experiment capture tool, a significant amount of
work was completed, and will be discussed in a separate section. The source code for all work
has been attached as zip files. The code for each component is also available through GitHub
repositories. Table 5.1 provides the mappings of these implementations to the report sections.

Report section Implementation GitHub Repository
Emotion experiment creation tool ExperimentCreationApp.zip https://github.com/mrhysjones/experiments-creation-app
Emotion experiment capture tool ExperimentIOSApp.zip https://github.com/mrhysjones/emotive-web
Emotion experiment results tool ExperimentResultApp.zip https://github.com/mrhysjones/experiment-results-app
Emotion classifier EmotionClassifier.zip https://github.com/mrhysjones/emotion-classifiers

Table 5.1: Mapping of Implementation sections to source code archives and GitHub
repositories

5.1 Tools used

5.1.1 Emotion experiment creation tool - Tools

The experiment creation web application was developed mainly in the JavaScript language
using the popular MEAN development stack [37]. There are 4 components to this stack:

• MongoDB - A document-based NoSQL database that will hold all of the experiment
data. MongoDB is designed to make it easy to make changes to the database’s schema
and configuration, without any significant issues. This was an important attribute, as
this is a research project that may require several changes throughout development, with
ideally little time needing to be spent on database administration [38].
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• ExpressJS - A web framework designed to work with the Node.js framework. This
framework provides several HTTP utility methods that allow an API to be developed
easily [39].

• AngularJS - A web application framework that extends HTML functionality and is used
for binding data to HTML. For example, AngularJS can be used to bind experiment API
data to an HTML table. One of the functionalities the framework was chosen for is
ng-repeat that can be used to clone HTML elements for each item in a collection such
as a list of experiment names [40].

• NodeJS - A server-side environment that allows JavaScript to be used on the back-end
as well as on the front-end.

This software bundle was used to quickly build a functional web application, as well as the
Experiment API. The 4 components are designed to work well with each other, and there are
commands that can be used to bootstrap some of the code in the project.

The Bootstrap front-end library [36] was used to develop the web application’s user inter-
face. The library contains HTML and CSS-based templates, that were used to develop the
application’s views, as well as custom web components that were used to support the main
functionality of the application such as tables, and form controls.

The qrcode-generator library [41] was used in the project to provide the experiment QR-code
functionality required. This is a standard library used for generating QR codes that has support
for many programming languages, and that avoids having to write this functionality from
scratch. By providing the library with data i.e. an experiment identifier, it is able to generate
and display a QR code with this information on demand.

5.1.2 Emotion experiment capture tool - Tools

The emotion experiment iOS application was built in XCode, using the Objective-C language.
This language was chosen based on compatibility with the libraries used in the project, familiarity
of the language, and existing work already completed in Objective-C. Writing the project in the
recently released iOS language, Swift, was considered, but the learning curve, and lack of library
support would have made it considerably more difficult to achieve the required functionality.
Several built-in iOS frameworks were used in the project such as AVFoundation for working
with the device camera and CoreImage for image processing.

The FaceTracker C++ library [10] was used in the project, with a previously developed
wrapper, to perform all of the face tracking functionality. The LIBSVM C++ library [20]
was used in the project, with a previously developed wrapper, to perform all of the emotion
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classification, such as scaling and predicting test data, using the developed emotion classifier.

To display different types of content, third-party libraries were used. The Fabric library,
developed by Twitter [44], was used to display Tweet experiment items. Tweets could have been
displayed on the app without this library, however this library ensures that Twitter guidelines
are met, and it has built-in functionality that allows a user to interact with displayed Tweets.
The YouTube IFrame Player API [43] was used to handle displaying YouTube videos.

Finally, the CEMovieMaker library [42] was used to support the experiment participant
recording functionality. It provides a means of generating a .mov video file from an array of
raw video frames.

5.1.3 Emotion experiment results tool - Tools

The experiment results web application was built using the same tools as the Emotion experi-
ment creation tool (Page 39).

In addition to those tools, the Angular-nvd3 charting library [45] was used in this component
in order to produce line charts of experiment results. This library was chosen as it was developed
for the AngularJS framework, already used in the project, and it provides extensive chart options
through an API.

5.1.4 Emotion classifier - Tools

To train an emotion classifier, a series of Python scripts were written to carry out different
training stages such as extracting features, performing Principal Component Analysis, and
classifier cross-validation/training using LIBSVM binaries [20]. To assist with the Principal
Component Analysis, the PCA module from the matplotlib Python library was used [47]. The
training data for the classifier was obtained using the FaceTracker C++ library [10]. Some
basic computer vision tasks such as extracting video frames were achieved using the OpenCV
Python library [46].

5.2 Emotion experiment creation tool

5.2.1 MEAN stack setup

To use the MEAN development stack in the project, there were some prerequisites that had
to be installed. The following software had to be installed before any of the work could be
completed:
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• NodeJS - The server-side environment to be used in the project

• npm - The package manager used to install and manage packages

• ExpressJS - Web application framework that runs on NodeJS

• MongoDB - Document-oriented NoSQL database that will store all Experiment data

The installation of this software is relatively simple and well documented online. The specifics
of how the software was installed will not be discussed here.

After setting up all of the prerequisites, the Express generator in the ExpressJS framework was
used to bootstrap the basic structure and files required for this component (Listing 5.1).

Listing 5.1: Bootstrapping the Experiment creation tool using ExpressJS
1 express -e experimentApp

This command set up the basic structure and code for both the API and the web application
work including views, routes, and stylesheets. Whilst some tweaking was required to this
structure throughout development, it was much quicker than having to set up all of these files
and folders manually.

5.2.2 Experiment API

In order to build an API, an Experiment Model had to be defined based on the model designed
in API Design (Page 35). The Mongoose API tool was used to model the Experiment object
(Listing 5.2). Whilst MongoDB is schemaless, Mongoose provides API validation and enforces
the schema to keep a consistent structure.

Listing 5.2: Experiment Mongoose model
1 var mongoose = require(’mongoose ’);
2
3 var ExperimentSchema = new mongoose.Schema ({
4 name: {type: String , required: true},
5 description: {type: String , required: true},
6 createdBy: {type: String , required: true},
7 items: [{
8 data: {type: String , required: true},
9 dataType: {type: String , enum: [’twitter ’, ’youtube ’, ’webpage

’], required: true},
10 displaySeconds: {type: Number , default: 30}
11 }],
12 updated_at: { type: Date , default: Date.now },
13 });
14
15 module.exports = mongoose.model(’Experiment ’, ExperimentSchema);
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The name, description and createdBy fields are strings, that are all required when providing
experiment information. The items field is an array that can hold one or more experiment
items. Each object in the items array, will contain a data string containing the item source,
a string enum, dataType, that must take the value of ’youtube’, ’twitter’, or ’webpage’ to
indicate the item type, and a number field, displaySeconds, to indicate how long the item will
be displayed for during an experiment. The updated_at field has been included to keep a
record of the last modification made to an experiment’s information.

After writing this model, some basic API routes were defined using the router module
within ExpressJS. The routes developed were based on the Create-Read-Update-Delete (CRUD)
model (Table 5.2).

Resource (URI) POST (Create) GET (Read) PUT (Update) DELETE (Delete)
/api/experiments create new experiment list experiments error error
/api/experiments/:id error show experiment :id update experiment :id delete experiment :id

Table 5.2: Experiment API routes using CRUD model

Mongoose provides a query API, and the Router module in ExpressJS provides a means
of specifying these different requests for particular routes. Listing 5.3 shows all of the code
required to set up the GET /api/experiments/:id route, used to retrieve a specific experiment
from the API.

Listing 5.3: /api/experiments/:id GET route
1 var express = require(’express ’);
2 var router = express.Router ();
3 var Experiment = require (’../ models/Experiments.js ’);
4
5 /* GET /api/experiments/id */
6 router.get(’/:id ’, function(req , res , next) {
7 Experiment.findById(req.params.id , function (err , post) {
8 if (err) return next(err);
9 res.json(post);

10 });
11 });

Lines 1-3 instantiate the ExpressJS Router module and the Experiment Mongoose model. Line
6-7 retrieve the experiment ID from the API request and use the ID to retrieve the requested
experiment using the Mongoose query API. If there is an error with this query, Line 8 will send
an error as the API response. Otherwise, Line 9 will return the JSON response containing the
requested experiment.

A similar piece of code was used for the /api/experiments/:id PUT route, used to update a
specific experiment (Listing 5.4).
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Listing 5.4: /api/experiments/:id PUT route
1 router.put(’/:id ’, function(req , res , next) {
2 Experiment.findByIdAndUpdate(req.params.id, req.body , function (err ,

post) {
3 if (err) return next(err);
4 res.json(post);
5 });
6 });

The main difference for this route compared with the GET /api/experiments:id route is Line 2.
The findByIdAndUpdate method is used from the Mongoose query API, and the request body,
req.body, is used to update the experiment’s JSON data.

By using the Mongoose query API, and the ExpressJS Router module, all of the required
API routes did not require code any more complex than these 2 examples.

5.2.3 Experiment creation web application

After developing all of the API routes, a basic web application was built, using AngularJS, that
would consume the Experiment API.

’Home’ View

This view needed to provide a list of all created experiments from the Experiments API. A
custom AngularJS experiment service was created using AngularJS $resource, capable of
interacting with all of the Experiment API’s routes (Listing 5.5).

Listing 5.5: AngularJS service implemented to interact with the Experiment API
1 angular.module (" ExperimentService", []).factory(’ExperimentService ’,

[’$resource ’, function($resource){
2 return $resource(’/api/experiments /:id ’, null , {
3 ’update ’: { method:’PUT ’ },
4 });
5 }])

The majority of API requests are handled by default by the $resource library, with only the
PUT (Update) route needing to be manually specified on Lines 2 and 3. After this service was
created, a controller for the ’Home’ view was created that could make a GET request using
this service and store all the experiment data needed. An AngularJS table was then used to
list the following fields for each experiment:

• Experiment name

• Experiment description
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• Experiment creator

• Number of items (length of items array)

• Experiment length (total of the displaySeconds field)

As well as this information, for each experiment, buttons were added to allow a user to
view/edit/delete an experiment.

’Create’ View

This view involved created a basic AngularJS form with all of the input controls needed to
make a POST request to the Experiment API (Fig. 5.1).

Figure 5.1: AngularJS form developed to facilitate experiment creation

The main challenge with this view was allowing a user to add one or more experiment items.
To achieve this, 2 short methods were created to handle adding/removing an experiment item
to the form through pushing and splicing elements of the experimentItems array that holds all
of the item information (Listing 5.6).

Listing 5.6: Code to handle adding/removing experiment items from an experiment
1 $scope.addExperimentItem = function (){
2 var newItem = $scope.experimentItems.length + 1;
3 $scope.experimentItems.push({’dataType ’: ’youtube ’});
4 }
5 $scope.removeExperimentItem = function(index){
6 $scope.experimentItems.splice(index ,1);
7 }

The ’Edit’ view used a very similar view and logic as the ’Create’ view, with the form data
preloaded through a GET request to the developed experiment service, and a PUT request
used on form submission instead of a POST request.
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’View Experiment’ View

To view an individual experiment, a controller was implemented to retrieve an experiment
with a particular ID from the Experiments API. The majority of this view is just outputting
experiment fields using similar techniques as the ’Home’ view. The only extra requirement for
this view was to generate a QR code containing the experiment ID. This was achieved using
the qrcode-generator library [41] (Listing 5.7).

Listing 5.7: AngularJS directive used to generate experiment QR code
1 <qrcode data ="{{ currenthost }}/api/experiments /{{ experiment._id }}" size

=150></qrcode >

This QR code will be scanned by the emotion experiment iOS application to retrieve experiment
information.

5.3 Emotion experiment capture tool

5.3.1 Application interface

Before any of the key functionality was added to the application, the application’s interface
was created in a XCode Storyboard (Fig. 5.2).
From this storyboard, 7 view controllers were specified:

• HomeViewController - View used to show welcome text on launch of the application

• QRCodeReaderController - View used to display and scan an experiment QR code
using the device camera

• ExperimentSummaryController - View used to provide a summary of the experiment
that has been retrieved from the API

• TrackingPreviewViewController - View used to display a preview of the face tracker
output overlayed on a camera view

• ExperimentItemViewController - View used to display different experiment items to
a user

• ItemIntervalController - View used as an interval between experiment items

• ExperimentEndController - View used to inform a user that the experiment has
finished

The navigation between these view controllers was also set up in this Storyboard through
specifying segues (transitions beteen views) and through using an iOS Navigation Controller
[48].
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Figure 5.2: XCode Storyboard for the experiment iOS application

5.3.2 Obtaining experiment information

In order to start the experiment process, the QR code from the experiment creation tool
needed to be read by the device to send an API request to the Experiment API. An Experiment
Objective-C class was created to model all of the necessary fields and methods needed for the
experiment. This is a singleton class, so once the information has been obtained through the
API request embedded in the QR code, the instance with all of the experiment information can
be accessed across the entire application.

The QR code reading functionality was developed using an AVCaptureSession object with
the device’s front camera as input and the built-in AVCaptureMetadataOutput class acting as
output (Listing 5.8).

Listing 5.8: AVCaptureMetadataOutputObjectsDelegate delegate method used to capture
QR Code data

1 -(void)captureOutput :( AVCaptureOutput *) captureOutput
didOutputMetadataObjects :( NSArray *) metadataObjects fromConnection :(
AVCaptureConnection *) connection{

2 if (metadataObjects != nil && [metadataObjects count] > 0) {
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3 AVMetadataMachineReadableCodeObject *metadataObj = [
metadataObjects objectAtIndex :0];

4 if ([[ metadataObj type] isEqualToString:
AVMetadataObjectTypeQRCode ]) {

5 [_captureSession stopRunning ];
6 qrcode = metadataObj.stringValue;
7 Experiment *exp = [Experiment getInstance ];
8 [exp getExperimentInfo :[@"http ://" stringByAppendingString:

qrcode ]];
9 dispatch_async(dispatch_get_main_queue (), ^{

10 [self performSegueWithIdentifier:@"QRCodeSegue" sender:
self];

11 });
12 }
13 }
14 }

Lines 2-4 are used to detect if the machine readable code detected is a QR code. Line 5
then stops the AVCaptureSession once a code has been detected, and Line 6 obtains the
string value embedded in the QR code. Lines 7 and 8 are then used to get an instance of the
Experiment singleton class, and to retrieve the experiment information using a class method
getExperimentInfo and the API request from the QR code. Finally, Lines 9-11 will perform a
segue to the ExperimentSummaryController on the application’s main thread.

5.3.3 Loading experiment items

The application has been designed to support 3 main types of experiment item:

1. Webpages

2. YouTube videos

3. Tweets

In addition to loading these items, an interval view has been developed, to be shown before
each item. In order to display each item for the correct amount of time, the displaySeconds
field has been used, and Dispatch Queues [49] have been used to schedule particular views
after a certain amount of time.

Webpage items

To load webpage items, the iOS UIWebView class was used. This view could be preloaded with
a URL, and would act like a browser, allowing a participant to navigate through the content
displayed. This web view was loaded as a subview programmatically whenever required (Listing
5.9).
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Listing 5.9: Loading a webpage as a subview
1 [self clearSubViews ];
2 UIWebView *webview = [[ UIWebView alloc] initWithFrame:CGRectMake (0, 0,

self.view.frame.size.width , self.view.frame.size.height)];
3 webview.scalesPageToFit = YES;
4 webview.autoresizesSubviews = YES;
5 webview.autoresizingMask =( UIViewAutoresizingFlexibleHeight |

UIViewAutoresizingFlexibleWidth);
6 [webview setBackgroundColor :[ UIColor clearColor ]];
7 NSURL *targetURL = [NSURL URLWithString:data];
8 NSURLRequest *request = [NSURLRequest requestWithURL:targetURL ];
9 [webview loadRequest:request ];

10 [self.view addSubview:webview ];

Initially, all existing subviews i.e. other items, are removed from the screen. A fullscreen
UIWebView is then initialised and configured to scale pages, resize, and to have a clear
background colour. The URL for the experiment item is then used to make a HTTP request to
load data into the UIWebView. Finally, the web view is loaded onto the screen as a subview.

YouTube items

To load YouTube videos in the application, the YouTube IFrame Player API [43] was used.
This API provided a YouTube player view that could be created and loaded with any video URL.
This player view was loaded as a subview programmatically whenever required (Listing 5.10).

Listing 5.10: Loading a YouTube video as a subview
1 [self clearSubViews ];
2 YTPlayerView *youtubeView = [[ YTPlayerView alloc] initWithFrame:

CGRectMake (0, 0, self.view.frame.size.width , self.view.frame.size.
height)];

3 [self.view addSubview:youtubeView ];
4 [youtubeView loadWithVideoId:data];

Like with the webpage items, initially all existing subviews are removed. A fullscreen YouTube
player is then created using the YouTube IFrame Player API, before being added to the screen
and loaded with the experiment item’s video ID.

Tweet items

To load Tweet items, the Fabric library [44] was used. This library provided a single Tweet
view that could be created and loaded with any Tweet ID. This Tweet view was loaded as a
subview programatically whenever required (Listing 5.11).
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Listing 5.11: Loading a single Tweet as a subview
1 [self clearSubViews ];
2 NSString* tweetID = [self getTweetIDFromURL:data];
3 TWTRAPIClient *client = [[ TWTRAPIClient alloc] init];
4 [client loadTweetWithID:tweetID completion :^( TWTRTweet *tweet , NSError *

error) {
5 if (tweet) {
6 TWTRTweetView *tweetView = [[ TWTRTweetView alloc]

initWithTweet:tweet ];
7 [self.view addSubview:tweetView ];
8 tweetView.center = [self.view convertPoint:self.view.

center fromView:self.view.superview ];
9 } else {

10 NSLog(@"Error loading Tweet: %@", [error
localizedDescription ]);

11 }
12 }];

Like with the other types of items, initially all existing subviews are removed. A utility method
getTweetIDFromURL is then used to retrieve the Tweet ID from the full Tweet URL. A Twitter
API client object is then initialised, and the client is used to retrieve the Tweet using the
retrieved Tweet ID. After this, a Tweet view is created using the Tweet data from the client,
and it is loaded as a subview onto the centre of the screen.

Experiment item intervals

The experiment item interval view was developed after a meeting with my Supervisor and PhD
students in the School. They highlighted the importance in giving a participant time to prepare
for each experiment item, so that the results would not be skewed by the previous item viewed.
To achieve this, a basic view was designed to be shown for 3 seconds before each experiment
item (Fig. 5.3).

This was not only used to give participants a short break between viewing items, but also as
a means of trying to normalise the recorded videos, through prompting participants to refocus
their gaze on a particular part of the screen.

This view was loaded in a similar way as the other items in an experiment using Dispatch
Queues, and adding it as a subview.

50



Figure 5.3: Experiment interval screen displayed before each experiment item

5.3.4 Face tracking

The majority of the code to interface with and use the FaceTracker library in the project has
previously been developed during a CUROP project, and previous face tracking work in the
School [8]. However, this project required slightly different functionality for the face tracker, so
some changes have been to the main Objective C++ wrapper.

To use the FaceTracker library in this project, all of the C++ files were imported as they
were referenced by the wrapper. The ASM model files used by the library were also imported
and referenced by the wrapper.

Both the TrackingPreviewViewController and the ExperimentItemViewController use an
AVCaptureSession to capture frames from the front camera, and to save them into a buffer for
processing. A delegate method is then used to call the main FaceTracker wrapper method from
these controllers. This method will retrieve an image from the image buffer, perform some
basic image operations, before passing the image to an appropriate tracking method dependent
on the controller that made a call to the wrapper.

If the call was made by the TrackingPreviewController, then the tracker will be applied to
the image, and the fitted model will be drawn onto the image, and shown on the preview view
(Listing 5.12).

Listing 5.12: Tracking functionality used by TrackingPreviewViewController
1 if(model.Track(gray ,wSize ,fpd ,nIter ,clamp ,fTol ,fcheck) == 0) {
2 [self draw];
3 failed = false;
4 }else{
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5 [self resetModel ];
6 failed = true;
7 }

If the tracker is successful in fitting the model, the draw method is called that uses the point
and line shapes from the OpenCV library to overlay the fitted model onto the image frame. If
the tracker is unsuccessful, the model is reset, and the ASM process will start again when the
next frame is tracked.

If the call was made by the ExperimentItemViewController, then the tracker will be applied
to the image, and the resulting landmarks for emotion classification (Listing 5.13).

Listing 5.13: Tracking functionality used by ExperimentItemViewController
1 if(model.Track(gray ,wSize ,fpd ,nIter ,clamp ,fTol ,fcheck) == 0) {
2 failed = false
3 vect2test(model._shape , test);
4 pca_project(test , eigv , mu , sigma , eigsize , feat);
5 scaledValues = [svm scaleData:trainRangePathString test:feat];
6 predictedValues = [svm predictData:scaledValues ];
7 [self outputData ];
8 }else{
9 [self resetModel ];

10 failed = true;
11 }

If the tracker is successful, the facial landmark points are extracted from the fitted model, and
converted into a set of distance measures, using the vect2test method within the face tracker
wrapper. These distance measures are the same normalised measures used during emotion
classifier training.

Data from the PCA step of the emotion classifier training process is then used to perform
PCA on these test features. The scaleData and predictData, perform the emotion classification
(Page 52).

The output of each run of this tracker code is a set of emotion measurements that is
appended to a results array, and sent to the Results API after each experiment item, with the
other summary information.

5.3.5 Emotion classification

The emotion classification functionality was achieved through using an SVM wrapper developed
during the CUROP project that combined the svm-scale, and svm-predict LIBSVM functions
into a single file. The usage of the methods in this project has been highlighted in the Face
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tracking section (Page 52).

Before any classification can take place, the SVM model has to be loaded into the applica-
tion. This involves providing the path to the emotions.train.pca.model file produced during
training, and using a loadModel method from the LIBSVM library.

In the tracking method, the scaleData is called on the PCA test data. The code in this
method is very similar to the LIBSVM svm-scale code. It will scale this data to the range file
produced during emotion classifier training, emotions.train.pca.range.

Once the test features have been scaled, the predictData is called on the scaled test data.
This method is very similar to the LIBSVM svm-predict code. It uses the svm_predict_probability
method from LIBSVM to return probability estimates for each emotion.

5.3.6 Recording experiment participants

One of the user requirements for this application was to record and save videos of participants
viewing experiment items to the device. This was a challenging requirement to meet as the
application was already completing tasks such as face tracking, emotion classification, and
presenting different types of web-based content.

Each frame that is processed by the application is available as an Objective-C UIImage.
After some research, the CEMovieMaker library [42] was found, that was able to convert an
array of these UIImages into a single .mov file. The only modification that had to be made to
the library was the frame rate used when generating the video file.

When this library was initially integrated into the application, the application was able to
handle the extra memory requirements for short experiment items. However, for experiment
items that exceeded ~30 seconds, the application would crash with a memory error. After some
investigation, it appeared that the for longer items, more UIImages would have accumulated in
memory, but none of the memory could be released until the video had been generated at the
end of the experiment item.

To fix this issue, a solution was found where instead of waiting until the end of an experiment
item to generate a video, a video would be generated every 300 result frames, so that the
memory requirements never exceeded 300 frames (Listing 5.14).

Listing 5.14: Adding camera frames to an UIImage array and saving to a video file at
regular intervals

1 -(void)addVideoFrame :( UIImage *)frame{
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2 [videoFrames addObject:frame];
3 if ([ videoFrames count] == 300){
4 [self saveVideoFrames ];
5 }
6 }
7 -(void) saveVideoFrames{
8 NSDictionary *settings = [CEMovieMaker videoSettingsWithCodec:

AVVideoCodecH264 withWidth :320 andHeight :480];
9 NSString* videoFileName = [self generateVideoName ];

10 self.movieMaker = [[ CEMovieMaker alloc] initWithSettings:settings
videoName:videoFileName ];

11 [self.movieMaker createMovieFromImages :[ videoFrames copy]
withCompletion :^( NSURL *fileURL){

12 NSLog(@"%@", fileURL);
13 }];
14 [videoFrames removeAllObjects ];
15 }

The addVideoFrame method is called every time a camera frame has been tracked and classified.
Line 2 adds the frame to the videoFrames array. Lines 3-5 check if there are 300 frames in the
array, and will call the saveVideoFrames method accordingly. Line 8 specifies the CEMovieMaker
library settings including the generated video’s codec, and the height/width of the video, taken
from the frame size. Line 9 will call a utility method that has been developed to generate a video
file name such as 57025c35149275d63527b06f-570abbe2149275d63527b07a-1460453142.mov
where the file name is made up of the experiment ID, item ID, and the current UNIX time. Lines
11-13 will execute the createMoviesFromImages method from the CEMovieMaker library. Finally,
Line 14 will remove all of the frames from the array to release some of the application’s memory.

This solution was tested with experiment items up to 5 minutes in length, and the applica-
tion was able to save these videos at more regular intervals and not crash (Fig. 5.4).

As seen in the Instruments plot, there is a pattern where the memory will accumulate for a
short while before being released due to the frame data being saved and released every 300
frames. The videos can then be merged together once they have been obtained from the de-
vice. A basic script was written in Python to achieve this for the experiment phase of the project.

To make it easier for users to obtain these videos from the device after the experiment, a
small configuration change was made to the application to support iTunes File Sharing. This
involved enabling the UIFileSharingEnabled key within the application’s info.plist file.
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Figure 5.4: Memory allocations instrument recordings from iOS Instruments development
tool whilst viewing experiment items

5.4 Emotion experiment results tool

The emotion experiment results tool uses a very similar implementation to the emotion
experiment creation tool. The work described in the MEAN stack setup for the emotion
experiment creation tool (Page 42), and the majority of the API work is the same. Therefore,
only the major differences between the 2 implementations will be discussed in this section.

5.4.1 Result API

As with the Experiment API, the Mongoose API tool was used to model a Result object for
the API (Listing 5.15).

Listing 5.15: Result Mongoose model
1 var mongoose = require(’mongoose ’);
2
3 var ResultSchema = new mongoose.Schema ({
4 experimentID: {type: String , required: true},
5 experimentName: {type: String , required: true},
6 itemData: [{
7 itemID: {type: String , required: true},
8 data: {type: String , required: true},
9 dataType: {type: String , enum: [’twitter ’, ’youtube ’, ’webpage ’],

required: true},
10 displaySeconds: {type: Number , required: true}
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11 }],
12 resultData: [{
13 emotionData: [{
14 angry: Number ,
15 contempt: Number ,
16 disgust: Number ,
17 fear: Number ,
18 happy: Number ,
19 sadness: Number ,
20 surprise: Number ,
21 neutral: Number
22 }],
23 trackingData: [{
24 data: Array
25 }]
26 }],
27 updated_at: { type: Date , default: Date.now },
28 });
29
30 module.exports = mongoose.model(’Result ’, ResultSchema);

Some of the fields in this schema are from the Experiment schema - name, itemData, and
the generated experimentID. These fields are used to make it easier to reference experiment
information in other components of the system. The main field in this API is the resultData
array. Each element of this array represents the results for a single frame, and it is made up of
2 fields - emotionData and trackingData. The emotionData contains 8 key-value pairs for the
emotion measurements. The trackingData field is an optional field that allows all of the facial
landmark data to be available through the Result API. Finally, the updated_at field keeps a
record of when the result was last modified.

This API used the same CRUD model to form the API routes as the Experiments API. The
only difference is that the PUT route has not been implemented for the Results API, as the
system does not support editing results. The code used to implement the Experiments API
routes was re-used, with just the schema being changed to the Results Mongoose schema.

5.4.2 Experiment results web application

After developing all of the API routes, a basic web application with 2 main views was created
using AngularJS.

’Home’ View

This view had similar functionality as the ’Home’ view in the experiments creation tool, to list a
summary of all information available from the Result API. As with the experiment creation tool,
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a results service was created to handle all of the Result API routes. This service only needed the
default API routes that $resource handles as there was no need to have a PUT route for this API.

A controller was created to use this service, and to store all result data. The following
information was listed for each result:

• Result ID

• Item ID

• Item Source

• Number of processed frames (length of resultData array)

All of these results were grouped by experiment in AngularJS tables, and the tables were sorted
by the experiment item ID field. For each item result, buttons were added to allow a user to
view/delete a result.

’Result’ View

This view was created to show a basic visualisation of a particular item’s result. To achieve this,
an existing AngularJS charting library was used, Angular-nvD3 [45]. The library is based heavily
on D3.js, and allowed a list of options to be set up once in a controller, and to be reused by all
results. The only additional work that was required was developing a small function capable
of converting the emotion data from the API into a suitable format for this charting library
(Listing 5.16).

Listing 5.16: JavaScript function to convert emotion data into a format suitable for charting
1
2 function emotionChartData(emotionData , emotion){
3 var emotions = [];
4 for(var i = 0; i < emotionData.length; i++) {
5 emotions.push({x: i, y: emotionData[i][ emotion ]});
6 }
7 return emotions;
8 }

This script had to be run for each of the 8 emotions available in the data. After converting this
data, each series was appropriately labelled by their emotion, and plotted onto a Angular-nvD3
line chart.
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5.5 Emotion classifier

The emotion classifier is a key underlying component of the system, that predicts the confidence
level of different emotions being expressed using facial landmark data. In order to build the
classifier, several steps needed to be carried out:

1. Extract facial landmark data from images

2. Categorise images by their class label

3. Calculate distance measures based on facial landmark points, and perform normalisation
on

4. Project distance measure vectors and perform Principal Component Analysis

5. Use LIBSVM to train a classifier based on the PCA data

5.5.1 Obtaining features

Video frame extraction

Before being able to extract features, some of the frames had to be extracted from one of them
emotion databases, GEMEP-FERA. To do this, a Python script was created that used OpenCV
to extract the key frames and to save them as a separate training images (Listing 5.17).

Listing 5.17: Extracting frames from GEMEP-FERA video sequences
1 for subfolder in os.listdir(’Datasets/GEMEP -FERA’):
2 for vid in glob.glob(’Datasets/GEMEP -FERA/’ + subfolder + /.* avi

):
3 vidcap = cv2.VideoCapture(vid)
4 count = 0;
5 while success:
6 success ,image = vidcap.read()
7 cv2.imwrite("%d.jpg" % count , image)
8 count += 1

Lines 1 and 2 iterate through the GEMEP-FERA folder structure to find each video file name.
Line 3 uses the file name to instantiate an OpenCV VideoCapture object with the video file.
Lines 4-8 then use the VideoCapture object to read the video frame by frame, to save each
frame as a .jpg image file.

Applying FaceTracker to training data

A python script facetrack.py was created to take images/video frames from emotion databases
and to produce vectors of facial landmark points. These vectors were then categorised into
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folders using their class label i.e. emotion. This was a basic script that used the FaceTracker
library to obtain the points, and to store them in a .vector file. It then used knowledge about
how the particular emotion database stored emotion information to put the vector file into
an appropriate emotion folder. Listing 5.18 shows how this script was applied to the CK+
database [21].

Listing 5.18: Obtaining facial landmark data from CK+ database
1 for episode in os.listdir(’Datasets/CK+/ Emotion/’ + sequence):
2 for index in glob.glob("Datasets/CK+/ Emotion/" + sequence + "/"

+ episode + "/*.txt"):
3 index = os.path.basename(index)
4 index = index [:index.index("_emotion")]
5 for i, index_content in enumerate(open("Datasets/CK+/

Emotion/" + sequence + "/" + episode + "/" + index +
"_emotion.txt")):

6 emotion = emotions[int(float(index_content.strip
()))]

7 if not emotion in data: data[emotion] = []
8 os.system("cp␣Datasets/CK+/cohn -kanade -images/"

+ sequence + "/" + episode + "/" + index + ".
png␣.␣;␣./ face_tracker␣" + index + ".png␣;␣mv
␣" + index + "*␣Datasets/CK+/cohn -kanade -
images/" + sequence + "/" + episode + "/")

9 data[emotion ]. append("Datasets/CK+/cohn -kanade -
images/" + sequence + "/" + episode + "/" +
index + ".vector")

Lines 1 and 2 are used to iterate through the CK+ folder structure, to obtain the emotion
of all of the training images from the ’Emotion’ folder that stores the emotion of each image
in a text file. Lines 3-7 are used to obtain the name of the referenced training image from the
text file, and to obtain the emotion being expressed in the image. All of the facial landmarks
for all of the training images are stored in a data array. Line 8 is used to run the FaceTracker
library on a training image, and to move the resultant vector file into an appropriate folder.
Line 9 then appends the location of the vector to the correct emotion in the data array, to
move all of. There were only a small number of problems when developing this functionality
relating to incorrect file paths being used in the script. The CK+ database was the most
difficult to obtain the class from in the script as it was stored in a seperate text file. For all of
the other databases, the emotion information was part of the file name.

Once vector files of facial landmarks had been obtained for all training images, information
in the data array was then used to move the vector files into different folders for each emotion.

59



Calculating distance measures

The emotion classifier used 86 different distance measures as its features, as described in
the Support Vector Machines section (Page 19). A python script calculatefeatures.py was
developed to produce an emotions.train text file that would contain all of these measures for
each vector, categorised by the emotions of the vectors. The script itself was fairly basic,
and involved iterating through different combinations of the facial landmarks to produce the
distance measures. All distance measures were then normalised by the distance between the
eyes.

5.5.2 Principal Component Analysis

A Python script, pca.py, was developed to perform Principal Component Analysis on the
obtained feature vectors. The script (Listing 5.19) relied heavily on the PCA module within
the matplotlib library [47].

Listing 5.19: Performing PCA on obtained feature vectors
1 results = PCA(np.array(data))
2 archive = open("pca_archive_wt.txt", "w")
3 for v in results.Wt: archive.write(",".join([str(float(x)) for x in v])

+ "\n")
4 archive.close ()
5 archive = open("pca_archive_mu.txt", "w")
6 archive.write(",".join([str(float(x)) for x in results.mu]) + "\n")
7 archive.close ()
8 archive = open("pca_archive_sigma.txt", "w")
9 archive.write(",".join([str(float(x)) for x in results.sigma]) + "\n")

10 archive.close ()
11 fout = open("emotions.train.pca", "w")
12 for line in open("emotions.train"):
13 temp = []
14 for el in line [2:]. strip ().split("␣"):
15 temp.append(float(el[el.index(":")+1:]))
16 fout.write(line [:2] + "␣".join([str(str(i+1) + ":" + str(index))

for i, index in enumerate(results.project(np.array(temp),
0.001))]) + "\n")

17 fout.close ()

Line 1 uses the PCA class within matplotlib to project the data onto a reduced set of dimensions.
The input given to this class is all of the vector data as an array represented as number of
observations (number of distance measures) X number of dimensions (number of vectors).
Once this has been done, a number of class variables from the results object are extracted
to avoid having to reproduce the PCA later. Lines 2-4 extracts wt, the weight vector for
projecting a vector into PCA space, and saves it to a text file. Lines 5-7 extract mu, an array
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of means for the vector data, and saves it to a text file. Lines 8-10 extract sigma, an array
of standard deviations for the vector data, and saves it to a text file. Lines 11-17 then will
extract the principal components (reduced set of the vectors), for SVM training, into a file
emotions.train.pca.

5.5.3 SVM training

A python script, svm.py, was created to scale training data, perform training, and cross-
validation, through the LIBSVM library. The majority of the script involves running commands
on the LIBSVM binaries.

Firstly, the training data was scaled using the svm-scale binary (Listing 5.20).

Listing 5.20: Scaling training data using svm-scale
1 ./svm -scale -s "emotions.train.pca.range" "emotions.train.pca" > "

emotions.train.pca.scale"

This command uses scaling parameters, emotions.train.pca.range and the training data
emotions.train.pca from pca.py. The -s command specifies that training data is being scaled
as opposed to scaling test data. The output of this command is then saved to a emo-
tions.train.pca.scale range file.

After scaling, the best parameters for the SVM kernel were found through cross-validation
using the grid.py file from the LIBSVM library (Listing 5.21).

Listing 5.21: Obtaining SVM parameters through cross-validation
1 python grid.py -svmtrain "./svm -train" -gnuplot "/usr/local/Cellar/

gnuplot /5.0.2/ bin/gnuplot" "emotions.train.pca.scale"

This command performs 5-fold cross validation on the scaled training data, emotions.train.pca.scale,
to find the best c and Gamma SVM parameters. The flag -gnuplot "/usr/local/Cellar/gnu-
plot/5.0.2/bin/gnuplot" is used to produce cross-validation plots during this process.

The final parameters that were chosen were a value of 8 for the C parameter, and a value
of 8 for the Gamma parameter. The C parameter indicates the cost of classification where
a large C gives low bias and high variance, and a low C gives higher bias and lower variance.
The Gamma parameter is the parameter for the Gaussian radial basis function kernel used by
the SVM. The final cross-validate rate achieved by the classifier was 90.902% (Fig. 5.5).
After obtaining the best values of these parameters, the svm-train binary was used to train the
classifier (Listing 5.22).
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Figure 5.5: Cross-validation plot for the emotion classifier used in experiments

Listing 5.22: Training the emotion classifier using svm-train
1 ./svm -train -b 1 -c 8 -g 8 "emotions.train.pca.scale" "emotions.train.

pca.model"

This command runs the svm-train binary with the c and Gamma parameters of 8. The -b
boolean flag is used to specify that the model should be trained to provide probability estimates.
These estimates are what the emotion measurements will be based on.

This process produces the emotions.train.pca.model SVMmodel and the emotions.train.pca.range
range file that are used by the iOS application to load the trained classifier to make emotion
predictions during experiments.
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Chapter 6

Results and Evaluation

This chapter documents the main work that has been completed to evaluate the developed
system. As stated in the project approach (Page 12), an experiment was planned to validate the
system. The design, execution and analysis of this experiment is discussed here. Subsequent
work on the emotion classifier after analysis of the validation experiment results is also outlined.
Finally, the system is evaluated against the set of user requirements specified during the design
of the system (Page 31).

6.1 Experimentation

6.1.1 Experiment design

For the validation experiment, all of the different types of content the system supports
(Webpages, YouTube videos, Tweets) were used as experiment items. Table 6.1 provides an
overview of the 8 items chosen for the experiment. With only a limited time to design the
experiment, it was difficult to find items to evoke emotions such as Anger or Sadness, without
potentially offending some of the experiment participants. Using items that produced these
kinds of emotions would also raise ethical concerns. Whilst the designed experiment does focus
more on the emotions Happy, Natural, and Surprise, items such as the BBC news feed have
the potential of producing other responses.

Source Content Type Description Display time
http://www.bbc.co.uk/news Webpage BBC News homepage 30s
https://twitter.com/search?q=%23DadJokes&src=tyah Webpage Twitter feed of tweets tagged with ’DadJokes’ 30s
https://www.youtube.com/watch?v=73hyDWqsy8E Video Fastest talking Guinness World Record attempt video 70s
https://www.youtube.com/watch?v=7-xnwrWM1z4 Video News report blooper video 15s
https://twitter.com/emergencypuppy?lang=en-gb Webpage Twitter page for ’Emergency Cute Stuff’ account 30s
https://twitter.com/YouveBeenFramed/status/716316537271914497 Tweet ’You’ve Been Framed’ tweet containing GIF 10s
https://www.youtube.com/watch?v=lJT-yX9C0y0 Video Mercedes-Benz advert featuring dancing chickens 25s
http://www.huffingtonpost.com/good-news/ Webpage Good News section of Huffington Post website 30s

Table 6.1: Details of experiment content used in the validation experiment

The webpages used in the experiment were chosen on the basic criteria of having dynamic
content such as headlines from a news website or a feed from a social media website. Although
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participants may be familiar with the sites chosen, as the content regularly changes on these
websites, the majority of the content should be unfamiliar. Each website can be interacted
with as you would normally in a browser, and a user had 30 seconds to interact with each site.

The videos in the experiment were chosen using some basic criteria. The videos had to
be short in length and have a small number of key events that would produce an emotional
response that could be cross-referenced against the emotion data with. It was also important
that the videos chosen were relatively unknown and not ’viral’ as participants should ideally
be viewing the videos for the first time. To help to source videos that met this criteria, 2
of the videos were taken from the EmoVu web-based demo [27]. The third video in the
experiment was sourced through looking at user made playlist on YouTube. To try to make
the videos even more unfamiliar to participants, the videos were downloaded from YouTube,
and re-uploaded as private videos, only accessible through the experiment. By re-uploading the
videos, metadata such as the original video title could be removed so that a participant would
have less information before viewing the video.

The tweet used in the experiment was chosen fairly randomly to produce a Happy or Surprise
response. In addition to the tweet text, there is a GIF attached from the popular TV show
’You’ve Been Framed’. Although it was tweeted from a fairly popular account, the volume
of tweets even from this account means that it is very unlikely to have been seen by a participant.

After discussions with PhD Students in the School about the design of my experiment, it was
suggested to also include a feedback form at the end of the experiment. A basic paper-based
general comments form was designed for participants to fill in. This gave them the opportunity
to provide information on what they thought about the items shown, their responses, the
design of the experiment iOS app, and any general comments about the experiment process.

6.1.2 Experiment execution

During a single week in April, 16 participants carried out the designed experiment. The
set-up for each experiment was kept as consistent as possible through using the same library
room, lighting conditions, mobile device, and mount to hold the device. By mounting the
phone, it helped to stabilise the frames that were captured, and it ensured that the participant
would be looking at the phone directly, and not at an angle if they had held the phone themselves.

For each participant, frame-level emotion measurements were recorded. Videos of the
participant viewing each item were also captured to help to validate and analyse the results. All
participants were made aware of how their data would be used in this project. All of this data,
as well as some summary data is available in the ResultData.zip file attached with this report.
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The process that was followed for each experiment was:

1. Provide an overview of the project, what the experiment involves, and how the experiment
data will be used

2. Calibrate the phone mount to the participant using the face tracker preview available in
the iOS application

3. Allow the participant to view and interact with the experiment items

4. Ask the user for some general comments about the experiment

5. Retrieve the video data from the phone

6. Retrieve the emotion measurements using the Results API

There were a small number of occasions where the experiment had to be repeated when
a user accidentally closed the application. Generally, this experiment process lasted only 15
minutes.

6.1.3 Experiment analysis

Emotion data analysis

After executing the experiment, the experiment data for each participant was collated, and
a short Python script was written to produce average emotion measurements for each item.
This summary data is available in the Summary Data folder in the ResultsData.zip file. Each
experiment item’s averages was plotted in MATLAB during analysis, and these plots are also
available in the Summary Data folder. A subset of these plots will be used as part of this analysis.

After analysing all of the experiment data, generally it appears that the emotion measure-
ments appear to be significantly biased towards particular emotions compared to others. As a
result, some of the emotion measurements that were expected when designing this experiment
have not been seen during this analysis. To rectify this, some further emotion classifier work
has taken place after the experiment (Page 70).

Webpage items There were 4 webpages used in the experiment in total. Of these 4
webpages, 2 of them were feeds from news websites, and 2 of them were feeds from Twitter.

When viewing the results of participants viewing the BBC News homepage, it appears that
there was no significant emotional response measured (Fig. 6.1).
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Figure 6.1: Average emotion measurements for BBC News experiment item

The highest measurements were from the Angry and Disgust emotions. Whilst these are
likely responses when viewing news websites, it appears these measurements are more of a
result of problems with the emotion classifier compared to the true response of participants.
Apart from these 2 emotions, the only other emotion that has a measurement higher than
Angry or Disgust at any point in the experiment is Sadness. Although the measurement is fairly
low, it is still significantly higher than any of the other 5 emotions in the experiment, and is
not attributed to an issue with the emotion classifier. When reviewing the raw videos recorded
of participants viewing the BBC News item, and comparing it to the videos of participants
viewing other items, this item produces the least amount of emotional response. This could be
for several reasons such as already being familiar with the news headlines shown, the order of
the item in the experiment, or the lack of media other than text in the item.

When viewing the results of participants viewing a feed of Tweets tagged with ’DadJokes’,
a pattern similar to the BBC News item emerged in the results (Fig. 6.2).

This item was designed to produce responses of Happy. Whilst there are a small number of
peaks for this emotion, particularly between frames 100 and 130, there are still other emotions
that have significantly higher measurements - Angry, and Disgust. This was one of the main
results used to discover problems with the emotion classifier. The positive of this item’s results
is that there was a significantly more evident emotional response from participants in the
raw videos when viewing this item compared with the BBC news item. When extending that
comparison to the participant videos available of both news websites, and the videos available
of both social media feeds, it appears that participants generally responded more to social
media feeds over websites.
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Figure 6.2: Average emotion measurements for ’DadJokes’ Twitter feed experiment item

YouTube items There were 3 YouTube videos used in the experiment. All 3 were chosen
to produce the responses of Happy or Surprise. After reviewing the emotion data, the results
of participants viewing these items are marginally better than the webpage item results. For
example, in the results for the Guinness World Record video, there are a small number of peaks
for Surprise and Happy (Fig. 6.3).

A

Figure 6.3: Average emotion measurements for Guinness World Record YouTube video
experiment item

When looking at the original video, these peaks appear to be around the points when
certain key events happen such as the contestant starts the record attempt (~Frame 200), and
when she is close to completing the record (~Frame 800). However, there are still problems
with the Angry and Disgust emotions still having high measurements. More time was spent
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reviewing the raw videos of participants viewing the YouTube videos to see if any of these high
measurements could be explained. However, there is clear evidence that the intended responses
of Happy and Surprise are achieved, to the extent that this data could be manually relabelled
and used as examples of these emotions in a future classifier training process.

Tweet items The only Tweet used in the experiment was from a popular UK TV show -
"You’ve Been Framed". The Tweet was designed to test the system’s ability to detect the
emotions Happy and Surprise. Figure 6.4 shows a plot of the average emotion measurements
whilst viewing this tweet across all participants.

Figure 6.4: Average emotion measurements for Tweet experiment item

As seen in this plot, the confidence values for these emotions are significantly lower than
those for Angry or Disgust. The highest recorded value for Happy across all participants whilst
viewing this item was ~0.65, and the highest recorded value for Surprise was ~0.61. After
reviewing the raw video data of participants viewing this Tweet, it appears that the majority
of the participants did not respond with the intended response of Happy or Surprise. This
indicates that there may be an issue with the specific tweet that was chosen for the experiment.
With the item only having a small amount of content and being shown for 10 seconds, it was
not always guaranteed to achieve the intended response. To improve the experiment, a variety
of Tweets could have been used to see if it would be possible to get a significant emotional
response from a single Tweet. Whilst there is some video data that suggests the results for
Happy and Surprise should be higher than they were, these measurements seem to be lower
than expected due to both the classifier’s limitations and the particular Tweet chosen for this
experiment.
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Feedback analysis

In addition to the numerical results, after each experiment, participants were asked to provide a
general comment about the experiment. The survey asked them to think about the content they
viewed, their responses, the design of the iOS application, and the guidance given throughout
the experiment. All of this feedback was then collated into a Result info.xlsx spreadsheet,
available in the ResultsData.zip file. After reviewing these comments, there were a small
number of points that were raised consistently across the participants, that provide more
understanding of the strengths and weaknesses of the experiment.

Firstly, participants commented that the mount used to hold the phone throughout the
experiment wasn’t particularly sturdy and that the device seemed to shake when interacting
with the application. Whilst all of the participants were able to interact with experiment items,
some resorted to holding the device throughout the experiment. This may have had an effect
on the emotion measurements as 2 of the participants said they were often more focused on
keeping the device still compared to viewing the experiment items. The choice to use a mount
instead of asking participants to hold the device was to control the conditions more, particularly
their pose, and to keep all of the experiment participant video data as consistent as possible.
If future experiments were to take place, then the setup used may need to be considered more.

Secondly, it was noted by participants that generally they hadn’t seen any of the experiment
items before. The majority of the participants were familiar with the BBC News website and
Twitter, but as the content on these websites changes so often, the articles/tweets on these
sites were still new to them. This is a positive for the designed experiment, as the content was
designed to be viewed for the first time. Only 1 participant wrote that they had seen one of
the YouTube videos before. If more experiments were to carried out, it would be important to
continue to source items that participants are unlikely to have seen.

One piece of feedback that came from a small number of participants was that the face
tracker did seem not cope with features such as beards and glasses very well, when they were
shown the face tracker preview screen on the iOS application. This is a general problem that
occurs in face tracking and this was mitigated to an extent by participants removing their
glasses where possible. However when viewing the data of participants with such features,
there seem to be more anomalies in the data compared to participants without these features.
That suggests that face tracker model may have incorrectly deformed to faces at times, and
affected the emotion measurements. In a future experiment, this could be further mitigated by
having a larger sample of participants, and through considering other face tracking libraries or
further training of the current library to be more robust to these features.
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A point that was raised by multiple participants was that there was no content in the
experiment that produce the responses Anger, Fear, or Sadness, despite them being listed on
the project description they were provided with. As noted in the experiment design, it was
difficult to find content that would produce these emotions without offending some of the
participants. When researching content to show in the experiment, there were a small number
of videos that had the potential to produce these responses, but it was decided against for this
validation experiment, due to ethical concerns. If the same experiment was completed again
with participants, it would be worth making it clearer in the information given to participants
that the experiment was focused on a subset of the emotions, as some people were expecting
content that would produce anger, sadness and fear. If other experiments was carried out us-
ing this tool in the future, then more time could be spent considering content for these emotions.

Finally, there were some mixed comments about the types of content used in the experiment,
and how long each item was shown for. The general consensus after reviewing feedback and
looking at the raw experiment video data is that participants responded significantly more to
the YouTube videos compared to any other type of content. More than one participant wrote
in their feedback that the news websites shown didn’t produce an obvious emotional response,
and they would have preferred more video items. There are many possible reasons why these
news websites didn’t produce a response with participants. The content viewed on these sites is
very time-specific, and the news stories shown on the sites may be irrelevant or already known
by the participants. Also, the websites used were feeds of news headlines, with little media to
view other than text.

6.2 Further emotion classifier work

As noted in the experiment analysis (Page 64), some of the emotion measurements that the
emotion classifier produced during experiments were not expected, especially when compared
with the raw experiment video data and knowledge about the content a participant was viewing.
After meeting with my supervisor, and reviewing both the experiment results and the process
used to build the emotion classifier, some potential issues were raised.

To try and address some of the issues in the remaining time of the project, 3 pieces of
investigative work were identified and carried out:

1. Build a multi-class classifier similar to the one used in the experiment but with more
evenly distributed data

2. Build a multi-class classifier for each of the emotion databases used in the original training
process
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3. Build multi-class classifiers with one or more of the emotion databases removed from the
training process

Whilst it was feasible to build these classifiers through modifying the Python scripts produced
for the original training process, it was assumed that due to time-constraints, there would
be no time to conduct another experiment with participants. Instead, to see if these pieces
of work had any effect on the emotion measurement results, some basic analysis was carried
out through applying the investigative classifiers to the raw video data from the validation
experiment, as well as using data provided by the LIBSVM library. A significant piece of future
work will be carrying on with these investigations.

6.2.1 Experiment simulation

As mentioned, recompleting an experiment with participants using a new classifier was not
feasible, due to time constraints. In order to test some of the investigative work, a series of
Python scripts were created to simulate an emotion experiment on the Desktop environment.
The experiment participant videos from the validation experiment were used as test data for
all of the simulations. This allowed the results of the experiment simulations to be directly
compared to the results achieved by the original classifier in the experiment.

The first script that was developed was a script to iterate through all of the experiment
participant videos, and extract the individual frames for each video. This was necessary as
the classifier pipeline used in the project processes data frame by frame. This was achieved
using a very similar OpenCV method that was used to split up the video sequences in the
GEMEP-FERA emotion database for the original training process (Page 58).

After the frames were extracted, a Python function was developed to obtain emotion
measurements for a single frame, using a specified classifier. This process was kept as similar
as possible as the experiments carried out using the iOS application. The steps involved for a
particular frame were:

1. Obtain the facial landmarks from the frame using the FaceTracker library [10]

2. Compute the same set of 86 distance measures used in the training process from the
test facial landmarks

3. Project the test data onto the original PCA space using PCA data saved during classifier
training.

4. Scale the test PCA data to the range file generated during classifier training using the
LIBSVM svm-scale binary [20]
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5. Obtain a set of probabilistic predictions for each emotion from the classifier using a
modified version of the svm_predict_probability function from the LIBSVM svm-predict
binary

Once this function had been developed, a script was built to iterate through all of the
experiment frames, and to call the function to obtain emotion measurements for each item
and experiment participant. All of this data is then collated into CSV-formatted files, so that
similar analysis as the original results can take place.

As this work was related to testing emotion classifiers, the Python scripts developed
are available in the EmotionClassifier.zip file. All of the investigative classifiers discussed in
subsequent sections are also available in this file.

6.2.2 Multi-class classifier with distributed training data

Before starting the original training process, it was noted that the training data available for
each emotion was not very distributed, with 2274 training images available for ’Sadness’, but
only 438 training images available for ’Contempt’. After the biases found with the original
classifier during analysis, to investigate the effect of this uneven distribution, a new multi-class
classifier was produced. The same training pipeline was used, but with all of the emotions
having an equally distributed number of training images. As stated, the lowest available number
of images for any of the emotions was 438, for ’Contempt’, so 438 images were used for
each emotion. The images that were used in the new classifier were sampled from each of
the emotion databases, with the number of images available in each database acting as the
sampling weight.

The distributed classifier achieved a cross-validation rate of 91.8165%. It is worth noting
that the amount of data that this cross-validation was applied to was significantly less than
original classifier.

After applying the distributed classifier to some of the experiment participant data using the
simulation scripts, some of the results produced appear to be more accurate and representative
of the experiment video data in comparison to the original classifier. The main example of this
was when the average results were compared for the cute animals Twitter feed item (Fig. 6.5).
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Figure 6.5: Comparison of average emotion measurement results for participants viewing
a cute animals Twitter item. Results are from the original classifier used in the validation
experiment (left) and a classifier with distributed training data (right)

This item was designed to produce a ’Happy’ response for participants, and in the experiment
videos, it appears this response was achieved in the majority of cases. However, the results
from the original classifier had very low measurements for ’Happy’, with the highest probability
prediction being less than 0.1. The results from the same item using the distributed classifier
look significantly different. ’Happy’ (shown in green on the plot) is the dominant emotion in
the result, with the highest probability predicted as 0.8670. It is clear that the results for this
experiment item were dramatically improved. Similar results have been seen after comparing
other the results for other items designed to be ’Happy’ or ’Surprise’, including the Guinness
World Record YouTube video and even the single You’ve Been Framed tweet. Generally, it
appears that the distributed classifier is capable of making much higher predictions for ’Happy’
and ’Surprise’ than in the original classifier.

However, whilst reviewing other experiment results from this distributed classifier, it appears
that there are still sometimes slight biases towards the ’Anger’ and ’Disgust’ emotions. Whilst
these are weaker biases than seen in the original classifier, it is still important to investigate the
effects of particular databases on the classifier, to see if the data from a particular database
may be overfitting these emotions. As planned, classifiers for each emotion database will be
built and tested.

6.2.3 Database specific multi-class classifiers

To understand the potential effects of particular databases on the original classifier, a set of
classifiers were trained using each database separately. Table 6.2 outlines the cross-validation
rates achieved by each database-specific classifier. As no database used has data for all of the
supported emotions, the emotions that the classifiers have been trained on are listed along
with the number of images used in the training process. An emotion that all of these classifiers
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Emotion database Emotions available Total training images Cross-validation rate
CK+ [21] Anger, Contempt, Disgust, Fear, Happiness, Sadness, Surprise 654 86.5443%
KDEF [22] Anger, Disgust, Fear, Happiness, Natural, Sadness, Surprise 1960 84.0816%
JAFFE [23] Anger, Disgust, Fear, Happiness, Natural, Sadness, Surprise 426 90.0474 %
RAFD [24] Anger, Contempt, Fear, Happiness, Natural, Sadness, Surprise 2814 91.3912%
GEMEP-FERA [25] Anger, Fear, Happiness, Sadness 4620 98.6102%

Table 6.2: Cross-validation results of database-specific emotion classifiers

share, and that appeared to produce the main bias in the original classifier is ’Anger’. After
applying each of the emotion database specific classifiers to the experiment participant data,
the GEMEP-FERA classifier appeared to consistently give much higher ’Anger’ predictions
compared to any other database’s classifier.

The GEMEP-FERA classifier has more than double the training data compared to any of
the other emotion databases. However, the classifier only has data for 4 of the 8 supported
emotions. The images used from this database was extracted from video sequences, with the
emotion labels only being available at a video-level. This may have affected the accuracy of
the labelling of the extracted images compared to a database of discrete training images. After
considering how much this database contributed to the original classifier process, and seeing
the higher ’Anger’ predictions when comparing the database specific classifiers, a multi-class
classifier was developed without this database to further investigate the effects of this database.

6.2.4 Multi-class classifier with a subset of emotion databases

As mentioned in the previous section, the GEMEP-FERA database [25] has a significant amount
more training data than any other database, but only covers 4 out of the 8 emotions that the
classifier supports. To investigate if this particular database was overfitting the classifier and
producing some of the biases, a new classifier was built using the original training process, but
with the GEMEP-FERA data excluded.

The classifier built had a cross-validation rate of 86.3539%. After applying the classifier to
some of the raw experiment participant videos, it appears that the ’Anger’ and ’Disgust’ biases
have been significantly reduced. Also, by removing the training images from this database,
it has made the training data generally more distributed, and the measurements from other
emotions are higher than the original classifier. The main example of this was when the average
results were compared for the news blooper YouTube video item (Fig. 6.6).
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Figure 6.6: Comparison of average emotion measurement results for participants viewing a
news blooper item. Results are from the original classifier used in the validation experiment
(left) and a classifier with no GEMEP-FERA [25] training data (right)

The news blooper item was a short funny YouTube clip designed to produce ’Happy’
response. In the average results for the original classifier, the measurements for ’Happy’ were
never higher than 0.05. Across all participants, the highest recorded measurement for ’Happy’
was 0.1. This is still significantly lower than the average results for ’Anger’ and ’Disgust’,
whose lowest averages were 0.2751, and 0.2305 respectively. The average results achieved for
the classifier without the GEMEP-FERA data were completely different. This was particularly
evident when comparing the average result charts. For the majority of the experiment item,
the intended response of ’Happy’ appears to be the dominant emotion, with ’Neutral’, and
’Sadness’ also recording high values. For a segment of the experiment item’s video, a reporter
is describing a robbery story, which may have contributed to the ’Sadness’ results. However,
after analysing all of the experiment items, it appears that the measurements for ’Sadness’ are
generally much higher than in the original classifier, even in cases where participants are clearly
not expressing this emotion in the raw participant videos. This suggests that this classifier has
reduced some biases, but introduced another bias towards another emotion.

This piece of investigative work further highlights that there are still issues with the classifier
training process, as the process appears to be very sensitive to the training data it is given.
By removing the entire GEMEP-FERA database in this classifier, the biases towards ’Anger’
and ’Disgust’ have been significantly reduced, whilst introducing a new bias towards ’Sadness’.
Although the quantity and distribution of the GEMEP-FERA database was not ideal for the
original process in comparison to the other databases, in future work, it is important this
database is not completely disregarded as there is still some important data that could be
selected and used. The distributed classifier used a reduced set of the GEMEP-FERA database
and also reduced the ’Anger’ and ’Disgust’ emotion biases, but not to the same degree as this
classifier.
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6.3 Requirements evaluation

Before developing the system, a set of basic user requirements were established (Page 31). As
part of this evaluation, the system has been analysed against these set of requirements. For
each of the requirements, it is explained to what extent the requirement has been met, along
with a screenshot if necessary.

Requirement: A means of a user setting up an emotion experiment to be carried out
Priority: Must have
Achieved: Yes
Details: A web application has been developed that allows a user to set up an experiment
(Fig. 3.1). There is a ’create’ view that allows a user to provide all of the content details, as
well as to provide summary details about the experiment such as experiment name and creator.
The experiment can then be later modified using a similar ’edit’ view, and all created
experiments can be viewed on a ’summary’ view.

Requirement: An iOS application capable of carrying out emotion experiments
Priority: Must Have
Achieved: Yes
Details: An iOS application has been developed that allows experiment data to be read in,
emotion measurements to be captured, and for this data to sent back to the results API. The
iOS application was designed to carry out experiments, and this requirement was met by using
the application in a validation experiment with 16 people.

Requirement: A means of a user collecting results from an experiment
Priority: Must Have
Achieved: Yes
Details: A results API has been created that allows all of the data captured in an experiment
to be collected through a HTTP GET request (Fig. 3.4). Result data can either be collected
in bulk through one request, or a particular result can be retrieved through the API by using
the generated result ID, available in the results web application.

Requirement: A facility that allows the analysis and visualisation of results
Priority: Should Have
Achieved: Partially
Details: A basic web application has been created that allows the visualisation of experiment
results (Fig. 3.2). There is a ’summary’ view that shows all of the available results at an
item-level for each participant. There is also a ’result’ view that shows a line plot of all the
emotion measurements captured for a specific result. The reason why this requirement is
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partially met, is because there is no real analysis functionality to the system other than
manually looking at the graphs. The visualisation functionality is also fixed, and no summary
visualisations are available at an experiment level across all participants. This was due to
time-constraints associated with needing to carry out a validation experiment. However, the
data can easily be downloaded through the API, and visualised/analysed using another tool.

Requirement: A means of recording experiment participants to review with experiment
results
Priority: Should Have
Achieved: Yes
Details: For each experiment item viewed by a participant, all of the processed camera
frames are saved into array and at the end of the item, a video is generated and saved into the
Documents folder of the application on the device. The application has been set up to support
iTunes File Sharing, so that all of the videos generated by the application can easily be
obtained over USB in iTunes (Fig. 6.7). Each video is named based on the experiment ID,
item ID, and time the result was captured.

Figure 6.7: Experiment participant videos available through File Sharing in iTunes

Requirement: Support for different types of web-based content that can be used as an
experiment
Priority: Should Have
Achieved: Yes
Details:
The iOS application currently uses a combination of system libraries and third party libraries to
support 3 different types of content (Fig. 6.8). A single web page can be loaded using an iOS
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web view, and the web page can be interacted with like a normal browser. A tweet can be
loaded and interacted with using the Fabric library [44]. A YouTube video can be loaded and
viewed using the YouTube IFrame Player API [43]. All of these types of content were used in
the validation experiment. After reviewing libraries for other types of content, it would be
trivial to add more types of content. The 3 types of content supported by the application were
considered the priorities for conducting experiments.

Figure 6.8: Examples of the different types of content supported by the experiment iOS
app

Requirement: A login system to allow an experiment and the subsequent results to be
viewed only by the user who set up the experiment
Priority: Could Have
Achieved: No
Details: This work was considered after the main development tasks were completed. As this
is a proof-of-concept system that was only used by a small number of people, there were other
tasks that took priority. In comparison to the other work developed already, the login system
should not take much time to implement if required. There are features in the web libraries
used in the project that could help to develop this functionality.

Requirement: Emotion metrics based on the emotion measurements gathered during an
experiment
Priority: Could Have
Achieved: No
Details: This requirement was considered after seeing the capabilities of some of the existing
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commercial solutions. Unfortunately, achieving metrics such as attention or expressiveness
would involve a significant amount of research and time, and more work is still required on the
raw emotion measurements before these metrics can be considered.

Requirement: Synchronisation of original experiment items and result data when viewing
experiment results
Priority: Could Have
Achieved: No
Details: This would have been a useful feature for the experiment results tool, especially with
time-sensitive experiment items such as news/social media feeds, but carrying out the
validation experiment and completing further classifier work prioritised this work. This has
been taken into account for future work.
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Chapter 7

Conclusions

To conclude, I have thoroughly enjoyed working on this project, and I am happy with what has
been achieved in the short timeframe. The main aim of the project was to develop a proof of
concept that allowed emotion classification experiments using a mobile device. The system
that has been developed comprises of an iOS application, along with 2 web applications and 2
APIs. Whilst there are a small number of known issues with the system, it was still able to be
used to conduct a validation emotion classification experiment with 16 participants. Therefore,
I believe the general aim of the project has been met. All of the ’Must Have’ requirements and
the majority of the ’Should Have’ requirements that were outlined at the start of the project,
have been completed. The remaining requirements were not entirely completed due to the
project’s time constraints, but the work involved should not be as complex as the work that
has already been achieved in the project. The major work involved has been discussed in the
Future Work section (Page 82).

The main issue that occurred during the project was the emotion classifier used during
the validation experiment. The results of the experiment carried out with the system were
not as positive as expected, and highlighted some issues with the classifier, particularly biases
towards particular emotions. Luckily, there was still time in the project to develop new classifiers
that considered factors such as the emotion databases used and the distribution of training
data more. After rerunning the classifier on experiment participant videos, and comparing
the results, it appears some progress has been made to develop more accurate and robust
classifiers. However, there are still known issues with all of the classifiers developed during
this investigative work such as biases moving from one emotion to another, or there not being
enough training examples for certain emotions. Generally, the classifier training process appears
to be very sensitive to the training data it is given. Ideally, I would have liked more time at the
end of the project to consider other training data combinations, or to potentially source more
data. Unfortunately, due to the time constraints of the project, this was not possible, but it
has been noted as a major piece of future work.
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The developed system has been designed to modular, and to provide general-purpose tools
for emotion classification. Several emotion classifiers have been built, along with an iOS
application capable of carrying out experiments, and web-based tools to support this process.
All of the work in this project has been documented, and is available to review on GitHub. I
believe there is definite potential for some of the project to be further developed or re-used in
future research. At a minimum, the project highlights what is possible in this research area on
a mobile device, and highlights some important factors to consider when working on a similar
project, particularly when developing emotion classifiers.
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Chapter 8

Future Work

After developing this proof-of-concept system, there are now many possible pieces of future
work. Some of the key pieces of work that could be considered if this work is continued have
been outlined below.

8.1 Emotion classifier

One of the key improvements for the system would be to conduct more analysis and improve-
ments on the emotion classifier. For the majority of this project, an emotion classifier from
the "Facial Expression Analysis on Smartphone" CUROP project was used in order to get a
viable proof-of-concept system working as soon as possible. This classifier was a good enough
starting point for the project, but had biases towards particular emotions, primarily due to a
lack of training data when it was developed. To try and resolve this, in the first few weeks of
this project, time was spent investigating and obtaining more training data. In the latter half
of the project, a new emotion classifier was developed using the 2 original emotion databases
from the CUROP project, alongside 3 new emotion databases that were sourced during this
project. As the iOS application component of the system was designed to allow the ability of
changing classifiers easily, the newly developed classifier was tested and integrated into the
project before the main project experiment took place. Whilst this classifier initially appeared
to be an improvement on the classifier developed during the CUROP project, issues were
discovered whilst conducting experiments, and more classifier work was completed. At this
point, more analysis and improvements are still needed. Some potential pieces of future work
that could be completed include:

• Utilise video data generated during emotion experiments in the training of a new classifier.
The iOS application component is capable of recording participants whilst they complete
an experiment, and this video data can easily be retrieved. This data could then be
reviewed, manually labelled, and added to the set of training data. Whilst this would be
time consuming, it would allow a lot of data to be sourced without needing to obtain any
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more 3rd party databases. Also, this data would be more similar to the test data than
the current training data from databases as it will have come from the same system.

• Analyse the features used by the classifier. Currently 86 distance measures are calculated
from facial landmarks, and these are then subject to Principal Component Analysis (PCA).
This process currently produces 18 vectors, but if the PCA results were analysed more,
the majority of the variation needed for the emotion classification may be found in a
smaller number of vectors. With a suitable amount of data, analysis of this process could
take place using a tool such as Python or MATLAB.

• Consider a different approach to building the classifier. Recent research from Carnegie
Mellon University’s Human Sensing Laboratory has found that a personalised approach
to building an SVM classifier can achieve better results than a generic SVM classifier like
the one used in the project through simultaneously learning a classifier and reweighting
training data. Some of the C++ functions from this research are available online, and
it would be interesting to compare results from this type of classifier with the current
classifier [1]. With the recent public release of Google’s machine intelligence library
TensorFlow [50], it would also be more feasible to consider a deep learning approach to
building the classifier.

8.2 Results API

Another future improvement and one that was only envisaged towards the end of the project is
improving the scalability of the system’s experiment results API. As experiment results generate
a large amount of data that needs to be sent/retrieved using the API, having an API that is
able to cope with this level of data will be important. This only became an issue towards the
end of the project when several participants had completed an experiment. Although the results
were reachable through the API, there were a small number of crashes on the server that hosts
the API whilst doing so. Some potential pieces of future work that could be completed include:

• Review the API’s data model. The data model that is used by the API was designed at
the start of the project and including a field for facial tracking data. As this data is now
easily available through applying the facial tracker to the recorded experiment participant
video, the API’s data model could be changed to remove the tracking data field. This
should make a noticeable difference as each result frame produces 86 key/value pairs of
tracking data.

• Implement additional API calls. At present, to view a summary of all available results, a
GET request is used to retrieve all available results data. When this call is made, the
majority of the data returned is not needed for a summary such as the facial tracking
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data and the classifier data. Additional API calls that allowed only the fields required for
a summary would reduce the API’s load significantly.

• Investigate the server’s configuration. Even if improvements are made to the API,
the server itself still may not be able to cope with many requests at one time, due the
resources it has been configured with. The server used in the project currently has 512MB
RAM and 20GB storage. If future experiments were planned, it would be advisable to
investigate and possibly upgrade the server’s configuration.

8.3 Experiment design

Due to the limited time in the project, there was only time to design and execute a single
experiment to validate the system. If this system was used for similar emotion experiments
in the future, it would be a good idea to spend more time on the design of the experiment.
Whilst I have been able to integrate some feedback from PhD students within the school, I
believe that more work could be done to make the experiment results more useful than just to
validate the system. Some potential pieces of future work that could be completed include:

• Add a short questionnaire to the experiment. The experiment that was carried out to
validate the system only allowed participants to add general comments at the end of the
experiment. In order to establish ground truth and to get more insight into particular
results, it may be useful to have some kind of questionnaire with more structure such as
asking a user to state the response they believe they had to an item, and to compare
this with the response measured by the system.

• Investigate timings more. It is difficult to know exactly how long particular experiment
items and delays between items should be shown to experiment participants for. For
the purposes of this project, a hard coded delay was added to the iOS application of 3
seconds, and arbitrary times were chosen based on content length. It is important that
different timings are considered in future experiments as they have important psychological
implications that could affect the results. This would involve trialling different timings in
experiments, and researching any existing psychological work that may assist with setting
these timings.

8.4 Analysing/visualising experiment results

An area of the project that could use additional work is the functionality available when viewing
experiment results. Currently, a user is only able to view a graph for a single experiment item
from a single experiment participant. This is an intuitive way of seeing how a participant
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responded to a particular piece of content but it doesn’t give much scope for further analysis
or visualisation. Some potential pieces of work that could be completed include:

• Implement the ability of downloading of result data. If the user is able to download result
data for a single item or a whole experiment in a suitable format i.e. CSV, they would be
able to use this data for other applications such as in MATLAB or Python. This would
involve developing functions or using a library to convert the Result API JSON into a
CSV format, and providing a link to this data on the web application. This process is
currently manually completed using a Python script once the API result data has been
obtained.

• Implement the ability to select emotions. Currently, the chart produced by the system
shows the results for all emotions. It would be useful to allow a user to select a subset of
these emotions if they are only interested in particular ones. This would involve adding
UI controls such as checkboxes for each emotion, and then implementing some code to
keep track of the state of these checkboxes for displaying the chart.

• Implement more means of comparing experiment results. Currently if a user would like to
compare the results for multiple participants who viewed the same experiment item, they
would have to manually open the results web application multiple times. A potential
feature would be to allow a user to view the result charts for multiple participants in the
same view. This would involve developing a new view where a user could enter multiple
result IDs, and a similar visualisation could then be generated for each ID entered.

• Introduce summary statistics. Summary statistics such as number of participants,
minimum/maximum confidence values for each emotion, and some summary plots could
appear on the web application. Some of these have been manually calculated for this
project, but automatic calculation of these statistics would be a useful feature on the web
application. This would require a significant amount of code to retrieve all of the result
data, and to process these statistics in the background. One potential solution would
involve using the data tools available within D3 [51], such as d3.deviation, d3.mean, and
d3.min. This is an underlying library already available in the project.

8.5 Emotion experiment capture tool

Whilst the current experiments iOS application was able to carry out the validation experiment
successfully, there are still potential improvements/new features that could be added to the
application. Some potential pieces of work that could be completed include:

• Additional support for different types of content. The system’s ability to support a type
of content is dependent on an appropriate means of displaying the content on the iOS
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application. In the future, it may be interesting to add more support for different types
of content. For image content, images from the photo sharing site Flickr [52] could
be integrated using the FlickrKit library [53]. If audio content was considered more,
SoundCloud [54] content could be integrated using the Embedly library [55]

• Implement screen capturing capability. An experiment may involve time-specific content
that will differ between participants, and between experiment execution and analysis.
For example, if an experiment participant views a Twitter feed in the morning, by the
afternoon, the content will likely be different. To counter this, a potential feature would
be to capture the contents of the device screen during an experiment. This could be
achieved through taking regularly timed screenshots of the screen whilst an experiment is
taking place, and to retrieve these screenshots using iTunes when the participant videos
are retrieved. This would provide more context on the exact content that was viewed
when analysing experiment results.

• Improved navigation for webpage experiment items. A small issue noted by participants
in the validation experiment was that the webpage experiment items did not allow you
to navigate back a page if you interacted with content. This was due to having limited
screen space, and not wanting to introduce a navigation bar for webpage items. The
UIWebView class used to display the webpages does maintain a list of all previously
webpages, and has built-in support for ’Back’ and ’Forward’ buttons [56]. If a larger
device was used, or this functionality became a requirement, it would not require much
additional work.
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Chapter 9

Reflection and Learning

9.1 Reflection

On reflection, if I could change how I approached the implementation of the system, I would
have made the development phase more test-driven. Having code tests in the project, particu-
larly in the API and web applications, would have allowed me to identify issues such as the
system’s scalability at an earlier point than just through manual testing. Testing would also
have made the development more structured through having to clearly understand the system
requirements and features to implement before writing any code. I spent a long time debugging
issues such as the stability of the API and data formatting errors, with little indication of where
the code was failing. Whilst writing tests would have taken up some time in the project, I
would have been able to identify and resolve such issues more easily because of the information
from the test results.

Another area of improvement in the project would have been to allocate more time to the
experiment phase. Whilst I was able to complete an experiment with an acceptable number
of participants, the experiment had the potential to be more interesting than it was. I only
considered designing my main experiment after finishing the development of the entire system,
despite the full system not being needed to design an experiment. This identifies a potential
weakness in the approach I took for the project, where I divided the project into discrete phases.
Ideally, the experiment should have been designed as soon as it was feasible, to give me more
time to meet with the PhD students involved in my project, and to use more of their feedback
whilst still in the main development phase of the project. I was able to use some of the feedback
given such as adding in intervals between experiment items shown, but some of the feedback
ended up as future work due to time constraints. The experiment was designed to validate the
system, and I do think that the experiment executed achieved that. However, there was scope
to improve the experiment if my approach had been slightly different.
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Finally, it would have been useful to be more aware of the final report deliverable, and
to try to spread some of the report work throughout the project. Although I made notes as
I completed different tasks, these were often quite vague and didn’t help a great deal when
writing my report, apart from some of the code documentation I produced. I didn’t properly
start to write the final report until after I had completed the main objectives of the project. In
hindsight, it would have been beneficial to complete sections such as the ’Background’ and
’Specification & Design’ earlier in the project, to reduce the amount of writing work required
at the end of the project. Also, by having to think about and write these sections, it would
have likely had a positive effect on the project implementation and experiments.

9.2 Learning

This project involved a variety of development work that has allowed me to expand my software
development skills. Although I had prior experience in all of the programming languages used
in the project, many of the tasks I had to complete required a much deeper understanding
than I possessed prior to starting. The main example of this was the development of the
emotion experiments iOS application. I had previously developed an iOS application that had
face tracking and emotion classification functionality, but this project required extra levels of
functionality that I had no experience of. I had to become familiar with various third-party
libraries such as the YouTube iOS Helper [43] and Twitter Fabric [44], as well as having to learn
about network programming in Objective-C to connect the application to other components
of the system. These are just a couple of examples of the exposure I have had to different
technologies. By having complete autonomy over the development work, I have become more
competent in reviewing different languages/libraries/tools, and I feel confident in making
development decisions based on suitability for the task, instead of just choosing what I am
familiar with. I believe that this will be a useful skill to have in future development work.

Another area of development during the project was my research skills. In particular, I have
learnt the importance of staying up-to-date with the current research field. Being aware of
existing work, has informed many of the decisions made in the project. One example of this is
when I was aware of a previous final year project in the School [8], that had used a face tracker
on the iOS platform. Being aware and reading about this work allowed me to understand the
reasons for choosing an ASM face tracker in theory, as well as seeing the practicalities of using
a particular ASM library on a mobile platform. If I had not been aware of this prior work, I
would have spent more of the project researching and testing other face tracker approaches
that may have been completely unsuitable. Another example of how existing research has
informed my project was when I was choosing which emotions to support in the system. As
I had already researched existing emotion databases, and read papers about other work on
emotion classification, I was aware that very similar sets of emotions were used in the different
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pieces of work. If I had chosen an arbitrary set of emotions, it is unlikely that I would have
had as much success in the project, as my work would have been less compatible with existing
work. Having this understanding of current work has also helped me to critically evaluate and
compare my work throughout the project.

Time management in the project was extremely important, to deliver what I had outlined in
initial plan. The main learning point for me whilst managing the project was how to respond
to unexpected changes to the planned project timeline. There were a couple of occasions
where the project encountered a delay due to an unforeseen technical problem or for personal
reasons. For example, whilst trying to develop an emotion classifier, one of the hard drives
containing all of the training data I planned to use became corrupt. I was able to deal with
problems like this through being open with my supervisor as early as possible and through
also ensuring that I had a list of tasks that could be completed at any one time, so that if no
progress could be made on a task, I didn’t need to spend a long time thinking of what to do
instead. Another area of my project management skills that I developed was managing source
code. In my CUROP project, although I used Github to manage the project’s codebase, I did
not regularly commit to the repository and there would often be large changes in functionality
between commits. As there were many components and features to implement in this project,
I ensured that I set up repositories at the start of the project, and that I made regular commits
whenever there was a change in the project. By managing the project’s code in this way, I was
able to commit a stable version of a component to the repository, and then I could test a new
experimental feature without making the component unstable. By having more manageable
commits, it also became easier to review the development progress made, against the project
time plan defined in the Initial Plan [3] .
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List of Abbreviations

• AAM Active Appearance Model

• API Application program interface

• ASM Active Shape Model

• CK+ Extended Cohne-Kanade Dataset

• CRUD Create-Read-Update-Delete

• CUROP Cardiff Undergraduate Research Opportunities Programme

• FACS Facial Action Coding System

• FERA Face and Gesture Recognition

• GEMEP Geneva Multimodal Emotion Portrayals

• JAFFE The Japanese Female Facial Expression (Database)

• JSON JavaScript Object Notation

• KDEF Karolinska Directed Emotional Faces

• MEAN MongoDB, ExpressJS, AngularJS, NodeJS

• PDM Point Distribution Model

• RAFD Radboud Faces Database

• RMS Root-mean-squared

• UI User Interface
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